3-MANIFOLDS NOTES

JASON MANNING SCRIBED BY ZHEXIU TU MAY 2, 2016

1. HIERARCHIES

Definition. M is Haken if it is orientable, irreducible, and contains a 2-sided π_1 -injective surface $(F, \partial F) \subseteq (M, \partial M)$ which is not S^2 .

Remark. This definition may disagree with the earlier one.

Exercise: If M is irreducible, oriented with $\partial M \neq \emptyset$, then M is Haken. Also, if $H^1(M) \neq 0$, then M is Haken.

Definition. A partial hierarchy for M is a sequence (finite or infinite)

 $\mathcal{H}: (M_1, F_1), \ldots, (M_n, F_n), \ldots$

so that $M_1 = M$, $(F_i, \partial F_i) \subseteq (M_i, \partial M_i)$ where F_i is a 2-sided, π_1 -injective, non boundary parallel, connected surface with regular neighborhood N_i and $M_i = M_{i-1} \setminus N_{i-1}$.

 \mathcal{H} is a hierarchy if M_n is a union of 3-balls.

Example: Figure 1 denotes the hierarchy of the handlebody.

FIGURE 2

Lemma 1.1. Let M be a compact 3-manifold. Let \mathcal{H} be a partial hierarchy for M. If for all but finitely many F_i are disks, then \mathcal{H} has finite length.

Proof. Euler characteristic or complexity of boundary goes down when you cut along a disk. \Box

Lemma 1.2. Let M be a compact 3-manifold. Let \mathcal{H} be a partial hierarchy for M. If S is an incompressible, closed surface in M_i for some i, then S is also incompressible in M.

Lemma 1.3. Suppose \mathcal{H} is a partial hierarchy for M with k surfaces and for some k, at least k of the surfaces F_i are not disks. Then there is a hierarchy \mathcal{H}' where the first k surfaces are non-disks.

Proof. Suppose $F_j = D^2$ whereas $F_{j+1} = D^2$. By a proper isotopy of $F_{j+1} \subset M_{j+1}$, we can ensure $\partial F_{j+1} \cap N_j = \emptyset$. So we may reorder two terms of the hierarchy

 $\dots, (M_i, F_i), (M_{i+1}, F_{i+1}), \dots$

by

$$\dots, (M_j, F_{j+1}), (M_{j+1}, F_j), \dots$$

Recall the closed Haken number $\bar{h}(M)$ for an oriented irreducible and compact M is defined as follows,

Definition. $\bar{h}(M)$ is the maximal number of non-parallel closed incompressible 2-sided surfaces whose union embeds in M.

Theorem 1.4. Suppose \mathcal{H} is a partial hierarchy of an oriented irreducible and compact M. If for each i, the surface F_i is essential and connected, then there exists at most $3\bar{h}(M)$ surfaces F_i such that F_i is not a disk.

Definition. The maximal number of non-disks in such a partial hierarchy is v(M), which is the length of M.

Exercise: Find a 3-manifold with $v(M) = 3\bar{h}(M) \neq 0$

Definition. $\mathcal{D} = \sqcup D_i \subset M$ is a complete system of disks if the D_i are non-parallel, essential, and boundary components of $M \setminus \dot{N}(\mathcal{D})$ are π_1 -injective.

Lemma 1.5. Let $F \subset M$ be a non-disk essential surface. Then there is a complete system of disks disjoint from F.

Now we prove Theorem 1.4 by contradiction.

Proof. By Lemma 1.3, there is a hierarchy

 $\dots, (M_1, F_1), \dots, (M_{3\bar{h}(M)+1}, F_{3\bar{h}(M)+1}), \dots$

in which all of these F_i 's are non-disks. For each F_i , $i \leq 3\bar{h}(M)+1$, associate a closed incompressible surface as follows,

- (1) If F_i is closed, then set $S_i = F_i$.
- (2) If $F_i \subset M_i$ has non-empty boundary, by Lemma 1.4, let \mathcal{D}_i be a complete system of disks for M_i . Let M'_i denote the component of $M_i \setminus N(\mathcal{D}_i)$ containing F_i . Choose a component of $\partial M'_i$ meeting ∂F_i . Let S_i be a copy of that component, pushed slightly into \dot{M}'_i . Since S_i is an incompressible, closed surface in M_i , then S_i is incompressible in M.

At least four S_i 's are parallel, which we call S_p, S_q, S_r, S_s . There are two cases here.

- (1) Suppose $S_p = F_p$ and $S_q = F_q$. Suppose p < q. Then S_q is ∂ -parallel in M_q , a contradiction.
- (2) Suppose S_p, S_q, S_r are all associated to surface with boundary. Say S_p is between S_q and S_r . Suppose S_q lies on the F_p -side of S_p . If q > p, then $S_q \cap F_p = \emptyset$, so F_p is ∂ -parallel, a contradiction. If q < p, symmetric reasoning.

Corollary 1.6. If M is Haken, then M has hierarchy.