3-MANIFOLDS

JASON MANNING SCRIBED BY IAN PENDLETON FEBRUARY 24, 2016

1. HAKEN FINITENESS

Last time: If M is compact, irreducible, and triangulated, then any embedded union of closed incompressible surfaces is isotopic to a normal surface.

Lemma. If F_1, \ldots, F_k is a collection of disjoint, properly embedded surfaces in M then $[F_1], \ldots, [F_k]$ are independent in $H_2(M, \partial M; \mathbb{Z}_2)$ if and only $M \setminus (F_1 \cup \cdots \cup F_k)$ is connected.

Proof idea: Triangulate M with the union of the F_i in the 2-skeleton and think about chains.

Haken Finiteness: If M is compact and irreducible then there is a number N = N(M) so that any embedded union of closed, incompressible, non-parallel surfaces in M has fewer than N components.

Proof. Choose a triangulation of M. Let $N = v + f + \beta$ where v is the number of vertices, f is the number of 2-cells, and $\beta = \dim_{\mathbb{Z}_2}(H_2(M, \partial M; \mathbb{Z}_2))$. Let F_1, \ldots, F_n be a disjoint collection of closed, non-parallel, incompressible surfaces. From last time, we assume the $\bigcup F_i$ is normal with respect to the triangulation. By reordering, assume that F_1, \ldots, F_k is a maximal linearly independent subcollection in $H_2(M, \partial M; \mathbb{Z}_2)$. (i.e. each $[F_r]$ for r > k is in the span of $S = \{[F_1], \ldots, [F_k]\}$ and so $\dim_{\mathbb{Z}_2} S = k$.)

From the lemma, the number of components of $M \setminus \bigcup F_i = 1 + n - k$. Further, by looking at the normal surface within the triangulation we get that the maximum number of non-*I*-bundle components of $M \setminus \bigcup F_i$ is v + f because there is potentially a non-rectangular region in the center of each 2-cell and around each vertex of the triangulation.

Consider an *I*-bundle component *C* of $M \setminus \bigcup F_i$. Since none of the F_i are parallel, *C* must be a non-trivial *I*-bundle over some non-separating surface Σ which is the 0-section of the *I*-bundle.

Let $\Sigma_1, \ldots, \Sigma_m$ be the 0-sections of the *I*-bundle pieces of $M \setminus \bigcup F_i$. Since the Σ_i are non-separating, we have that $M \setminus (F_1 \cup \cdots \cup F_k \cup \Sigma_1 \cup \cdots \cup \Sigma_m)$ is connected. By the lemma, we know that $k + m \leq \beta$. Therefore the number of components of $M \setminus \bigcup F_1$ is less than v + f + m and so $1 + n - k \leq v + f + m$ which gives that $n \leq v + f + \beta - 1$, as desired. \Box

Remark: The same argument gives a bound on the number of seminormal surfaces in a fixed triangulation.

Corollary. (Existence of a torus decomposition) If M is compact and irreducible then there is a disjoint union Σ of incompressible tori in M so that every component of $M \setminus \Sigma$ is atoroidal.

Date: February 24th, 2016.

Definition. M a compact 3-manifold is **atoroidal** is every incompressible torus in M is boundaryparallel.

Definition. $\Sigma^2 \subset M^3$ is **boundary-parallel** if it is isotopic rel $\partial \Sigma$ to ∂M .

Remark: Often atoroidal means: Any π_1 -injective immersion $T^2 \hookrightarrow M$ is homotopic into ∂M .

Note: The "torus decomposition" from the corollary is not unique. For example, let $M = F^2 \times S^1$ where F is the genus 2 handlebody. Any simple closed curve α on F gives an embedded torus $T_{\alpha} = \alpha \times S^1 \hookrightarrow M$. We see that T_{α} will be incompressible if and only if α is essential in F. Thus the following two systems of curves give different torus decompositions of M:



Fact: (Pair of pants) $\times S^1$ is atoroidal in the weak sense (our definition) but not the strong sense (the other definition).

Looking ahead:

Theorem (JSJ-decomposition). If M is compact, orientable, and irreducible then there is a disjoint union Σ of incompressible tori so that every component of $M \setminus \Sigma$ is either atoroidal or Seifert fibered. A minimal such collection is unique up to isotopy.

2. Seifert Fibered Spaces

Intuitively, a *Seifert fibered space* is a 3-manifold together with a decomposition into circles. A formal definition will be given shortly.

The following are model Seifert fibered spaces:

- 1. Fibered solid tori $T_{p,q} = (D^2 \times I) / \sim$ where $(z, 0) \sim (e^{2\pi i p/q} z, 1)$. Thus we are gluing $D^2 \times \{0\}$ to $D^2 \times \{1\}$ via a rotation of $2\pi p/q$.
- 2. Fibered solid Klein bottle: $K = (D^2 \times I) / \sim$ where $(z, 0) \sim (\overline{z}, 1)$.

Definition. M is a **Seifert fibered space** if it has a decomposition into S^1 's so that each S^1 has a neighborhood which is fiber-preservingly homeomorphic to one of the two model Seifert fibered spaces.

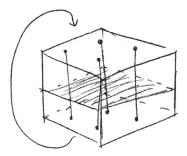
Example.

- 1. S^3 with the Hopf fibration is a Seifert fibered space.
- 2. $S^3 \setminus K$ where K is the trefoil knot can be fibered by copies of K along with a copy of S^1 for the cores of each of the two solid tori which glue together into S^3 . These special S^1 are called **critical fibers**.

Exercise: What are the models around these critical fibers?

Definition. If M is a Seifert fibered space then a surface $\Sigma \subset M$ is called **vertical** if it is a union of fibers. Σ is **horizontal** if it is transverse to the fibers.

Example. $\varphi: T^2 \to T^2$ is rotation of order 4. $M = M_{\varphi}$ the mapping torus.



The middle shaded surface is horizontal.