## **THREE-MANIFOLDS NOTES**

### DREW ZEMKE

**Last Time.** We showed the that Thurston norm is *polyhedral*, that is, its unit norm ball is a finite sided (convex) polyhedron in  $H_2(M, \partial M; \mathbb{R})$ .

# MORE THURSTON NORM STUFF

**Lemma 1.** Let  $(F, \partial F)$  be a fiber of the 3-manifold  $(M, \partial M)$ . Then F is norm-minimizing in its homology class  $[F, \partial F] \in H_2(M, \partial M; \mathbb{R})$ .

*Proof.* Let  $(S, \partial S)$  be a *norm-minimizing* and *essential* surface in  $(M, \partial M)$  which is homologous to F. If  $\tilde{M}$  is the infinite-cyclic cover of M that is the pullback of the cover  $\mathbb{R} \to S^1$  under the bundle map  $M \to S^1$ , then S lifts to  $\tilde{M}$ :



We have  $\tilde{M} \cong F \times \mathbb{R}$ , so we can consider the map  $(S, \partial S) \to (F, \partial F)$  resulting from projection of the lift onto the first factor. This map has degree one and must therefore be  $\pi_1$ -surjective, and since S is essential it must be  $\pi_1$ -injective. It follows that  $(S, \partial S) \to (F, \partial F)$  is a homotopy equivalence of pairs, and so it follows that  $\chi_-(F) = \chi_-(S)$  is minimal.

### FOLIATIONS

**Definition.** A k-dimensional *foliation* of an n-manifold M is a decomposition of M into (not-necessarily-closed) immersed k-submanifolds (called *leaves*) such that M locally looks like  $U \times \mathbb{R}^{n-k}$ , where U is a coordinate chart in  $\mathbb{R}^k$  and each  $U \times \{pt\}$  is contained in a single leaf.

Date: 25 Apr. 2016.

**Example.** A 1-dimensional foliation of an annulus<sup>1</sup>:



We obtain a foliation of a torus by doubling this picture along its boundary. Notice that the resulting foliation has two compact leaves and uncountably-many noncompact leaves.

**Definition.** A codimension-1 foliation  $\mathcal{F}$  of M is called *taut* if for every leaf  $\ell \subset \mathcal{F}$  there is a loop in M that meets  $\ell$  and is transverse to the leaves of  $\mathcal{F}$ .

**Example.** The foliation of the torus described above is *not* taut: any loop that passes through one of the compact leaves must be tangent to one of the noncompact leaves.

Note that a fibration (of a 3-manifold over  $S^1$ ) gives rise to a taut foliation, so the associated leaves (the fibers) are norm-minimizing by Lemma 1. More generally, it follows from a result of Gabai and Thurston that a compact leaf of a taut foliation is always norm-minimizing.

## BACK TO THURSTON NORM STUFF

Our goal is to understand the following theorem of Thurston.

**Theorem.** If  $(F, \partial F) \subset (M, \partial M)$  is a fiber with  $\alpha = [F, \partial F] \in H_2(M, \partial M)$  and  $x(\alpha) > 0$ , then there is a top-dimensional face of  $B_x$  so that  $\alpha$  is contained in the open cone C on that face. Moreover, every rational class in C is fibered.

The first claim of the theorem can be proved using the following proposition.

**Proposition 2.** For  $\alpha \in H_2(M, \partial M; \mathbb{Z})$  as above, there is a class  $e \in H^2(M, \partial M; \mathbb{Z})$  so that  $x(\beta) = \langle -e, \beta \rangle$  for all  $\beta$  in a neighborhood of the ray spanned by  $\alpha$ .

Let  $\mathcal{F}$  be the foliation coming from the fiber bundle map  $\varphi : M \to S^1$ . Then we obtain a tangent plane field  $T\mathcal{F} \subset TM$  is given by ker( $\omega$ ) where  $\omega = \varphi^*((1/2\pi)d\theta)$ .

