THREE-MANIFOLDS NOTES

BRIAN SHIN

Last Time. We showed that $x : H_2(M, N) \to \mathbb{Z}$ is a seminorm. That is,

- $x(\alpha) \ge 0$ for all $\alpha \in H_2(M, N)$
- $x(n\alpha) = |n|x(\alpha)$ for all $n \in \mathbb{Z}$ and $\alpha \in H_2(M, N)$
- $x(\alpha + \beta) \le x(\alpha) + x(\beta)$ for all $\alpha, \beta \in H_2(M, N)$.

Hence, we can extend x to a seminorm $H_2(M, N; \mathbb{Q}) \to \mathbb{Q}$ by defining $x(\alpha) = \frac{x(n\alpha)}{n}$ where $n\alpha \in H_2(M, N)$. This can be extended continuously to a seminorm

$$\mathbf{x}: \mathbf{H}_2(\mathbf{M}, \mathbf{N}; \mathbb{R}) \to \mathbb{R}$$

A (semi)norm is determined by $B_x = \{v : x(v) \le 1\}$, which is convex and symmetric about 0. As we will see, integrality puts strong constraints on B_x .

Remark. If M^3 is orientable, irreducible, atoroidal, and has no essential annuli or disks, then $x : H_2(M, \partial M) \to \mathbb{Z}$ satisfies $x(v) = 0 \iff v = 0$. we want to be sure that this is true after we extend to \mathbb{R} as well.

Fix $x : \mathbb{Z}^n \to \mathbb{Z}$ satisfying the conditions for a seminorm, and extend it to $\mathbb{R}^n \to \mathbb{R}$.

Lemma 1. The set $Z = \{v \in \mathbb{R} : x(v) = 0\}$ is spanned by $Z \cap \mathbb{Z}^n$.

Corollary 2. In the situation of the above remark, $x : H_2(M, \partial M; \mathbb{R}) \to \mathbb{R}$ is a norm.

Proof of Lemma 1. Suppose $v \in \mathbb{R}^n$ satisfies x(v) = 0 and $v \notin \mathbb{Q}^n$. Then the ray $\{sv : s \ge 0\}$ comes arbitrarily close to integral points v_i with $x(v_i) = 0$ since x takes integral values on \mathbb{Z}^n . So v is approximated by rational vectors $\frac{1}{s_i}v_i$ and it is therefore in the span of those vectors.

Theorem 3. The set B_x is a finite sided polyhedra. That is, it is a finite intersection of half-spaces.

To prove the theorem, we will need the following lemma

Lemma 4. For any $\alpha \in \mathbb{Z}^n - \{0\}$, there exists a linear map $\ell_{\alpha} : \mathbb{R}^n \to \mathbb{R}$ such that

- $\ell_{\alpha}(\frac{\alpha}{\chi(\alpha)}) = 1$
- $\ell_{\alpha}(\beta) \in \mathbb{Z}$ for all $\beta \in \mathbb{Z}^{n}$
- $||\ell_{\alpha}|| = \sup\{\ell_{\alpha}(\nu) : x(\nu) \le 1\} = 1.$

Date: 20 April 2016.

BRIAN SHIN

Proof of Lemma 4. For every $k \in \mathbb{Z}_{>0}$, let $B_k = \{v : x(v) \le k\}$. Let C_k be the convex hull of integral points of B_k . Note that $B_x = B_1$ is approximated by $\frac{1}{k}C_k$ since rational points are dense. In fact, $B_x = \bigcup \left\{\frac{1}{k}C_k : k \in x(\alpha)\mathbb{N}\right\}$. The vector $k\frac{\alpha}{x(\alpha)}$ is in ∂C_k , so choose a top dimensional face of ∂C_k containing $k\frac{\alpha}{x(\alpha)}$, as in figure 1. Let $\rho_k : \mathbb{R}^n \to \mathbb{R}$ be the (integral linear) map such that this face lies in $\{v : \rho_k(v) = k\}$. Similarly, $\frac{1}{k}C_k \subseteq \{v : \rho_k(v) \le 1\}$. So $\|\rho_k\| \to 1$. Some subsequence must converge to ρ_∞ (and in fact eventually be constant) with $\|\rho_\infty\| = 1$. The map ρ_∞ is our desired linear map.

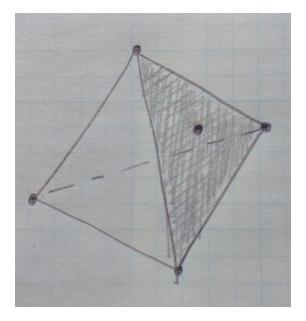


FIGURE 1. Top dimensional face

Proof of Theorem 3. Note that Z is a summand of \mathbb{Z}^n , so that $\overline{x} : \mathbb{Z}^n/Z \to \mathbb{Z}$ is an integral norm. Polyhedrality of \overline{x} implies polyhedrality of x, so we can assume without loss of generality that $Z = \{0\}$. Now we show that lemma 4 implies the theorem. The points $\frac{\alpha}{x(\alpha)}$ with $\alpha \in \mathbb{Z}^n - \{0\}$ are dense in the boundary of B_x . Also,

$$B_{x} = \bigcap_{\alpha \in \mathbb{Z}^{n} - \{0\}} \{\nu : \ell_{\alpha}(\nu) \leq 1\}.$$

However, since the ℓ_{α} are integral and have $\|\ell_{\alpha}\| = 1$, there are only finitely many such.

Remark. For the dual norm x^* , we have B_{x^*} is also polyhedral

Now, our next goal is to show that

$$\{\alpha \in H_2(M, N; \mathbb{Q}) : \alpha \text{ is fibred}\}$$

is the set of rational points in the union of cones on (some of the) open top dimensional faces of B_x . See figure 2.

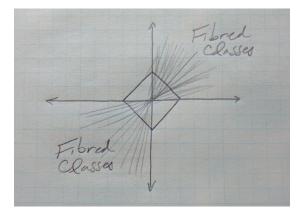


FIGURE 2. Fibred classes form cones

We will first show the following easier claim

Lemma 5. If $\alpha \in H_2(M, \partial M)$ is fibred, then so is every rational class in a neighborhood of $\{s\alpha : s > 0\}$.

Lemma 5 follows from a theorem of Tischler:

Theorem 6. A class $\alpha \in H^1(M; \mathbb{Z})$ is fibred if and only if α is represented (in de Rham cohomology) by a nondegenerate 1-form with integral periods.

Sketch of a Proof of Theorem 6.

(\Rightarrow) Let $\varphi : M \to S^1$ be a map representing α . Set $\omega = \frac{1}{2\pi}\varphi^*(d\theta)$, where $d\theta$ is the 1-form on S^1 . Since φ is a fibre bundle, ω is nondegenerate.

(\Leftarrow) Reverse the process. Choose a basepoint $x_0 \in M$. Define $\phi : M \to \mathbb{R}/\mathbb{Z}$ by

$$\varphi(\mathbf{x}) = \int_{\gamma} \omega$$

where γ is any smooth path from x_0 to x. This is a fibre bundle with no critical points. (c.f. Morse Theory.)