THREE-MANIFOLDS NOTES

DREW ZEMKE

Last Time. We showed the that Thurston norm is polyhedral, that is, its unit norm ball is a finite sided (convex) polyhedron in $\mathrm{H}_{2}(M, \partial M ; \mathbb{R})$.

More Thurston Norm Stuff

Lemma 1. Let $(F, \partial F)$ be a fiber of the 3-manifold $(M, \partial M)$. Then F is norm-minimizing in its homology class $[\mathrm{F}, \partial \mathrm{F}] \in \mathrm{H}_{2}(\mathrm{M}, \partial \mathrm{M} ; \mathbb{R})$.

Proof. Let $(S, \partial S)$ be a norm-minimizing and essential surface in $(M, \partial M)$ which is homologous to F. If \tilde{M} is the infinite-cyclic cover of M that is the pullback of the cover $\mathbb{R} \rightarrow S^{1}$ under the bundle map $M \rightarrow S^{1}$, then S lifts to \tilde{M} :

We have $\tilde{M} \cong F \times \mathbb{R}$, so we can consider the map $(S, \partial S) \rightarrow(F, \partial F)$ resulting from projection of the lift onto the first factor. This map has degree one and must therefore be π_{1}-surjective, and since S is essential it must be π_{1}-injective. It follows that $(S, \partial S) \rightarrow$ $(F, \partial F)$ is a homotopy equivalence of pairs, and so it follows that $\chi_{-}(F)=\chi_{-}(S)$ is minimal.

FOLIATIONS

Definition. A k-dimensional foliation of an n-manifold M is a decomposition of M into (not-necessarily-closed) immersed k-submanifolds (called leaves) such that M locally looks like $U \times \mathbb{R}^{n-k}$, where U is a coordinate chart in \mathbb{R}^{k} and each $U \times\{p t\}$ is contained in a single leaf.

Example. A 1-dimensional foliation of an annulus ${ }^{1}$:

We obtain a foliation of a torus by doubling this picture along its boundary. Notice that the resulting foliation has two compact leaves and uncountably-many noncompact leaves.
Definition. A codimension- 1 foliation \mathcal{F} of M is called taut if for every leaf $\ell \subset \mathcal{F}$ there is a loop in M that meets ℓ and is transverse to the leaves of \mathcal{F}.
Example. The foliation of the torus described above is not taut: any loop that passes through one of the compact leaves must be tangent to one of the noncompact leaves.

Note that a fibration (of a 3-manifold over S^{1}) gives rise to a taut foliation, so the associated leaves (the fibers) are norm-minimizing by Lemma 1. More generally, it follows from a result of Gabai and Thurston that a compact leaf of a taut foliation is always norm-minimizing.

Back to Thurston Norm Stuff

Our goal is to understand the following theorem of Thurston.
Theorem. If $(F, \partial F) \subset(M, \partial M)$ is a fiber with $\alpha=[F, \partial F] \in H_{2}(M, \partial M)$ and $x(\alpha)>0$, then there is a top-dimensional face of B_{χ} so that α is contained in the open cone C on that face. Moreover, every rational class in C is fibered.

The first claim of the theorem can be proved using the following proposition.
Proposition 2. For $\alpha \in H_{2}(M, \partial M ; \mathbb{Z})$ as above, there is a class $e \in H^{2}(M, \partial M ; \mathbb{Z})$ so that $x(\beta)=\langle-e, \beta\rangle$ for all β in a neighborhood of the ray spanned by α.

Let \mathcal{F} be the foliation coming from the fiber bundle map $\varphi: M \rightarrow S^{1}$. Then we obtain a tangent plane field $\mathrm{T} \mathcal{F} \subset \mathrm{TM}$ is given by $\operatorname{ker}(\omega)$ where $\omega=\varphi^{*}((1 / 2 \pi) \mathrm{d} \theta)$.

Definition. Let N be a closed oriented n-manifold, and suppose $\mathrm{E} \rightarrow \mathrm{N}$ a k-dimensional vector bundle over N . Let $\mathrm{s}: \mathrm{N} \rightarrow \mathrm{E}$ be a generic section that is transverse to the zero section of E. Then the zero set of s is an $(n-k)$-dimensional submanifold of N which

[^0]is dual to a k-dimensional cohomology class $e(E) \in H^{k}(N ; \mathbb{Z})$. This class is called the Euler class of E .

