# 3-MANIFOLDS 

JASON MANNING<br>SCRIBED BY IAN PENDLETON<br>APRIL 18, 2016

## 1. Thurston Norm

Recall we defined the complexity of a surface $S$ in a 3-manifold as

$$
\chi_{-}(S)=\Sigma\left\{\max \left\{0,-\chi\left(S^{\prime}\right)\right\}: S^{\prime} \text { is a component of } S\right\} .
$$

Let $N \subset \partial M^{3}$ be a subsurface. Then we defined the Thurston Norm $x: H_{2}(M, N ; \mathbb{Z}) \rightarrow \mathbb{Z}$ by

$$
x(\alpha)=\min \left\{\chi_{-}(S):[S]=\alpha\right\} .
$$

Now we define
Definition. $(S, \partial S) \subset(M, N)$ is essential if
(i) $S$ has no compressing disks
(ii) $S$ has no boundary compressing disks into $N$
(iii) $S$ is not a 2 -sphere bounding a homotopy 3 -ball
(iv) $S$ is not a disk bounding a homotopy 3 -ball together with a disk in $N$ (i.e. $S$ is not $N$-parallel)

Example. $F$ a surface, $M=F \times I, N=\partial F \times I$. Then $F \times\{1 / 2\}$ is essential in $(M, N)$, but inessential in $(M, \partial M)$.


Lemma. $\alpha \in H_{2}(M, N)$ is represented by a norm-minimizing essential surface.
Proof. Proof left as an exercise.
Now we return to proving the properties of the function $x: H_{2}(M, N) \rightarrow \mathbb{Z}$ which make it a semi-norm.
(i) $x(\alpha) \in \mathbb{Z}_{\geqslant 0}$ for all $\alpha \in H_{2}(M, N)$
(ii) $x(n \alpha)=|n| x(\alpha)$ for all $\alpha \in H_{2}(M, N), n \in \mathbb{Z}$
(iii) $x(\alpha+\beta) \leqslant x(\alpha)+x(\beta)$ for all $\alpha, \beta \in H_{2}(M, N)$.

## Proof.

(i) Proved last time.
(ii) $x(n \alpha) \leqslant|n| x(\alpha)$ is clear because $n$ times any representative of $\alpha$ will be a representative for $n \alpha$. Now we want to show $x(n \alpha) \geqslant|n| x(\alpha)$. We begin by choosing $(S, \partial S)$ representing $n \alpha$. Pick a basepoint in $p_{0} \in M \backslash S$. If $\partial M \backslash N \neq \varnothing$, then choose $p_{0} \in \partial M \backslash N$. We define $f: M \backslash S \rightarrow \mathbb{Z} / n \mathbb{Z}$ by

$$
f(x)=\text { intersection number of } \gamma \cap S \text { for any arc } \gamma \text { from } p_{0} \text { to } x
$$



If $\varphi$ is Poincaré dual to $S$, then $f(x)=\varphi(\gamma) \bmod n$. Define, for $i \in \mathbb{Z} / n \mathbb{Z}, M_{i}=\overline{f^{-1}(i)}$.
Claim: If $(\partial M \backslash N) \cap M_{i} \neq \varnothing$, then $i=0$. Proof: Let $\gamma$ be an arc joining $p_{0}$ to $(\partial M \backslash N) \cap M_{i}$. Then $\gamma$ is a cycle in $H_{1}(M, \partial M \backslash N)$, so $\varphi(\gamma)=\langle n \alpha, \gamma\rangle=n\langle\alpha, \gamma\rangle \equiv 0 \bmod n$. Therefore $i=0$.

For each $i$, we define $S_{i}$ as $M_{i+1} \cap M_{i}$. Then for each $i$ we have $S_{i} \sqcup-S_{i-1} \subseteq \partial M_{i}$. For $i \neq 0, \partial M_{i} \backslash N=S_{i} \sqcup-S_{i-1}$. Since the $S_{j}$ and $S_{j+1}$ bound $M_{j}$ for all $j$ we have

$$
\left[S_{0}\right]=\left[S_{1}\right]=\cdots=\left[S_{n-1}\right]
$$

and so each $\left[S_{i}\right]=\alpha$ since $\Sigma\left[S_{i}\right]=[n \alpha]$. Therefore $x(n \alpha) \geqslant|n| x(\alpha)$, as desired.
(iii) Let $\alpha=[S, \partial S]$ and $\beta=[T, \partial T]$ for essential, norm-minimizing $S$ and $T$. We can assume by a small isotopy that $S$ and $T$ are transverse to each other. First we will do a surgery to get $S \cap T$ essential in both $S$ and $T$ :

Suppose $\gamma \subset S \cap T$ is an innermost loop bounding a disk in $S$. Since $T$ is essential, $\gamma$ must also bound a disk in $T$. Surger and remove this 2-sphere component from $T$ (we assume that $M$ is irreducbile so this doesn't change the complexity of $T$ ). This will reduce the number of components of $S \cap T$.


Now suppose $\sigma$ is an arc of $S \cap T$ which is inessential in $S$. Since $T$ is essential in $(M, N)$, $\sigma$ is inessential in $T . \gamma$ along with an arc $a_{S}$ in $N$ bounds a disk in $S$, and with an arc $a_{T}$ in $N$ bounds a disk in $T$. We surger $T$ to remove $\gamma$, creating a new component of $T$ which is a disk with boundary in $N$.


Now every component of $S \cap T$ is essential in both. Let $S+T$ be the surface obtained by doing a double-curve sum:


Then $\chi(S+T)=\chi(S)+\chi(T)$, so the complexity can only change if new disks or spheres were formed. They aren't because the intersections were along essential arcs and loops. Thus $x(\alpha+\beta) \leqslant x(\alpha)+x(\beta)$, as desired.

