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EXISTENCE OF PRIME DECOMPOSITION (CONT.)

Definition 1. (Non standard) Let M3 be a smoothly triangulated 3-manifold
with Σ ⊂ M3 a smoothly, properly embedded, possibly disconnected, surface.
Σ is called semi-normal if

(1) Σ is transverse to the triangulation (misses vertices, intersects edges and
faces transversly).

(2) If σ is a 2-simplex of the triangulation, every component of Σ ∩ σ is an
arc connecting distinct edges (i.e. not Figure 1a or Figure 1b.)

(3) If τ is a 3-simplex, every component of Σ∩τ is a disc as in figure 2a. (No
bounded genus and no pants as in Figure 2b.)

Aside: Σ is normal if it’s semi-normal and for every 3-simplex τ, every compo-
nent of Σ∩ ∂τ has combinatorial length (the number of faces it intersects in ∂τ)
less than or equal to 4.
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(A) 2-simplices should not contain
loops. (B) This also shouldn’t happen.

FIGURE 1. Non-semi-normal 2-simplex pictures.
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(A) Σ should intersect 3-simplices
in discs.

(B) 3-simplices should not contain
pants.

FIGURE 2. Good and bad 3-simplex pictures.

Most of the lecture will be devoted to proving the following proposition, which
is at the heart of the existence of a prime decomposition.

Proposition 2. If M is compact triangulated 3-manifold, and Σ ⊂ M is an indepen-
dent system of 2-spheres, with #Σ = k, then there is an independent, semi-normal
system of 2-spheres Σ ′ ⊂M with the same number of components.

Recall that Σ is independent if no component ofM\Σ is a punctured S3.

Proposition 2 implies the existence of a prime decomposition for an orientable
compact 3-manifold as follows (see also Lecture 3).

Proof of Existence. SupposeM is compact, orientable, and triangulated. LetM =
P1# · · · #PN. Every S1 × S2 summand of M contributes a Z direct summand to
H1(M;Z), and every RP3 summand contributes a Z/2 summand toH1(M;Z/2).
Since M is compact, it has finite first Betti number and therefore finitely many
S1× S2 and RP3 summands. We split these summands off ofM and henceforth
assum that no connect summand ofM is S1×S2 or RP3. Similarly,M has finitely
many S2 boundary components, and we may eliminate these by splitting off a
B3 connect summand for each S2 boundary component.

From the connect sum decompostion M = P1# · · · #PN, we get an indepen-
dent system Σ consisting of (N− 1) S2’s, from the connect sum decomposition.
Proposition 2 implies there is a system with as many components that is semi-
normal. Since each sphere is separating and no factor is S2 × I or an I-bundle
over RP2, each component ofM\Σ intersects some 2-simplex in a non-rectangle,
i.e. a piece different from the one shown in Figure 3. If each intersection was a
rectangle than it would be an I-bundle over S2 or RP2, which would correspond
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FIGURE 3. Intersection of a 2-simplex with a component of M\Σ
that is a rectangle. .

to either a component ofM\S that was S2 × I (a twice-punctured S3) or an RP3
summand ofM.

Hence we haveN−1 ≤ #(2-simplices) + #(vertices), and so we have shown that
the number of connect summands in any decomposition ofM is bounded. �

The following lemma will help with the proof of Proposition 2.

Lemma 3. Let Σ be an independent system of separating 2-spheres inM, and letD be
an embedded 2-disc with D ∩ Σ = ∂D that meets Σ in a 2-sphere S. Suppose D cuts
S into discs D1 and D2, and let S1 = D1 ∪ D and S2 = D2 ∪ D, as in Figure 4a. If
Σ1 = (Σ\D2) ∪D and Σ2 = (Σ\D1) ∪D, then either Σ1 or Σ2 is independent.

Proof. Let P be a regular neighborhood of S ∪ D as in the lemma. Then P ∼=
S3\(3 B3 ′s) as in Figure 4b.

For i = 1, 2, let Bi be the components ofM\(Σ ∪ S1 ∪ S2) meeting Si. Because Σ
is independent at least one of B1 or B2 is not a punctured S3 (Exercise: ifN = N1

glued to N2 along a disc, then N is a punctured S3 if and only if N1 and N2 are
punctured S3’s).

Suppose that B1 is not a punctured S3. Then Σ1 is independent. Let A be the
component of M\(Σ ∪ S1 ∪ S2) meeting S, so that A is not a punctured S3 by
independence of Σ. The only new pieces of the complement are M\Σ1 are B1
(which is not a punctured S3) and A glued along a disc to B2. By the exercise,
this new piece is not a punctured S3. �

Proof of Proposition 2. Define c(Σ) = (α,β) with α = #(Σ ∩ M(1)), and β =∑
{#(Σ ∩ σ)|σ is 2 − simplex}. Let c(Σ) = ∞ if Σ is not transverse to the tri-

angulation ofM. Order these pairs lexicographically.
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(A) Surgery of S. (B) P is a punctured S3.

FIGURE 4. Lemma 3 pictures.

(A) Surgery of a loop. (B) Surgery of an arc.

FIGURE 5. 2-simplex surgery pictures.

Claim: A smallest complexity independent system of a given cardinality is
semi-normal.

Let Σ be such a system. It’s transverse, c(S) <∞.

(1) Σ∩σ has no loops: Choose an innermost loop and surger along the disc
that it bounds. By Lemma 3 we get a new independent system with
c(Σ ′) = (α,β− 1). See Figure 5a.

(2) Σ ∩ σ contains no arcs: Choose an outermost arc and consider a regu-
lar neighborhood in Σ. Use a taco shape to form the other side of the
baseball. This decreases α by 2 (and can be done by isotopy). See Figure
5b.
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FIGURE 6. Surgery when Σ ∩ τ is not a disc.

FIGURE 7. Surgery when Σ is semi-normal but not normal.

(3) Suppose Σ ∩ τ has a (planar) non-disc component: Choose c innermost
on ∂τ amongst curves of Σ ∩ ∂τ bounding non-discs in τ. Then this
bounds a disc in τ so surger with D ∩ Σ = c (pushing slightly inside of
τ). By the lemma there is a new independent system and whichever it
is, α decreases. See Figure 6.

This completes the proof of the proposition and the proof of the existence of a
prime decomposition for orientable compact 3-manifolds. The non-orientable
case is not too much more complicated. �

Remark. In fact the lowest complexity system is normal. Use the taco shape to
move an extra edge outside and decrease α, figure 7.