**Definition.** Let N be a closed oriented n-manifold, and suppose  $E \rightarrow N$  a k-dimensional vector bundle over N. Let  $s : N \rightarrow E$  be a generic section that is transverse to the zero section of E. Then the zero set of s is an (n - k)-dimensional submanifold of N which

<sup>&</sup>lt;sup>1</sup>from https://en.wikipedia.org/wiki/Foliation

is dual to a k-dimensional cohomology class  $e(E) \in H^k(N;\mathbb{Z})$ . This class is called the *Euler class* of E.

When N has boundary we need to be more careful with what sections we allow. For a section  $s_{\partial} : \partial N \to E$ , we extend to a section  $s : N \to E$  and get a relative Euler class  $e(E, s_{\partial}) \in H^{k}(N, \partial N; \mathbb{Z})$  as above.

**Proposition 3.** *If*  $\Sigma$  *is a closed orientable surface, then*  $e(T\Sigma) = \chi(E) \cdot [\Sigma]^*$ .

Note that Proposition 3 is a special case of the Poincaré-Hopf Index Formula, since a section of  $T\Sigma$  is the same as a vector field on  $\Sigma$ .

**Exercise 1.** Show that the proposition hold in the relative case if we choose  $s_{\partial}$  to be an inward-pointing nonzero vector field.

In the context of the theorem above, from a fibration we get a foliation  $\mathcal{F}$ , and from  $\mathcal{F}$  we get a relative Euler class  $e = e(T\mathcal{F}, s_{\partial}) \in H^{2}(M, \partial M; \mathbb{Z})$ , where  $s_{\partial}$  is a vector field on  $\partial M$  that points inwards along the leaves. Notice that, for a fibered class  $\alpha \in H_{2}(M, \partial M)$  with (norm-minimizing) fiber  $(F, \partial F) \subset (M, \partial M)$ , we have

$$-\chi(F) = -\langle e, \alpha \rangle = \chi(\alpha)$$

by Proposition 3. This forms the basis for the following proof of Proposition 2.

*Proof of Proposition 2.* As suggested above, take *e* to be the Euler class  $e(T\mathcal{F}, s_{\partial})$  of the foliation induced by the fibration corresponding to  $\alpha$ . Then we have  $x(\alpha) = \langle -e, \alpha \rangle$  as above, and by linearity we have  $x(\beta) = \langle -e, \beta \rangle$  for  $\beta$  in the ray spanned by alpha. It remains to show that the same holds in a neighborhood of the ray; by linearity it suffices to show that the equation holds in a neighborhood of  $\alpha$ .

Let  $\omega$  be a nondegenerate 1-form with ker  $\omega = T\mathcal{F}$ , or (equivalently) a representative of the dual to  $\alpha$  in de Rham cohomology. Let  $\{\omega_1, \ldots, \omega_l\}$  be a  $\mathbb{Z}$ -basis for  $H^1(M; \mathbb{R})$ . Then for small  $\varepsilon_i$ , the 1-form

$$\omega' = \omega + \varepsilon_1 \omega_1 + \cdots + \varepsilon_l \omega_l$$

is still nondegenerate. If the  $\varepsilon_i$  are rational, then  $\omega'$  defines a foliation  $\mathcal{F}'$  (with  $T\mathcal{F}' = \ker(\omega')$ ) for some fibration of M over S<sup>1</sup>.

**Claim.** For sufficiently small  $\varepsilon_i$  (and ignoring details about boundaries), we have  $e(T\mathcal{F}') = e(T\mathcal{F})$ .

To prove the claim, choose an inner product on TM (i.e. a Riemannian metric on M). Then when the  $\varepsilon_i$  are sufficiently small, we have a projection  $T_p \mathcal{F} \to T_p \mathcal{F}'$  that is an isomorphism at each  $p \in M$  and varies continuously over M. Hence a section of  $T\mathcal{F}$  projects to a section of  $T\mathcal{F}'$  with the same zero set, and the claim follows.

To finish the proof, observe that if  $\alpha'$  is the rational homology class dual to  $\omega'$ , we have

,

$$\mathbf{x}(\alpha') = -\langle \mathbf{e}(\mathsf{T}\mathcal{F}'), \alpha' \rangle = -\langle \mathbf{e}(\mathsf{T}\mathcal{F}), \alpha \rangle,$$

as desired.