
THREE-MANIFOLDS NOTES

DREW ZEMKE

Last Time. We reduced the proof of the Sphere Theorem to the case where M is com-
pact and has incompressible (possibly empty) boundary.

PROOF INGREDIENTS

Theorem (Stallings’ Ends Theorem). If G is a finitely-generated group with at least two
ends, thenG is either a nontrivial amalgamG = A∗CB or an HNN extensionG = A∗C where
C is finite.

Alternatively, ifG has at least two ends, then there is a cocompact global-fixed-point-free action
of G on a tree with finite edge stabilizers.

Proposition 1. If M is a compact 3-manifold with incompressible boundary and π2M 6= 0,
then the universal cover M̃ ofM (and hence π1M) has at least two ends.

Proposition 2. If M is a compact 3-manifold and π1M acts cocompactly on a tree without
global fixed points, then there’s a (homotopically) essential 2-sided surface Σ in M with πΣ
contained in an edge stabilizer.

We’ll prove the two propositions later. For now, let’s see how they are used to establish
the Sphere Theorem.

Proof of Sphere Theorem. We have a compact 3-manifoldMwith incompressible bound-
ary and π2M 6= 0. By Proposition 1, π1M has at least two ends, and so it follows from
Stallings’ Ends Theorem that π1M acts cocompactly and global-fixed-point-freely on
a tree with finite edge stabilizers. From Proposition 2 we obtain a essential 2-sided
surface Σ in M whose fundamental group lives in on of the finite edge stabilizers. It
follows that π1Σ is finite, so Σ is either a disk, a 2-sphere, or an RP2. Since ∂M is incom-
pressible, Σ is not a disk, and so we’re done by Lemmas 1 and 2 from last class. �

GRAPHS OF GROUPS

Consider a graph Γ along with a group Gv for each vertex v of Γ and a group Ge for
each edge e of Γ , as well as injective homomorphisms Ge → Gv whenever the edge e is
incident to the vertex v. We call Γ a graph of groups.

Date: 06 Apr. 2016.
1



2 DREW ZEMKE

Example. Consider graph consisting of a single edge labeled by a group C and with
endpoints labeled by groupsA and B. This “corresponds to” the amalgamA∗CB (we’ll
see how shortly). Similarly an HNN extension A∗C corresponds to a graph consisting
of on vertex labeled A and an edge labeled Cwith both endpoints at the vertex.

A graph of groups Γ gives rise to a topological space as follows. Construct Eilenberg-
Maclane spaces K(Gv, 1) and K(Ge, 1) for each vertex v and edge e. For each edge e
incident to a vertex v, we can construct a map K(Ge, 1) → K(Gv, 1) realizing homo-
morphism Ge → Gv, and we glue K(Ge, 1) to K(Gv, 1) using the mapping cylinder of
this map. The result of all of the gluings is a space (call it X(Γ)) called a graph of spaces.
Notice that X(Γ) has a natural surjection onto Γ .

The fundamental group of a graph of groups Γ can be taken to be G = π1X(Γ). This group
admits natural injections Gv → G and Ge → G for each vertex v and edge e of Γ , and G
acts on a tree with quotient Γ , edge stabilizers the Ge, and vertex stabilizers the Gv.

For a more careful development and explanation of these concepts see Trees by Serre
or Topological Methods in Groups Theory by Scott and Wall.

Proof of Proposition 2. It follows from the existence of the action ofM on a tree that π1M
is an amalgam (π1M = A ∗C B) or HNN extension (π1M = A∗C). The graph of spaces
X corresponding to this expression of π1M is a K(π1M,1) and from the isomorphism
π1M ≈ π1K(π1M,1) we obtain a map f :M→ X.

Composing f with the map from X to the underlying graph yields a map f from M to
either a segment or a loop. After adjusting for transversality, the pullback of a midpoint
of the edge in the target space is an embedded closed surface Σ0 in M. (Alternatively,
we can consider Σ0 as the preimage of the K(C, 1) lying in X.)

By construction, we have that π1Σ lies in an edge stabilizer of π1M. It remains to
modify f so that a component of Σ0 is essential. If a 2-sphere component of Σ0 bounds
a (homotopy) 3-ball B, we can homotope f so that the image of B misses one of the
vertex spaces, and then homotope f further to push B through the edge space and
thereby remove the 2-sphere component from the preimage of the edge space.

Furthermore, if some component of Σ0 admits a compressing disk D, then we can
modify f by a homotopy supported in a neighborhood ofD so that the effect on Σ0 is a
compression alongD. (This may introduce additional inessential 2-sphere components
to Σ0, but those can be removed as before.) Hence we can homotope f until some
component of Σ0 is the desired essential surface. �
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HOMOLOGICAL APPROACH TO ENDS

Let X be a simplicial complex. Then Cn(X) denotes the singular n-cochains of X and
Cnc (X) denotes the singular n-cochains with compact support. The chain complex of end
cochains C∗

e(X) is defined by the following exact sequence.

0 −→ C∗
c(X) −→ C∗(X) −→ C∗

e(X) −→ 0

The cohomology of the end cochain complex, denoted H∗
e(X), is called the end cohomol-

ogy of X.

One can show using standard algebraic topology techniques thatH∗
e(X) coincides with

the homology of the complex of simplicial end cochains.

Proposition 3. e(X) = dimH0e(X;Z/2).

Sketch of Proof. Since we’re using Z/2-coefficients, a simplicial 0-cochain ω is just a set
of vertices, and the coboundary δω is the set of edges of Xwith one endpoint inω and
one endpoint not inω.

Notice that [ω] ∈ H0e(X) if and only if δω is finite, and [ω] 6= 0 in H0e(X) if and only ifω
is an infinite set. It follows from this that 0− cochains in correspond to ends of X. �

To be continued!


