LECTURE 9

JASON MANNING
M will in this lecture denote a 3 manifold and in our applications a Seifert fibred space. We wish to obtain a description for the connected essential (2-sided) surfaces embedded in a compact irreducible Seifert fibred space. More precisely, we show that such a surface is isotopic to either a vertical or horizontal surface. Σ will throughout denote a connected surface embedded in M. Recall from last time two lemmas verging on a description of incompressible (2 -sided) surfaces $\Sigma \subset M^{3}$ with $\partial \Sigma$ contained in the boundary tori of ∂M.

Lemma 0.1. The only connected essential surfaces in a solid torus $\mathrm{D}^{2} \times \mathrm{S}^{1}$ are meridian disks $\mathrm{D}=\mathrm{D}^{2} \times\{z\}, z \in \mathrm{~S}^{1}$.

Lemma 0.2. Let $\Sigma \subset M$ be an incompressible, inessential surface such that $\partial \Sigma$ is contained in a union of torus components of $\partial \mathrm{M}$, then Σ is a boundary parallel torus.

The following theorem in fact generalizes lemma 0.1 to compact irreducible Seifert fibred spaces.

Theorem 0.3. If M is a compact irreducible Seifert fibred space, $\Sigma \subseteq M$ an essential surface in M, then Σ is isotopic to either a horizontal or a vertical surface.

Proof. Since M is compact, it has only finitely many critical fibres, let $C_{1}, \ldots C_{m}$ with $m \geqslant 1$ be a collection of fibres containing all critical fibres and for each $1 \leqslant i \leqslant m$ let N_{i} be a regular fibred neighbourhood about C_{i}. Let $M_{0}:=M /\left\{\cup_{i=1}^{m} N_{i}\right\}$, then $\pi: M_{0} \rightarrow B$ is a fibre-bundle over its space of fibres B (the topology on B is the quotient topology). B is a compact connected surface with boundary, such a surface can be further cut by finitely many disjoint arcs $\alpha_{1}, \ldots, \alpha_{r}$ into a disk (a genus g surface without boundary can be cut along 2 g non-intersecting loops into a disk, a surface with boundary can be cut into a disk with holes which can be further cut into a disk). Let $A_{i}:=\pi^{-1}\left(\alpha_{i}\right)$ be the pre-image of the arc α_{i}, which being a fibre-bundle over an arc is an annulus in M_{0}. $A=\cup_{i} A_{i}$ is a union of disjoint annuli which cuts M_{0} so that its interior is an S^{1} bundle over a disk, so M_{0} / \mathcal{A} is a solid torus with $2 r$ annuli on the boundary with each annulus A_{i} splitting into two. Now isotope Σ such that $\Sigma \cap N_{i}$ are horizontal, each component of $\partial \Sigma$ is vertical or horizontal. Let us also assume that Σ is also of minimal complexity

$$
c(\Sigma)=\left(\left|\cup_{i} \Sigma \cap C_{i}\right|,|\Sigma \cap A|\right)
$$

among all surfaces in the isotopy class which satisfy the aforementioned conditions. Let us take a closer look at the intersections $\Sigma \cap \mathcal{A}_{i}$, these may be arcs with endpoints on the same boundary circle of ∂A_{i}, loops in the interior of A_{i} or arcs which join the two boundary circles of \mathcal{A}_{i}. We are to rule out 3 cases,
case 1. There is an annulus A_{i} such that $\Sigma \cap A_{i}$ has a component in A_{i} which is an interior circle. As Σ is incompressible, an innermost such circle bounds two disks $\mathrm{D} \subseteq \AA_{i}$
and $D^{\prime} \subseteq \Sigma$ the union of which is a sphere in M which bounds a ball in M since M is irreducible. Thereby an isotopy yields a new Σ for which the intersection multiplicites of Σ with the fibres C_{i} are the same but $|\Sigma \cap A|$ decreases by 1 , and so the complexity decreases, which cannot be since Σ was of minimal complexity.
case 2 . We rule out the case in which there is an arc in $\sum \cap A_{i}$ for some A_{i} with endpoints in the same component of ∂A_{i} such that this component happens to be on the boundary of N_{j}, the fibred neighbourhood of C_{j}. To demonstrate this, we choose an innermost such arc with endpoints joined to distinct points on C_{j}. This arc along with the arc along C_{j} joining the two endpoints cuts out a disk in A_{i} which can once again be isotoped so as to reduce the number of intersections with the fibre C_{j} by 2 thus reducing the complexity. Therefore, the aforementioned arrangement is not possible for otherwise the isotopy described will reduce the complexity of the surface Σ.
case 3. Finally we are to rule out the case in which there are arcs in $\Sigma \cap A_{i}$ for some A_{i} with endpoints in the same component of ∂A_{i} which is also on the boundary of M. Once again choose an innermost such arc α which now bounds a ∂ compressing disk D in A_{i}. Since Σ is ∂ compressible, there is another disk in Σ, say D^{\prime} for which $\partial \mathrm{D} / \partial \mathrm{D}^{\prime}$ is an arc γ in ∂M joining the endpoints of α. But this is impossible since we assumed that each component of $\partial \Sigma$ is either vertical or horizontal. In greater detail, note that since the component of ∂A_{i} meeting $\partial \Sigma$ in a single fibre with the two endpoints of γ on it and γ cannot be vertical without passing through ∂A_{i}. This cannot be as γ is disjoint from $\partial \mathrm{D}$. The endpoints of γ are on the same fibre. γ cannot therefore be horizontal since a horizontal arc must passes through the fibres monotonically and thus doesn't visit the same fibre once more.
Let M_{1} be the solid torus with $2 r$ boundary annuli obtained from M_{0} from cutting M_{0} along the annuli A_{i}. Let Σ_{1} the surface in M_{1} obtained from Σ in M_{1}. We may isotope σ_{1} so that it has vertical or horizontal boundary. We would like to show that Σ_{1} is incompressible and reduce to the case where Σ_{1} is either isotopic to a union of meridian disks or isotopic to vertical surfaces. We shall complete the proof of this theorem in the next lecture.

