3-MANIFOLDS

JASON MANNING
SCRIBED BY OLIVER WANG
MARCH 16, 2016

1. Loop Theorem

Last time, we stated the Loop Theorem and some corollaries.
Theorem (Loop Theorem). Let M be a 3-manifold with boundary. Given $f:\left(D^{2}, \partial D^{2}\right) \rightarrow$ $(M, \partial M)$ with $\left.f\right|_{\partial D}$ nontrivial in $\pi_{1}(\partial M)$, there is an embedding $f^{\prime}:\left(D^{2}, \partial D^{2}\right) \rightarrow(M, \partial M)$ with the same property.

Remark. if $\left.f\right|_{\partial D} \notin N \triangleleft \pi_{1}\left(\partial M\right.$, pt) then we can ensure the same is true of $\left.f^{\prime}\right|_{\partial D}$ (the proof is essentially the same).

Corollary 1.1 ((Dehn's Lemma)). An embedded curve in ∂M which is null-homotopic in M bounds an embedded disk in M.

Corollary 1.2 (Corollary 2). If $\Sigma \subseteq M$ is a 2-sided, properly embedded surface and $\Sigma \neq D^{2}, S^{2}$, then Σ is incompressible if and only if Σ is π_{1} injective.

Remark. This fails for 1 -sided surfaces. For example, $L(6,1)$ contains a klein bottle K such that there is no simple, essential curve on K bounding an embedded disk.

We proved Dehn's Lemma in the previous class.

Proof of Corollary 1.2. Assume that Σ is π_{1} injective. Let M_{0} be M cut along Σ and let $M_{1}=$ $M_{0} \backslash \partial M$. Consider a loop γ on Σ which is null homotopic in M. Let f be the null homotopy. We can assume f is transverse to Σ. By a slight homotopy of f, we can also make sure that $f^{-1}(\Sigma) \cap N=\partial D$ where D is bounded by γ and N is a neighborhood of ∂D (here, we use 2 -sidedness). So, $f^{-1}(\Sigma)$ consists of loops in D. Consider an innermost loop of $f^{-1}(\Sigma)$. If it is inessential (trivial in $\pi_{1} \Sigma$) we can homotope f to remove it. Replace f with f_{1}, which is the restriction of f to the innermost essential loop in $f^{-1}(\Sigma)$. Then we have, $f_{1}:(D, \partial D) \rightarrow\left(M_{1}, \partial M_{1}\right)$ with $\left.f_{1}\right|_{\partial D}$ nontrivial in π_{1}. So we can apply the Loop Theorem to get an embedding $f_{1}^{\prime}:(D, \partial D) \rightarrow\left(M_{1}, \partial M_{1}\right) \rightarrow(M, \Sigma)$. This shows that π_{1} injectivity of Σ implies that Σ is incompressible. The other direction is easy.

The outline of the proof of the Loop Theorem is as follows

1) Build a tower of double covers

Here, D_{0} is the image of f and V_{0} is regular neighborhood. $M_{1} \rightarrow V_{0}$ is a connected double cover of V_{0} if such a cover exists. Lifting f, we define the other layers of the tower similarly. We must show that this tower terminates.
2) Find a nice embedded disk in V_{n} whose boundary is still nontrivial in π_{1} when pushed down to M.
3) Push disk down the tower, resolving intersections at each stage (making sure to preserve nontriviality in π_{1}).
Proof. Step 1: Triangulate M. The simplicial approximation theorem implies that there is a triangulation T of D, a subdivision of M and a homotopy of pairs $f \simeq f_{0}$ such that f_{0} is simplicial with respect to these triangulations. Let N be the number of simplices in T. We have $f_{0}(D)=D_{0}$ and that V_{0} is a regular neighborhood of D_{0} (a regular neighborhood is the union of simplices in the second barycentric subdivision which meet D_{0}). If V_{0} has a connected double cover, choose one $M_{1} \rightarrow V_{0}$. We have a lift $f_{1}:(D, \partial D) \rightarrow\left(M_{1}, \partial M\right)$ of f_{0}. Let $D_{1}=f_{1}(D)$ and let V_{1} be the regular neighborhood of D_{1}. So long as V_{i} has a connected double cover, we can repeat this process.
Claim: D_{i} has a triangulation making $f_{i}: D \rightarrow D_{i}$ is simplicial with respect to T and the restrictions of covers $D_{i} \rightarrow D_{i-1}$ are also simplicial.
Each p_{i} indentifies some pair of simplices so $N \geqslant \# \operatorname{simplices}\left(D_{i}\right)>\# \operatorname{simplices}\left(D_{i-1}\right)$. This shows that the tower terminates.
Step 2:
Lemma 1.3. ∂V_{n} is a union of spheres.
Proof of Lemma. V_{n} has no connected double cover so $H^{1}\left(V_{n} ; \mathbb{Z} / 2 \mathbb{Z}\right)=0$ (there is no surjection $\left.p i_{1}\left(V_{n}\right) \rightarrow \mathbb{Z} / 2 \mathbb{Z}\right)$. For the same reason, $H_{1}\left(V_{n} ; \mathbb{Z} / 2 \mathbb{Z}\right)=0$. By Poincare Duality, $H_{2}\left(V_{n}, \partial V_{n} ; \mathbb{Z} / 2 \mathbb{Z}\right)=$ 0 . The long exact sequence of a pair gives

$$
0=H_{2}\left(V_{n}, \partial V_{n} ; \mathbb{Z} / 2 \mathbb{Z}\right) \rightarrow H_{1}\left(\partial V_{n} ; \mathbb{Z} / 2 \mathbb{Z}\right) \rightarrow H_{1}\left(V_{n} ; \mathbb{Z} / 2 \mathbb{Z}\right)=0
$$

so $H_{1}\left(\partial V_{n} ; \mathbb{Z} / 2 \mathbb{Z}\right)=0$ and ∂V_{n} has no nonsphere components.
Let $p: V_{n} \rightarrow M$ be concatenation of double covers and inclusions. Let F_{i} be the component of $p_{i}^{-1}(\partial M)$ containing $f_{i}(\partial m)$ and let n be the top level of the tower. The lemma implies that F_{n} is planar.
Fact 1: $\pi_{1}\left(F_{n}\right)$ is normally generated by the boundary components of F_{n}.
Fact 2: $K_{n}=\operatorname{ker}\left(\pi_{1}\left(F_{n}\right) \rightarrow \pi_{1}(\partial M)\right) \neq \pi_{1}\left(F_{n}\right)$
So, there is a boundary component, α, of F_{n} whose image in $\pi_{1}(\partial M)$ is nontrivial. α bounds an embedded disk in ∂V_{n}.

