LECTURE 9

JASON MANNING

M will in this lecture denote a 3 manifold and in our applications a Seifert fibred space. We wish to obtain a description for the connected essential (2-sided) surfaces embedded in a compact irreducible Seifert fibred space. More precisely, we show that such a surface is isotopic to either a vertical or horizontal surface. Σ will throughout denote a connected surface embedded in M. Recall from last time two lemmas verging on a description of incompressible (2-sided) surfaces $\Sigma \subset M^3$ with $\partial \Sigma$ contained in the boundary tori of ∂M .

Lemma 0.1. The only connected essential surfaces in a solid torus $D^2 \times S^1$ are meridian disks $D = D^2 \times \{z\}, z \in S^1$.

Lemma 0.2. Let $\Sigma \subset M$ be an incompressible, inessential surface such that $\partial \Sigma$ is contained in a union of torus components of ∂M , then Σ is a boundary parallel torus.

The following theorem in fact generalizes lemma 0.1 to compact irreducible Seifert fibred spaces.

Theorem 0.3. *If* M *is a compact irreducible Seifert fibred space,* $\Sigma \subseteq M$ *an essential surface in* M*, then* Σ *is isotopic to either a horizontal or a vertical surface.*

Proof. Since M is compact, it has only finitely many critical fibres, let $C_1, \ldots C_m$ with $m \ge 1$ be a collection of fibres containing all critical fibres and for each $1 \le i \le m$ let N_i be a regular fibred neighbourhood about C_i . Let $M_0 := M/\{\bigcup_{i=1}^m N_i\}$, then $\pi : M_0 \to B$ is a fibre-bundle over its space of fibres B (the topology on B is the quotient topology). B is a compact connected surface with boundary, such a surface can be further cut by finitely many disjoint arcs $\alpha_1, \ldots, \alpha_r$ into a disk (a genus g surface without boundary can be cut along 2g non-intersecting loops into a disk, a surface with boundary can be cut into a disk with holes which can be further cut into a disk). Let $A_i := \pi^{-1}(\alpha_i)$ be the pre-image of the arc α_i , which being a fibre-bundle over an arc is an annulus in M_0 . $A = \bigcup_i A_i$ is a union of disjoint annuli which cuts M_0 so that its interior is an S¹ bundle over a disk, so M_0/A is a solid torus with 2r annuli on the boundary with each annulus A_i splitting into two. Now isotope Σ such that $\Sigma \cap N_i$ are horizontal, each component of $\partial\Sigma$ is vertical or horizontal. Let us also assume that Σ is also of minimal complexity

$$c(\Sigma) = (| \cup_{i} \Sigma \cap C_{i} |, | \Sigma \cap A |)$$

among all surfaces in the isotopy class which satisfy the aforementioned conditions. Let us take a closer look at the intersections $\Sigma \cap A_i$, these may be arcs with endpoints on the same boundary circle of ∂A_i , loops in the interior of A_i or arcs which join the two boundary circles of A_i . We are to rule out 3 cases,

case 1. There is an annulus A_i such that $\Sigma \cap A_i$ has a component in A_i which is an interior circle. As Σ is incompressible, an innermost such circle bounds two disks $D \subseteq A_i$

and $D' \subseteq \Sigma$ the union of which is a sphere in M which bounds a ball in M since M is irreducible. Thereby an isotopy yields a new Σ for which the intersection multiplicites of Σ with the fibres C_i are the same but $| \Sigma \cap A |$ decreases by 1, and so the complexity decreases, which cannot be since Σ was of minimal complexity.

case 2. We rule out the case in which there is an arc in $\Sigma \cap A_i$ for some A_i with endpoints in the same component of ∂A_i such that this component happens to be on the boundary of N_j , the fibred neighbourhood of C_j . To demonstrate this, we choose an innermost such arc with endpoints joined to distinct points on C_j . This arc along with the arc along C_j joining the two endpoints cuts out a disk in A_i which can once again be isotoped so as to reduce the number of intersections with the fibre C_j by 2 thus reducing the complexity. Therefore, the aforementioned arrangement is not possible for otherwise the isotopy described will reduce the complexity of the surface Σ .

case 3. Finally we are to rule out the case in which there are arcs in $\Sigma \cap A_i$ for some A_i with endpoints in the same component of ∂A_i which is also on the boundary of M. Once again choose an innermost such arc α which now bounds a ∂ compressing disk D in A_i . Since Σ is ∂ compressible, there is another disk in Σ , say D' for which $\partial D/\partial D'$ is an arc γ in ∂M joining the endpoints of α . But this is impossible since we assumed that each component of $\partial \Sigma$ is either vertical or horizontal. In greater detail, note that since the component of ∂A_i meeting $\partial \Sigma$ in a single fibre with the two endpoints of γ on it and γ cannot be vertical without passing through ∂A_i . This cannot be as γ is disjoint from ∂D . The endpoints of γ are on the same fibre. γ cannot therefore be horizontal since a horizontal arc must passes through the fibres monotonically and thus doesn't visit the same fibre once more.

Let M_1 be the solid torus with 2r boundary annuli obtained from M_0 from cutting M_0 along the annuli A_i . Let Σ_1 the surface in M_1 obtained from Σ in M_1 . We may isotope σ_1 so that it has vertical or horizontal boundary. We would like to show that Σ_1 is incompressible and reduce to the case where Σ_1 is either isotopic to a union of meridian disks or isotopic to vertical surfaces. We shall complete the proof of this theorem in the next lecture.