THREE MANIFOLDS NOTES

JASON MANNING, NOTES BY OLIVER WANG

1. Incompressible/Compressible Surfaces

Definition 1.1. Let M be a 3 -manifold and let $\Sigma \neq D^{2}, S^{2}$ be an embedded surface. Σ is incompressible if, for every embedded disk D with $\partial D=\Sigma \cap D$, there is an embedded disk in Σ with boundary equal to ∂D. If $\Sigma \neq D^{2}, S^{2}$ is not incompressible, then Σ is compressible and there is a compressing disk (i.e. an embedded disk $D \hookrightarrow M$ with $\partial D=\Sigma \cap D$ such that ∂D does not bound a disk in $\Sigma)$

Lemma 1.2. Suppose M is irreducible and let T be a compressible torus in M. Then, either T bounds $D^{2} \times S^{1}$ or $T \subset B^{3}$ where B^{3} is an embedded ball.

Proof. Let D be a compressing disk and let N be a regular neighborhood of $D \cup T$. S^{2} is a boundary component of N. By irreducibility of M, this S^{2} bounds a ball B where either
(1) $T \subset B$
(2) $T \cap B=\emptyset$ and we can attach B to N to get a $S^{2} \times S^{1}$ (figure 1)

Theorem 1.3. Let M be an irreducible, triangulated, compact 3-manifold. Let Σ_{0} be an embedded union of incompressible surfaces in M. Then, Σ is isotopic to a normal surface

Definition 1.4. Let M be a triangulated 3-manifold and let $\Sigma \subset M$ be a surface. Then, Σ is normal if

Figure 1

Figure 2
(1) Σ is transverse to the triangulation
(2) The arcs of intersection with a 2 -simplex σ go between distinct edges (in particular, there are no loops on the intersection)
(3) For each 3 -simplex $\tau, \Sigma \cap \tau$ is the union of triangles and quadrilaterals

Lemma 1.5. Let S be an embedded union of incompressible surfaces in a 3-manifold M. Suppose T is a surface in $M \backslash S$. Then, T is incompressible in M if and only if T is incompressible in $M \backslash S$.

Proof. If T is incompressible in M then it is obviously incompressible in $M \backslash S$.
We may assume that $T \neq D^{2}, S^{2}$. Suppose that T is compressible in M. Choose a compressing disk D which is transverse to S and has minimal number of intersections with S over disks with the same boundary. Let α be an innermost curve on $S \cap D$ on D. Since S is the union of incompressible surfaces, α bounds a disk on S. We can use this disk to surger D and decrease the number of intersections between D and S. So, $D \cap S=\emptyset$ which implies that D is a compressing disk for T in $M \backslash S$. Therefore, T is compressible in $M \backslash S$.

Proof of theorem. Choose Σ in isotopy class of Σ_{0} transverse to the triangulation of M and minimizing the complexity $c(\Sigma)=\left(\# \Sigma \cap M^{(1)}, \sum_{\sigma \in A} \Sigma \cap \sigma\right)$ where $M^{(1)}$ denotes the 1-skeleton of M and A is the set of 2 -simplices of M.

The idea is the same as that of a previous proof but we need to ensure that reducing complexity is realized by isotopies.

First, we show that $\Sigma \cap \sigma$ contains no loops for any 2 -simplex σ. Suppose there is a loop in the intersection. Let α be an innermost loop. Then, α bounds embedded disks in both σ and T. Since M is irreducible, the union of these two disks bounds a ball. We can use these balls to isotope Σ to have a lower complexity (figure 2).

We now show that $\Sigma \cap \sigma$ does not contain arcs from an edge of σ to itself. Suppose otherwise. Let α be an outermost arc of $\Sigma \cap \sigma$ whose endpoints lie on the same edge of σ. Then, α cuts off a disk in σ which does not intersect Σ except in α. A neighborhood of that disk gives a ball across which we can isotope Σ to decrease complexity (figure 3).

Eliminating non-disk components of $\Sigma \cap \tau$, where τ is a 2 -simplex, is the same as before but with isotopy instead of surgery. Also, if there are long disks, complexity can be decreased by an isotopy. If there is a long disk, its boundary his some edge of the simplex twice. A carefully chosen such pair of edges gives a disk whose boundary is a subarc of the union of an edge and an arc in Σ. A neighborhood of this disk gives an isotopy of Σ that reduces complexity.

Figure 3

Figure 4. non-disk components and long disks in 2-simplex

Corollary 1.6 (Haken Finiteness). Let M be a compact, connected, irreducible 3 -manifold. There is a number $N=N(M)$ so that any embedded collection \mathcal{S} of closed nonparallel incompressible surfaces in M has cardinality $\# \mathcal{S}<N$.
Definition 1.7. A and B are parallel if they bound a component $A \times I \cong B \times I$.
Proof. Choose a triangulation of M. Let $N=v+f+\operatorname{dim}_{\mathbb{Z} / 2 \mathbb{Z}}\left(H_{2}(M, \partial M ; \mathbb{Z} / 2 \mathbb{Z})\right)$ where v is the number of vertices and f is the number of faces.

Lemma 1.8. If F_{1}, \ldots, F_{k} is a collection of disjoint properly embedded surfaces in $M,\left[F_{1}\right], \ldots,\left[F_{k}\right]$ are independent in $H_{2}(M, \partial M ; \mathbb{Z} / 2 \mathbb{Z})$ if and only if $M \backslash\left(F_{1} \cup \ldots \cup F_{k}\right)$ is connected.

