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We will complete the sketch of sphere theorem and Stallings ends theorem in the notes of this class.
Last time we gave two propositions, restated as follows.

Proposition 0.1. If M is a compact 3-manifold with incompressible boundary and π2M ‰ 0, then

the universal cover ĂM of M (and hence π1M) has at least two ends.

Proposition 0.2. If M is a compact 3-manifold and π1M acts cocompactly on a tree without global
fixed points, then there is a (homotopically) essential 2-sided surface Σ in M with π1Σ contained
in an edge stabilizer.

1. PROOF INGREDIENTS

We complete the proof of Proposition 1.

Proof. Last time we proved Proposition 3, i.e., epĂMq “ dimZ{2pH
0
e p

ĂM ;Z{2qq. Now consider the
long exact sequence

0 Ñ H0
c p

ĂMq Ñ H0pĂMq Ñ H0
e p

ĂMq Ñ H1
c p

ĂMq Ñ H1pĂMq Ñ ¨ ¨ ¨

Since ĂM is simply connected, we know H1pĂMq “ 0. To show epĂMq ě 2, we need to show H1
c p

ĂMq
is non-zero. Poincare Duality gives

H1
c p

ĂMq – H2pĂM, BĂM ;Z{2q – H2pĂM ;Z{2q

where the latter one is obtained by noticing that BĂM ãÑ ĂM induces

H2pBĂMq “ 0 Ñ H2pĂMq Ñ H2pĂM, BĂMq Ñ H1pBĂMq “ 0.

By Hurewicz theorem, we have H2pĂMq – π2pĂMq – π2pMq ‰ 0.

Exercise: Use simply connectedness of ĂM plus H2pĂMq ‰ 0 to deduce H2pĂM ;Z{2q ‰ 0. �

Now comes the sketchy sketch of the Stallings’ ends theorem.

Theorem 1.1 (Stallings’ Ends Theorem). If G has at least two ends, then there is a cocompact
global-fixed-point-free action of G on a tree with finite edge stabilizers.

Proof. Let QG :“ tA Ă G | #δA ă 8u “ tA Ă G | #pA ` Agq ă 8u. Let FG :“
tfinite subsets of Gu. Then we have an alternative description of ends, i.e., epGq “ dimZ{2pQG{FGq.
We assume epGq ě 2 always.

Lemma 1.2. If A0, A1 P QG, then tg P A0 | gA1 Ď A0 or gA˚1 Ď A0u is equivalent in QG{FG to
A0.

A special case here is epGq “ 2. Suppose A,A˚ represent the two ends. For every g P G, either
gA „ A or gA „ A˚. Let G0 ă G be the subgroup fixing rAs. Some geometric argument will give
you infinite order element g P G0. In fact we can get xgy finite index and normal in G. Some group
theory will lead to #rG0, G0s ă 8. Let k “ rG0, G0s. A little more arguments gives G{K – Z or

G{K – Z2 ˚ Z2. Hence G “ K˚K or G “ pK ˚K pK for r pK,Ks “ 2.
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The second case is epGq ą 2 (ñ epGq “ 8). Let A Ă QG be nontrivial if A,A˚ are both infinite.
Let A be narrow if δA is minimal among nontrivial A’s.

Lemma 1.3. Given g P G. There is a minimal (subject to requirement g P A) narrow A containing
g.

Lemma 1.4. Let A be a minimal narrow set containing 1 and let g P G. Then at least one of the
intersections AX gA,A˚ X pgAq, AX gA˚, A˚ X gA˚ is finite, i.e., the partitions G “ A\A˚, G “
gA\ gA˚ are nested. (seen as partitions of Ends(G), they are nested).

The lemmas provide the correspondence between these partitions and the edges of a tree. Because
epGq ě 3, the stabilizer of such a partition is finite. �

2. What’s Next

Consider only orientable, irreducible, compact 3 manifolds with χpMq “ 0. Then BM is a (possibly
empty) union of tori. The reason is that we want to study conditions which imply M is fibered or
virtually fibered.