When N has boundary we need to be more careful with what sections we allow. For a section $s_{\partial}: \partial N \rightarrow E$, we extend to a section $s: N \rightarrow E$ and get a relative Euler class $e\left(E, s_{\partial}\right) \in H^{k}(N, \partial N ; \mathbb{Z})$ as above.
Proposition 3. If Σ is a closed orientable surface, then $e(T \Sigma)=\chi(E) \cdot[\Sigma]^{*}$.
Note that Proposition 3 is a special case of the Poincaré-Hopf Index Formula, since a section of T Σ is the same as a vector field on Σ.

Exercise 1. Show that the proposition hold in the relative case if we choose s_{∂} to be an inward-pointing nonzero vector field.
In the context of the theorem above, from a fibration we get a foliation \mathcal{F}, and from \mathcal{F} we get a relative Euler class $e=e\left(T \mathcal{F}, s_{\partial}\right) \in H^{2}(M, \partial M ; \mathbb{Z})$, where s_{∂} is a vector field on ∂M that points inwards along the leaves. Notice that, for a fibered class $\alpha \in$ $H_{2}(M, \partial M)$ with (norm-minimizing) fiber $(F, \partial F) \subset(M, \partial M)$, we have

$$
-\chi(F)=-\langle e, \alpha\rangle=\chi(\alpha)
$$

by Proposition 3. This forms the basis for the following proof of Proposition 2.
Proof of Proposition 2. As suggested above, take e to be the Euler class $e\left(T \mathcal{F}, s_{\chi}\right)$ of the foliation induced by the fibration corresponding to α. Then we have $\chi(\alpha)=\langle-e, \alpha\rangle$ as above, and by linearity we have $x(\beta)=\langle-e, \beta\rangle$ for β in the ray spanned by alpha. It remains to show that the same holds in a neighborhood of the ray; by linearity it suffices to show that the equation holds in a neighborhood of α.
Let ω be a nondegenerate 1-form with $\operatorname{ker} \omega=\mathrm{T} \mathcal{F}$, or (equivalently) a representative of the dual to α in de Rham cohomology. Let $\left\{\omega_{1}, \ldots, \omega_{l}\right\}$ be a \mathbb{Z}-basis for $H^{1}(M ; \mathbb{R})$. Then for small ε_{i}, the 1 -form

$$
\omega^{\prime}=\omega+\varepsilon_{1} \omega_{1}+\cdots+\varepsilon_{l} \omega_{l}
$$

is still nondegenerate. If the ε_{i} are rational, then ω^{\prime} defines a foliation \mathcal{F}^{\prime} (with $\mathrm{T} \mathcal{F}^{\prime}=$ $\operatorname{ker}\left(\omega^{\prime}\right)$) for some fibration of M over S^{1}.
Claim. For sufficiently small ε_{i} (and ignoring details about boundaries), we have $e\left(\mathrm{TF}^{\prime}\right)=e(\mathrm{~T} \mathcal{F})$.
To prove the claim, choose an inner product on TM (i.e. a Riemannian metric on M). Then when the ε_{i} are sufficiently small, we have a projection $\mathrm{T}_{\mathrm{p}} \mathcal{F} \rightarrow \mathrm{T}_{\mathrm{p}} \mathcal{F}^{\prime}$ that is an isomorphism at each $p \in M$ and varies continuously over M. Hence a section of $T \mathcal{F}$ projects to a section of $\mathrm{T} \mathcal{F}^{\prime}$ with the same zero set, and the claim follows.
To finish the proof, observe that if α^{\prime} is the rational homology class dual to ω^{\prime}, we have

$$
x\left(\alpha^{\prime}\right)=-\left\langle e\left(\mathrm{~T} \mathcal{F}^{\prime}\right), \alpha^{\prime}\right\rangle=-\langle e(\mathrm{~T} \mathcal{F}), \alpha\rangle
$$

as desired.

[^0]: ${ }^{1}$ from https://en.wikipedia.org/wiki/Foliation

