THREE-MANIFOLDS NOTES

JASON MANNING, NOTES BY AARON PALMER

Last Lecture

Given $\alpha=[F, \partial F] \in H_{2}(M, \partial M ; \mathbb{Z})$ fibered we have $F \rightarrow M^{3} \rightarrow S^{1}$ and a foliation \mathfrak{F} of M. There is an Euler class $e=e(T \mathfrak{F}) \in H^{2}(M, \partial M ; \mathbb{Z})$. For $\beta \in H_{2}(M, \partial M ; \mathbb{R})$ near to α then

$$
\begin{equation*}
X(\beta)=-\langle e, \beta\rangle \tag{1}
\end{equation*}
$$

Open Fibered Cones

Today we show that every rational class in the open cone of a face of B_{X} containing the class $\frac{\alpha}{X(\alpha)}$ is fibered.

The closed cone is determined by equation (1)

$$
\begin{equation*}
\overline{\mathrm{C}}=\left\{\beta \in \mathrm{H}_{2}(M, \partial M ; \mathbb{R}) \mid X(\beta)=-\langle e, \beta\rangle\right\} . \tag{2}
\end{equation*}
$$

Proposition 1. For any $\beta \in \overline{\mathrm{C}} \cap \mathrm{H}_{2}(M, \partial M ; \mathbb{Q})$ and $s, t \in \mathbb{Q} s>0$, and $\mathrm{t} \geq 0$ the class $s \alpha+\mathrm{t} \beta$ is fibered.

For simplicity we assume that M is closed. It suffices to consider $\beta \in \bar{C} \cap$ $H_{2}(M, \partial M ; \mathbb{Z})$ and let S be an essential norm-minimizing surface with $[S]=\beta$.

Lemma 2. S is either isotopic to a leaf of \mathfrak{F} or S is isotopic to a surface which is transverse to \mathfrak{F} except for finitely many saddles.

Proof. (Sketch) Uses ideas from foliation theory. Let $\mathrm{p}: M \rightarrow S^{1}$ be the bundle map. We can assume that p_{S} is Morse by isotopy of S. Then \mathfrak{F} induces a singular foliation of S. Each leaf is compact with at most one singularity (max, min, or saddle) and there are only finitely many singular leaves.

Starting with a max or a min, consider leaves expanding from the singularity until they meet a singular leaf. There are three possibilities
(1) The leaves meet at another max or min. In this case there is a sphere component, which contradicts that S was essential. (With boundary the leaves could meet the boundary for a disk component.)
(2) The expanding leaves meet a saddle leaf and the closure of the nonsingular part is a disk. In this case an isotopy cancels the max/min and the saddle singularity.
(3) The expanding leaves meet a singular leaf and touch the singular point twice. Consider slightly exterior (non-singular) leaves, which bound an annulus. Handle this case last. An isotopy makes the annulus flat, but p_{S} is no longer Morse.

Now we have to handle a few more cases. Expanding a boundary leaf of the annulus, if it meets a saddle leaf then we can isotopy to a flat pair of pants. There are a few more cases and manipulations.

An alternative proof by Calegari uses minimal surfaces. The foliation is isotoped so every leaf is minimal, and S is isotoped to be minimal. Then it is shown that any max or min violates minimality.

Recall that our goal is to show that $X(\beta)=-\langle e, \beta\rangle$ implies that $s \alpha+t \beta$ is fibered when $s>0$ and $t \geq 0$. If S is transverse then it is fibered so we only consider the case of S being transverse except at saddle points.

Let I_{p} be the number of positively oriented saddle points (the orientation of S agrees with the orientation of the leaf at the saddle), and I_{n} the number of negatively oriented saddle points.

Lemma 3.

(1) $\langle e,[\mathrm{~S}]\rangle=\mathrm{I}_{\mathrm{n}}-\mathrm{I}_{\mathrm{p}}$.
(2) $X_{-}(S)=I_{p}+I_{n}$.

Proof. (Idea) ii. is shown by the Poincaré-Hopf formula for the vector field corresponding to gradient of $\left.p\right|_{s}$. For i. $e([S])$ may be considered as evaluating a vector field tangential to the induced foliation on S. Only the singular (saddle) leaves will contribute to the pairing and they evaluate as 1 if negatively oriented and -1 if positively oriented.

Now if $X(\beta)=-\langle e, \beta\rangle$ then $I_{n}=0$ because the left side is $I_{p}+I_{n}$ and the right side is $I_{p}-I_{n}$. Thus all tangencies are orientated consistent with the foliation. Let \mathcal{X} be a vector field normal to S and transverse to \mathfrak{F} in a neighborhood of S. Represent α by a 1-form ω which satisfies $\omega(\mathcal{X})>0$ point-wise in a neighborhood of S.

Let η be a closed 1-form, representing the Poincaré dual of S, supported in a neighborhood of S and satisfying $\eta(\mathcal{X})>0$ whenever η is non-zero. Then $s \omega+\mathrm{t} \eta$ is Poincaré dual to $s \alpha+\mathrm{t} \beta$ and if we show that it is non-degenerate that implies that $s \alpha+\mathrm{t} \beta$ is fibered by Tichler's theorem.

In the support of η we have that $(s \omega+t \eta)(\mathcal{X})>0$ so it is non-degenerate. Outside of the support of η, ω is non-degenerate so this proves Proposition 1.
Corollary 4. If M is irreducible, atoroidal, orientable, and $\beta_{1} \geq 2$ (first Betti number), then M contains an essential surface which is not fibered.

The surface corresponds to any vertex of B_{X}.

Summary

We have described $H_{2}(M, \partial M ; \mathbb{R}) \cong H^{1}(M ; \mathbb{R})$. The rational points of a disjoint union of cones corresponding to open faces of $\partial \mathrm{B}_{X}$ (Thurston cones) give all the fibered classes. These satisfy
(1) $\alpha, \beta \in \mathrm{C}$ implies $\alpha+\beta \in \mathrm{C}$,
(2) $X(\alpha+\beta)=X(\alpha)+X(\beta)$.

