
THREE MANIFOLDS NOTES

JASON MANNING, NOTES BY ZHEXIU TU

1. Uniqueness of Prime Decomposition

Last time we showed the existence of prime decomposition. This class we are
going to show the uniqueness of the prime decomposition.

Theorem 1.1. Let M3 be compact, connected, and orientable. Then there is a
unique prime decomposition, up to insertion or deletion of S3’s, i.e., if Pi and Qi

are irreducible and not S3 and

M ∼= P1# · · ·#Pn#(#k
i=1S

1 × S2)

∼= Q1# · · ·#Qm#(#l
i=1S

1 × S2),

then the list Q = (Q1, . . . , Qm) is a permutation of P = (P1, . . . , Pn) and k = l.

Remark 1.2. For any non-orientable manifold, there is also a unique prime decom-
position if you prohibit the S1 × S2 summands.

Proof. The existence of such a prime decomposition was shown in last class.

Definition 1.3. Let Σ be a system of 2-spheres in M . Σ decomposes M into
P if the components of M\Σ which are not punctured 3-spheres are in bijective
correspondence with the entries of P , where the Pi’s are punctured.

Suppose

M ∼= P1# · · ·#Pn#(#k
i=1S

1 × S2)

∼= Q1# · · ·#Qm#(#l
i=1S

1 × S2).

We may assume that Pi and Qi are not B3 by factoring off any S2 components of
the ∂M . Then there are systems ΣP ,ΣQ so that ΣP decomposes M into P , and
ΣQ decomposes M into Q. Suppose #(ΣP ∩ ΣQ) is minimal among pairs of such
systems. (We may always suppose this is a transverse intersection.). We claim that

#(ΣP ∩ ΣQ) = 0.

Suppose not. We choose a loop of intersection that is innermost on a sphere of
ΣQ, bounding a disk α. See Figure 1. Let S ⊂ ΣP be the sphere containing α.
Let Σ′

P = (ΣP \S)∪ (S1 ∪ S2). Note that #(Σ′
P ∩ΣQ) < #(ΣP ∩ΣQ) and Σ′

P still
decomposes M into P by irreducibility of the components of M\ΣP .

So ΣP ∪ΣQ decomposes M into P and decomposes M into Q (again using irre-

ducibility of the components of M\Σ). But the list of irreducible non-S3 summands
is recoverable from such a system (plug in balls to ∂(M\Σ) and throw away S3’s).
So P = Q up to reordering. To see k = l, note that

H1(M) = H1(#P )⊕ Zk = H1(#Q)⊕ Zl.

Therefore k = l. �
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Figure 1

Proposition 1.4. Suppose p : M̃ → M is a covering of 3 manifolds and M̃ is
irreducible. Then M is irreducible.

Proof. We can show p|B : B → p(B) is a covering map. The covering space is one
sheeted on S2, hence one sheeted on all of B. �

Remark 1.5. The converse is also true, but it requires “tower argument”.

Corollary 1.6. Any manifold M covered by S3 on R3 is irreducible.

Examples include RP 3, lens spaces, Poincaré dodecahedral space, Σ×S1, where
χ ≤ 0. Note that there exist irreducible, simply connected 3-manifolds 6∼= S3 or R3.
But they don’t cover compact 3-manifolds (follows from geometrization.)

Theorem 1.7 (Waldhausen). The universal covering of a Haken 3-manifold is R3.

Exercise: what’s the universal cover of L1#L2 where L1, L2 are lens spaces?
Extensive reading: Whitehead manifold

2. Torus decomposition

Definition 2.1. Σ2 ⊂ M3 which is not a disk or a two sphere S2 is called in-
compressible if every simple loop in Σ bounding a disk in M also bounds one in
Σ.

If Σ 6= S2, D2 is not incompressible, we call it compressible. A compressible
surface can be compressed. Figure 2 illustrates the innermost loop argument: there
is an embedded disk whose boundary is essential in Σ, and we can get a simpler
surface Σ′ which is homologous to Σ.

Definition 2.2. Let M3 be closed, irreducible, and orientable. We say M Haken
if it contains an incompressible 2-sided surface.
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Figure 2

Remark 2.3. (1) χ(Σ) ≤ 0, Σ ↪→ M π1-injective, then Σ is incompressible.
(Converse requires Σ 2-sided & Loop Theorem)

(2) χ(Σ) ≤ 0, Σ ↪→ R3 is always compressible. (Think about the proof of
Alexander’s Theorem)


