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PRIME DECOMPOSITION

Connect Sums.

Definition 1. If A and B are connected, oriented n-manifolds, then the connect sum of
A and B, denoted A#B, is obtained by choosing points a ∈ A and b ∈ B, removing
open balls around each point, and gluing the resulting boundary components by an
orientation-reversing map.

The connect sum of two oriented manifolds is well-defined, which is to say that it
does not depend on the choice of points, open balls, or the map between boundary
components. In the smooth category, with some care we can extend the definition
above to get a smooth connect sum of two smooth n-manifolds.

Exercise 1. If A and B are n-manifolds for n ≥ 2 and R is any ring, show that

H1(A#B;R) ≈ H1(A;R)⊕H1(B;R).

Remark. IfA and B are unoriented or nonorientable n-manifolds, it still makes sense to
write “M = A#B,” as this expresses that there is an embedded (n−1)-sphere inM that
cutsM intoA\(ball)∪B\(ball). However, since there may be multiple nonhomeomorphic
M for whichM = A#B, it does not make sense to write “A#B” by itself.

Definition 2. A 3-manifold M is prime if whenever M = A#B, at least one of A and
B is homeomorphic to S3. A 3-manifold M is irreducible if every smoothly embedded
2-sphere inM bounds a 3-ball inM.

Notice that every irreducible 3-manifold is prime. It turns out that the converse is
almost true:

Theorem 3. Let M be an orientable 3-manifold. Then M is prime but not irreducible if and
only ifM ∼= S1 × S2.

In the following, we use the notation N(S) to denote a regular neighborhood of a sub-
manifold S in a manifoldM.

Proof. (⇒) IfM is not irreducible then there is a 2-sphere Σ ⊂M that does not bound a
ball. SinceM is prime, Σmust be nonseparating. Hence there is an arc α that joins one
boundary component of N(Σ) the the other and does not meet N(Σ) in its interior.
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Let N = N(Σ) ∪ N(α), and notice that ∂N is a 2-sphere. (It’s the result of joining the
two sphere boundary components of N(Σ) by a tube.) In fact, N is homeomorphic to
S1 × S2\(3-ball). To see this, cutN open along Σ and expand the tube around alpha, as
shown in the following figure.

Cut open along Σ (blue), then fill in all of the space inside the outer sphere except for a 3-ball.

Hence we have shown that M contains a 2-sphere ∂N that cuts M into N ∼= S1 × S2\
(3-ball) and another 3-manifold N ′ with a 2-sphere boundary component. Since M is
prime, N ′ must be a 3-ball, and so we conclude thatM ∼= S1 × S2.

(⇐) Let M = S1 × S2 and let S = S2 × {pt} ⊂ M. Then S is an embedded 2-sphere in
M that does not bound a ball, soM is not irreducible. It remains to show thatM is not
prime.

Seeking a contradiction, suppose that M = A#B where neither A nor B is S3. Then we
can find a reducing sphere T ⊂ M, that is, an embedded separating 2-sphere in M for
which neither component of M\T is a 3-ball. Isotope T in M to be transverse to S, so
that S ∩ T is a smooth closed multicurve on S and T . We will assume that T has been
chosen in its isotopy class so that the number of components of S ∩ T is minimized.

If S ∩ T 6= ∅, choose a curve α of S ∩ T that is innermost on T . Then α bounds a disk
D ⊂ T such that int(D) ∩ S = ∅. Moreover, α cuts S into two disks D1 and D2.

Claim. One of D ∪D1 and D ∪D2 bounds a 3-ball inM.

Exercise 2. Prove the claim using Alexander’s theorem.

We can now use the ball from the claim to isotope T through S, which reduces the
number of components of S ∩ T by at least one. This contradicts our assumption that
the number of components was minimal, so we must have S ∩ T = ∅.

It follows that T is a 2-sphere in M\S ∼= S2 × I. Furthermore, T is either isotopic to
S2× {pt} — in which case it is nonseparating inM— or it bounds a 3-ball in S2× I, and
hence inM.
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In either case, T is not a reducing sphere as claimed, so we have reached a contradic-
tion. ThusMmust be prime. �

Remark. In the nonorientable case, there is also the possibility that M is the twisted
S2-bundle over S1, denoted S1 ∼× S2.

Exercise 3. Extend the proof above to the nonorientable case.

The Prime Decomposition Theorem.

Theorem 4 (Kneser-Milnor). If M is a compact and orientable 3-manifold, then M admits a
prime decomposition

M = P1# · · · #Pk
where Pi is a prime 3-manifold for each i. Moreover, this decomposition is unique up to reorder-
ing.

Remark. There is a similar statement for nonorientable 3-manifolds. Some added care
must be taken to deal with ambiguities arising from the fact that A#(S1 × S2) is home-
omorphic to A#(S1 ∼× S2) for any nonorientable 3-manifold A.

Before we start the proof, we note that every smooth n-manifold M admits a smooth
triangulation, wherein every simplex τ ⊂ M has a chart in the smooth atlas that sends
τ to the standard n-simplex in Rn. It follows from this that if M is a compact smooth
manifold, then rank H1(M;Z) and dimH1(M,Z/2) are both finite.

Proof of Existence. Since S1 × S2 contributes a Z-summand to H1(M;Z) and RP3 con-
tributes a Z/2-summand to H1(M;Z/2), by the preceding observation there can only
be finitely many S1 × S2 and RP3 connect summands. Hence we may assume that
M has no such summands. We will also assume that none of the boundary compo-
nents of M are 2-spheres, for if this were the case, we could eliminate such boundary
components by splitting off 3-ball connect summands.

Choose a (smooth) triangulation of M with v vertices and f 2-simplices. We will show
that if M = M1# · · · #MN is any connect sum decomposition of M where Mi 6∼= S3 for
any i, then N ≤ v+ f. It will follow thatM admits a prime decomposition.

Let Σ ⊂M be a system of (N− 1) 2-spheres inM that realizes the decompositionM =
M1# · · · #MN. Thus theMi are obtained fromM by cuttingM along Σ and capping off
the resulting 2-sphere boundary components with 3-balls. We will call such a system
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of 2-spheres independent if no component of M\Σ is a punctured 3-sphere. (Hence the
goal of this argument is bound the number of components of an independent system
Σ.)

After an isotopy, we may assume that Σ is transverse to the triangulation of M. This
means:

(i) Σ does not meet the vertices of the triangulation,

(ii) Σ meets the edges of the triangulation in isolated points on the interiors of the
edges,

(iii) Σmeets the 2-simplices of the triangulation in disjoint curves and properly em-
bedded arcs in the 2-cells.

We define the complexity of Σ to be c(Σ) = (α,β), where is α is the number of points
of intersection of Σ with the 1-skeleton of the triangulation, and β is the number of
components of intersection of Σwith each 2-cell, summed across all of the 2-cells of the
triangulation. (Note: this is different from the number of components of the intersec-
tion of Σwith the 2-skeleton!) We order complexities lexicographically.

Suppose Σ has k components S1, . . . , Sk, and has minimal complexity among indepen-
dent systems of 2-spheres.

To be continued!
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