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Last Time. We showed that x : H2(M,N)→ Z is a seminorm. That is,

• x(α) ≥ 0 for all α ∈ H2(M,N)

• x(nα) = |n|x(α) for all n ∈ Z and α ∈ H2(M,N)

• x(α+ β) ≤ x(α) + x(β) for all α,β ∈ H2(M,N).

Hence, we can extend x to a seminorm H2(M,N;Q) → Q by defining x(α) = x(nα)
n

where nα ∈ H2(M,N). This can be extended continuously to a seminorm

x : H2(M,N;R)→ R.
A (semi)norm is determined by Bx = {v : x(v) ≤ 1}, which is convex and symmetric
about 0. As we will see, integrality puts strong constraints on Bx.

Remark. IfM3 is orientable, irreducible, atoroidal, and has no essential annuli or disks,
then x : H2(M,∂M) → Z satisfies x(v) = 0 ⇐⇒ v = 0. we want to be sure that this is
true after we extend to R as well.

Fix x : Zn → Z satisfying the conditions for a seminorm, and extend it to Rn → R.

Lemma 1. The set Z = {v ∈ R : x(v) = 0} is spanned by Z
⋂
Zn.

Corollary 2. In the situation of the above remark, x : H2(M,∂M;R)→ R is a norm.

Proof of Lemma 1. Suppose v ∈ Rn satisfies x(v) = 0 and v /∈ Qn. Then the ray {sv :
s ≥ 0} comes arbitrarily close to integral points vi with x(vi) = 0 since x takes integral
values on Zn. So v is approximated by rational vectors 1

si
vi and it is therefore in the

span of those vectors. �

Theorem 3. The set Bx is a finite sided polyhedra. That is, it is a finite intersection of half-
spaces.

To prove the theorem, we will need the following lemma

Lemma 4. For any α ∈ Zn − {0}, there exists a linear map `α : Rn → R such that

• `α( α
x(α)) = 1

• `α(β) ∈ Z for all β ∈ Zn

• ||`α|| = sup{`α(v) : x(v) ≤ 1} = 1.
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Proof of Lemma 4. For every k ∈ Z>0, let Bk = {v : x(v) ≤ k}. LetCk be the convex hull of
integral points of Bk. Note that Bx = B1 is approximated by 1

kCk since rational points
are dense. In fact, Bx =

⋃{
1
kCk : k ∈ x(α)N

}
. The vector k α

x(α) is in ∂Ck, so choose a top
dimensional face of ∂Ck containing k α

x(α) , as in figure 1. Let ρk : Rn → R be the (integral
linear) map such that this face lies in {v : ρk(v) = k}. Similarly, 1kCk ⊆ {v : ρk(v) ≤ 1}. So
||ρk||→ 1. Some subsequence must converge to ρ∞ (and in fact eventually be constant)
with ||ρ∞|| = 1. The map ρ∞ is our desired linear map. �

FIGURE 1. Top dimensional face

Proof of Theorem 3. Note that Z is a summand of Zn, so that x : Zn/Z→ Z is an integral
norm. Polyhedrality of x implies polyhedrality of x, so we can assume without loss of
generality that Z = {0}. Now we show that lemma 4 implies the theorem. The points
α
x(α) with α ∈ Zn − {0} are dense in the boundary of Bx. Also,

Bx =
⋂

α∈Zn−{0}

{v : `α(v) ≤ 1}.

However, since the `α are integral and have ||`α|| = 1, there are only finitely many
such. �

Remark. For the dual norm x∗, we have Bx∗ is also polyhedral

NEXT GOAL

Now, our next goal is to show that

{α ∈ H2(M,N;Q) : α is fibred}
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is the set of rational points in the union of cones on (some of the) open top dimensional
faces of Bx. See figure 2.

FIGURE 2. Fibred classes form cones

We will first show the following easier claim

Lemma 5. If α ∈ H2(M,∂M) is fibred, then so is every rational class in a neighborhood of
{sα : s > 0}.

Lemma 5 follows from a theorem of Tischler:

Theorem 6. A class α ∈ H1(M;Z) is fibred if and only if α is represented (in de Rham
cohomology) by a nondegenerate 1-form with integral periods.

Sketch of a Proof of Theorem 6.

(⇒) Let ϕ : M → S1 be a map representing α. Set ω = 1
2πϕ

∗(dθ), where dθ is the
1-form on S1. Since ϕ is a fibre bundle,ω is nondegenerate.

(⇐) Reverse the process. Choose a basepoint x0 ∈M. Define ϕ :M→ R/Z by

ϕ(x) =

∫
γ

ω

where γ is any smooth path from x0 to x. This is a fibre bundle with no critical points.
(c.f. Morse Theory.) �


