THREE-MANIFOLDS NOTES

JASON MANNING, NOTES BY AARON PALMER, EDITED BY DREW ZEMKE

EXISTENCE OF PRIME DECOMPOSITION (CONT.)

Definition 1. (Non standard) Let M? be a smoothly triangulated 3-manifold
with £ € M? a smoothly, properly embedded, possibly disconnected, surface.
X is called semi-normal if

(1) X istransverse to the triangulation (misses vertices, intersects edges and
faces transversly).

(2) If o is a 2-simplex of the triangulation, every component of £ N o0 is an
arc connecting distinct edges (i.e. not Figure 1a or Figure 1b.)

(3) If Tis a 3-simplex, every component of X N Tis a disc as in figure 2a. (No
bounded genus and no pants as in Figure 2b.)

Aside: X is normal if it’s semi-normal and for every 3-simplex T, every compo-
nent of X N 9t has combinatorial length (the number of faces it intersects in 97)
less than or equal to 4.
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(A) 2-simplices should not contain
loops. (B) This also shouldn’t happen.

FIGURE 1. Non-semi-normal 2-simplex pictures.
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(A) X should intersect 3-simplices (B) 3-simplices should not contain
in discs. pants.

FIGURE 2. Good and bad 3-simplex pictures.

Most of the lecture will be devoted to proving the following proposition, which
is at the heart of the existence of a prime decomposition.

Proposition 2. If M is compact triangulated 3-manifold, and £ C M is an indepen-
dent system of 2-spheres, with #~ = X, then there is an independent, semi-normal
system of 2-spheres £ C M with the same number of components.

Recall that X is independent if no component of M\ is a punctured S°.

Proposition 2 implies the existence of a prime decomposition for an orientable
compact 3-manifold as follows (see also Lecture 3).

Proof of Existence. Suppose M is compact, orientable, and triangulated. Let M =
Pi#- - -#Pn. Every S' x §? summand of M contributes a Z direct summand to
Hi(M;Z), and every RP? summand contributes a Z/2 summand to H; (M; Z/2).
Since M is compact, it has finite first Betti number and therefore finitely many
S! x $? and RP? summands. We split these summands off of M and henceforth
assum that no connect summand of M is S' x $? or RP*. Similarly, M has finitely
many S? boundary components, and we may eliminate these by splitting off a
B? connect summand for each S? boundary component.

From the connect sum decompostion M = P#---#Py, we get an indepen-
dent system £ consisting of (N — 1) $%’s, from the connect sum decomposition.
Proposition 2 implies there is a system with as many components that is semi-
normal. Since each sphere is separating and no factor is $* x I or an I-bundle
over RP?, each component of M\Z intersects some 2-simplex in a non-rectangle,
i.e. a piece different from the one shown in Figure 3. If each intersection was a
rectangle than it would be an I-bundle over S? or RP?, which would correspond
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FIGURE 3. Intersection of a 2-simplex with a component of M\Z
that is a rectangle. .

to either a component of M\ S that was S$? x I (a twice-punctured S%) or an RP?
summand of M.

Hence we have N—1 < #(2-simplices) + #(vertices), and so we have shown that
the number of connect summands in any decomposition of M is bounded. [

The following lemma will help with the proof of Proposition 2.

Lemma 3. Let L be an independent system of separating 2-spheres in M, and let D be
an embedded 2-disc with D N X = 0D that meets L in a 2-sphere S. Suppose D cuts
S into discs Dy and Dy, and let S; = Dy UD and S, = D, U D, as in Figure 4a. If
I = (X\D;) UDand L, = (X\Dy) U D, then either £, or L, is independent.

Proof. Let P be a regular neighborhood of S U D as in the lemma. Then P =
S3\(3 B*’s) as in Figure 4b.

Fori = 1,2, let B; be the components of M\(Z U S; US,) meeting S;. Because L
is independent at least one of B; or B, is not a punctured S3 (Exercise: if N = N;
glued to N; along a disc, then N is a punctured S° if and only if N and N? are
punctured S*’s).

Suppose that By is not a punctured S3. Then Z; is independent. Let A be the
component of M\ (X U S; U S,) meeting S, so that A is not a punctured S3 by
independence of . The only new pieces of the complement are M\Z; are B,
(which is not a punctured S*) and A glued along a disc to B,. By the exercise,
this new piece is not a punctured S°. O

Proof of Proposition 2. Define c(X) = (&, B) with o« = #(Z N M), and B =
> {(#(X N o)lo is2 —simplex}. Let c¢(X) = oo if X is not transverse to the tri-
angulation of M. Order these pairs lexicographically.
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(A) Surgery of S. (B) P is a punctured S3.

FIGURE 4. Lemma 3 pictures.

(A) Surgery of a loop. (B) Surgery of an arc.

FIGURE 5. 2-simplex surgery pictures.

Claim: A smallest complexity independent system of a given cardinality is
semi-normal.

Let Z be such a system. It’s transverse, c(S) < co.

(1) ZN o hasno loops: Choose an innermost loop and surger along the disc
that it bounds. By Lemma 3 we get a new independent system with
c(X') = («,p —1). See Figure 5a.

(2) Z N o contains no arcs: Choose an outermost arc and consider a regu-
lar neighborhood in X. Use a taco shape to form the other side of the
baseball. This decreases « by 2 (and can be done by isotopy). See Figure
5b.
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FIGURE 7. Surgery when I is semi-normal but not normal.

(3) Suppose Z N 7 has a (planar) non-disc component: Choose ¢ innermost
on 0T amongst curves of £ N 9t bounding non-discs in 1. Then this
bounds a disc in T so surger with D N £ = ¢ (pushing slightly inside of
T). By the lemma there is a new independent system and whichever it
is, o« decreases. See Figure 6.

This completes the proof of the proposition and the proof of the existence of a
prime decomposition for orientable compact 3-manifolds. The non-orientable
case is not too much more complicated. O

Remark. In fact the lowest complexity system is normal. Use the taco shape to
move an extra edge outside and decrease «, figure 7.



