
THREE-MANIFOLDS NOTES

DREW ZEMKE

Last Time. We showed the that Thurston norm is polyhedral, that is, its unit norm ball
is a finite sided (convex) polyhedron in H2(M,∂M;R).

MORE THURSTON NORM STUFF

Lemma 1. Let (F, ∂F) be a fiber of the 3-manifold (M,∂M). Then F is norm-minimizing in its
homology class [F, ∂F] ∈ H2(M,∂M;R).

Proof. Let (S, ∂S) be a norm-minimizing and essential surface in (M,∂M) which is ho-
mologous to F. If M̃ is the infinite-cyclic cover of M that is the pullback of the cover
R → S1 under the bundle mapM→ S1, then S lifts to M̃:

M̃ R

M S1(S, ∂S)

We have M̃ ∼= F × R, so we can consider the map (S, ∂S) → (F, ∂F) resulting from
projection of the lift onto the first factor. This map has degree one and must therefore
be π1-surjective, and since S is essential it must be π1-injective. It follows that (S, ∂S) →
(F, ∂F) is a homotopy equivalence of pairs, and so it follows that χ−(F) = χ−(S) is
minimal. �

FOLIATIONS

Definition. A k-dimensional foliation of an n-manifoldM is a decomposition ofM into
(not-necessarily-closed) immersed k-submanifolds (called leaves) such that M locally
looks like U×Rn−k, where U is a coordinate chart in Rk and each U× {pt} is contained
in a single leaf.
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Example. A 1-dimensional foliation of an annulus1:

We obtain a foliation of a torus by doubling this picture along its boundary. Notice
that the resulting foliation has two compact leaves and uncountably-many noncom-
pact leaves.

Definition. A codimension-1 foliation F ofM is called taut if for every leaf ` ⊂ F there
is a loop inM that meets ` and is transverse to the leaves of F .

Example. The foliation of the torus described above is not taut: any loop that passes
through one of the compact leaves must be tangent to one of the noncompact leaves.

Note that a fibration (of a 3-manifold over S1) gives rise to a taut foliation, so the asso-
ciated leaves (the fibers) are norm-minimizing by Lemma 1. More generally, it follows
from a result of Gabai and Thurston that a compact leaf of a taut foliation is always
norm-minimizing.

BACK TO THURSTON NORM STUFF

Our goal is to understand the following theorem of Thurston.

Theorem. If (F, ∂F) ⊂ (M,∂M) is a fiber with α = [F, ∂F] ∈ H2(M,∂M) and x(α) > 0,
then there is a top-dimensional face of Bx so that α is contained in the open cone C on that face.
Moreover, every rational class in C is fibered.

The first claim of the theorem can be proved using the following proposition.

Proposition 2. For α ∈ H2(M,∂M;Z) as above, there is a class e ∈ H2(M,∂M;Z) so that
x(β) = 〈−e, β〉 for all β in a neighborhood of the ray spanned by α.

Let F be the foliation coming from the fiber bundle map ϕ :M → S1. Then we obtain
a tangent plane field TF ⊂ TM is given by ker(ω) whereω = ϕ∗((1/2π)dθ).

Definition. LetN be a closed orientedn-manifold, and suppose E→ N a k-dimensional
vector bundle over N. Let s : N → E be a generic section that is transverse to the zero
section of E. Then the zero set of s is an (n − k)-dimensional submanifold of N which

1from https://en.wikipedia.org/wiki/Foliation
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is dual to a k-dimensional cohomology class e(E) ∈ Hk(N;Z). This class is called the
Euler class of E.

When N has boundary we need to be more careful with what sections we allow. For
a section s∂ : ∂N → E, we extend to a section s : N → E and get a relative Euler class
e(E, s∂) ∈ Hk(N,∂N;Z) as above.

Proposition 3. If Σ is a closed orientable surface, then e(TΣ) = χ(E) · [Σ]∗.

Note that Proposition 3 is a special case of the Poincaré-Hopf Index Formula, since a
section of TΣ is the same as a vector field on Σ.

Exercise 1. Show that the proposition hold in the relative case if we choose s∂
to be an inward-pointing nonzero vector field.

In the context of the theorem above, from a fibration we get a foliation F , and from
F we get a relative Euler class e = e(TF , s∂) ∈ H2(M,∂M;Z), where s∂ is a vector
field on ∂M that points inwards along the leaves. Notice that, for a fibered class α ∈
H2(M,∂M) with (norm-minimizing) fiber (F, ∂F) ⊂ (M,∂M), we have

−χ(F) = − 〈e, α〉 = x(α)
by Proposition 3. This forms the basis for the following proof of Proposition 2.

Proof of Proposition 2. As suggested above, take e to be the Euler class e(TF , s∂) of the
foliation induced by the fibration corresponding to α. Then we have x(α) = 〈−e, α〉
as above, and by linearity we have x(β) = 〈−e, β〉 for β in the ray spanned by alpha.
It remains to show that the same holds in a neighborhood of the ray; by linearity it
suffices to show that the equation holds in a neighborhood of α.

Let ω be a nondegenerate 1-form with kerω = TF , or (equivalently) a representative
of the dual to α in de Rham cohomology. Let {ω1, . . . ,ωl} be a Z-basis for H1(M;R).
Then for small εi, the 1-form

ω ′ = ω+ ε1ω1 + · · ·+ εlωl
is still nondegenerate. If the εi are rational, then ω ′ defines a foliation F ′ (with TF ′ =
ker(ω ′)) for some fibration ofM over S1.

Claim. For sufficiently small εi (and ignoring details about boundaries), we have
e(TF ′) = e(TF).

To prove the claim, choose an inner product on TM (i.e. a Riemannian metric on M).
Then when the εi are sufficiently small, we have a projection TpF → TpF ′ that is an
isomorphism at each p ∈ M and varies continuously over M. Hence a section of TF
projects to a section of TF ′ with the same zero set, and the claim follows.

To finish the proof, observe that if α ′ is the rational homology class dual toω ′, we have

x(α ′) = −
〈
e(TF ′), α ′

〉
= − 〈e(TF), α〉 ,

as desired. �


