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Abstract. A hyperbolic group Γ acts by homeomorphisms on its Gromov

boundary. We use a dynamical coding of boundary points to show that such
actions are topologically stable in the dynamical sense: any nearby action is

semi-conjugate to (and an extension of) the standard boundary action.

1. Introduction

A discrete, hyperbolic group Γ, viewed as a (coarse) metric space, admits a
natural compactification by its Gromov boundary, denoted ∂Γ. This boundary is a
compact metrizable space, and if Γ is not virtually cyclic, it has no isolated points.
The action of Γ on itself by left-multiplication extends naturally to an action on
∂Γ by homeomorphisms, with rich global dynamics. In fact, boundary actions
of hyperbolic groups are entirely characterized by their dynamics, following work
of Bowditch: a group action by homeomorphisms on a perfect compact metrizable
space X is conjugate to the action of a hyperbolic group on its boundary if and only
if the action has convergence group dynamics and each point in X is a conical limit
point [Bow98, Tuk98]. (Equivalently, the induced action on the space of distinct
triples in X is properly discontinuous and cocompact.)

This paper considers another dynamical question with a long history, namely
stability of these actions under perturbation. The general study of stability of
actions of groups on boundaries, in an algebraic rather than dynamical context,
dates back to Mostow and Furstenburg. On the dynamical side, Sullivan [Sul85]
showed that the actions of convex cocompact Kleinian groups on their limit sets
are stable under C1–small perturbation; his techniques were generalized to prove
stability under “Lipschitz-small” perturbations for a much broader class of group
actions, including those of hyperbolic groups on their boundaries, in [KKL].

Here we consider the more general question of C0–small perturbations and sta-
bility in the sense of topological dynamics. Recall that a representation ρ0 ∈
Hom(Γ,Homeo(X)) is said to be a topological factor of another such representation
ρ if there exists a continuous, surjective map h : X → X such that h◦ρ(γ) = ρ0(γ)◦h
for all γ ∈ Γ. In this case, ρ is said to be an extension of ρ0, and the map h is
called a semi-conjugacy of the two actions. An action ρ is said to be topologically
or C0–stable if every nearby action is an extension of it, or in other words, nearby
actions encode the same dynamical information as ρ.

We prove the following.

Theorem 1.1. Let Γ be a hyperbolic group. For any neighborhood U of the iden-
tity in the space of continuous self-maps of ∂Γ, there exists a neighborhood V of
the standard boundary action in Hom(Γ,Homeo(∂Γ)) such that any ρ ∈ V is an
extension of the standard boundary action, via a semi-conjugacy in U .
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In particular, Theorem 1.1 implies that actions C0–close to the standard bound-
ary action cannot have larger kernel than the standard action. This kernel is finite
as long as Γ is not virtually cyclic.
C0–stability of boundary actions was previously proved for the special case of

fundamental groups of compact Riemannian manifolds of negative curvature in
[BM19], and for hyperbolic groups with sphere boundary in [MM21]. The strategy
in both was to translate perturbations of actions into nice maps between foliated
spaces, translating the dynamical problem into a geometric one. Here, we use a
different approach, inspired by the proof of a stability property for relative Anosov
representations given in [Wei22]. This approach more closely follows the idea of
dynamical coding of boundary points originally employed by Sullivan, and involves
the construction of an automaton that outputs quasi-geodesic strings. While the
coding we construct is tailored to proving stability of the action, the use of automata
in the study of hyperbolic groups has a long history dating back to Cannon [Can84];
see [ECH+92, Ch.3] for an introduction.

1.1. Necessity of semi-conjugacy. One cannot hope to improve the semi-con-
jugacy in Theorem 1.1 to a genuine conjugacy without stronger restrictions on the
perturbation. One can easily build examples of arbitrarily small perturbations of
the action of a free group on its boundary which are not conjugate to the original
action, as in the following example.

Example 1.2 (Perturbation of action of F2). Let F2 be the free group on the
letters a and b. The boundary ∂F2 is a Cantor set. We start by modifying the
action of a in a small clopen neighborhood N of its attracting fixed point x+, as
follows. Pick a fundamental domain D for the standard action, so that the sets
ak(D), k = 0, 1, 2 . . . partition N −{x+} into countably many disjoint, clopen sets.
Let X ⊂ N be a proper clopen neighborhood of x+, and let x′ ∈ N − X. Let
{Dk}∞k=0 be a partition of N − (X ∪ {x′}) into countably many clopen subsets of
decreasing diameter accumulating to x′, and set D−1 = a−1D. Define a modified
action of a on N as follows. On ∂F2 − (N ∪ a−1D), the action is unchanged. For
each k ≥ −1 define the restriction of a to Dk to be a homeomorphism to Dk+1. On
X, define a to be the identity. This gives a homeomorphism of the Cantor set which
is not conjugate to the original action of a, since it has uncountable fixed point set.
One may extend this action of a to an action of F2 by inserting the standard action
of b (or a similar modification if desired).

Examples of non-conjugate perturbations of actions of Kleinian groups with
sphere boundary are given in [BM19].

1.2. Relatively hyperbolic groups. It should be possible to use our methods
to prove a relative version of Theorem 1.1, where Γ is replaced by a relatively
hyperbolic group and ∂Γ is replaced by the Bowditch boundary. In fact much of
[Wei22] (adapted in this paper) takes place in this setting.

However, the action of a relatively hyperbolic group on its Bowditch boundary
is not stable in general. That is, if we replace “hyperbolic” with “relatively hyper-
bolic” and “boundary” with “Bowditch boundary” in Theorem 1.1, the statement
is no longer true. In fact in cases where the boundary has a C1 structure, the
statement can even fail for C1–perturbations. As an example, consider the action
of the fundamental group of a finite volume non-compact hyperbolic 3-manifold M
on the ideal boundary of H3 (which is equivariantly identified with the Bowditch
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boundary of π1M). By Thurston’s hyperbolic Dehn filling theorem, there are ar-
bitrarily small C1–deformations of the action of π1M on ∂H3 which have infinite
kernel—and therefore cannot be semi-conjugate to the original action, where the
kernel is trivial. Thus any version of Theorem 1.1 in the relative case must in some
way restrict the allowable deformations in Hom(Γ,Homeo(∂Γ)).

Outline. Section 2 describes the process for coding boundary points. In Section 3
we show that coding sequences give quasi-geodesics, establish a technical result
describing the relationship between two codings of the same point, and discuss
how conjugacy changes codings. We also make some remarks on the relationship
between our work and Bowditch’s annulus systems. Section 4 uses the results of
the previous sections to prove Theorem 1.1.

Acknowledgments. K.M. was partially supported by NSF grant DMS 1844516
and a Sloan fellowship. J.M. was partially supported by Simons Collaboration
Grant 524176. T.W. was partially supported by NSF grant DMS 1937215.

2. Set-up: coding boundary points

We assume familiarity with the basics of hyperbolic groups and their boundaries.
The reader may consult [Gro87, 8.2] or [BH99, III.H] for a general reference. Let Γ
be a hyperbolic group, with fixed finite, symmetric, generating set S. Theorem 1.1
is trivially true for two ended (virtually Z) groups, so for the remainder of the paper
we assume that Γ is not virtually cyclic. We denote by ∂Γ the Gromov boundary
of Γ, or equivalently the Gromov boundary of the Cayley graph of Γ with respect
to S.

Fix any metric (for instance, a visual metric) d∂ on ∂Γ. The open ε–ball around
a point p ∈ ∂Γ with respect to this metric is denoted by Bε(p), and the open
ε–neighborhood of a set K ⊂ ∂Γ is denoted by Nε(K).

As is well known, the action of Γ on the set of pairs of distinct points in ∂Γ is
cocompact, hence we have the following.

Lemma 2.1. There is some D > 0 so that for every pair a, b of distinct points in
∂Γ, there is a g so that d∂(ga, gb) ≥ D.

We fix such a constant D for the rest of the paper.

Our first goal is to “code” boundary points, i.e. to associate to each boundary
point a collection of infinite paths in a certain automaton. In Section 3 we will see
that each of these paths tracks a geodesic ray limiting to the boundary point. We
wish to define the coding in a way that uses only the dynamics of the action of Γ on
its boundary, so that the coding sequences will still contain meaningful information
after the action of Γ is perturbed.

The inspiration for this comes from Sullivan [Sul85], who codes points using
sequences of elements that contract subsets of the boundary a uniform amount.
Sullivan’s “uniform contraction” is not C0–stable, so we instead follow the mod-
ification of this approach given in [Wei22], and use the topological dynamics of
the action to construct nested sequences of sets that capture the idea of uniform
contraction.

We recall the following.



4 K. MANN, J.F. MANNING, AND T. WEISMAN

Definition 2.2. Let G act by homeomorphisms on on a metric space X. A point
x ∈ X is a conical limit point for the action if there exists a sequence {gn}n∈N of
elements of G and distinct points a, b ∈ X such that gnx → a and gny → b for all
y 6= x, uniformly on compact sets in X − {x}.

When Γ is a hyperbolic group acting on its boundary ∂Γ, every point in ∂Γ is a
conical limit point. The first step in our construction is to use this property to set
up a pair of good covers of ∂Γ. Then we use these covers to create a finite-state
automaton that accepts words in (a finite index subgroup of) Γ which code points.
To produce the covers, we use the following general lemma. Here and in what
follows, metric notions like diameter always refer to the fixed metric d∂ on ∂Γ.

Lemma 2.3 (Expanded neighborhoods). For any positive ε < D
4 and any z ∈ ∂Γ,

there is an αz ∈ Γ and a pair of open neighborhoods V̂z ⊂Wz of z so that

(1) diam(Wz) ≤ ε;
(2) diam(α−1

z Wz) > 3ε; and

(3) N1.5ε(α
−1
z V̂z) ⊂ α−1

z Wz.

Proof. We choose some ε < D
4 where D is the constant from Lemma 2.1.

Let z ∈ ∂Γ. Since z is a conical limit point, we can find distinct points a, b and
a sequence of group elements {gi}i∈N so that giz → b and gix→ a uniformly away
from z. Up to post-composing all gi with a fixed element g as in Lemma 2.1 if
necessary, we may assume d∂(a, b) ≥ D. Also, since ∂Γ is perfect, there is some
point a′ 6= a with d∂(a, a′) = ε′ < ε.

Let Wz = Bε/2(z), so Property (1) is satisfied. Let Kz be the complement of Wz

in ∂Γ. The set Kz is compact and does not contain z, so for i sufficiently large, we
have giKz ⊂ Bε′(a) and giz ∈ Bε(b).

Fixing some such i, set αz = g−1
i , and let V̂z = αz(Bε(b)). Note that Bε(a)

contains α−1
z Kz = ∂Γ− α−1

z Wz. Let V̂z = αz(Bε(b)). Since Bε(a) is disjoint from
Bε(b), we have

V̂z = αz(Bε(b)) ⊂ ∂Γ− αz(Kz) = Wz.

The set α−1
z Wz = ∂Γ − α−1

z Kz contains both b and a′, so diam(α−1
z Wz) ≥

d∂(b, a′) ≥ D − ε > 3ε, establishing Property (2).
Finally, since d∂(Bε(b), α

−1
z Kz) ≥ D − 2ε > 2ε, we have

Nε(α
−1
z V̂z) ⊂ B2ε(b) ⊂ (∂Γ− α−1

z Kz) = α−1
z Wz,

establishing Property (3). �

Definition 2.4 (Fixing ε). Here we will fix a scale ε for the rest of the paper. In
order to do so we first fix, as in the statement of Theorem 1.1, a neighborhood U
of the identity in the space of continuous self-maps of ∂Γ. Now we fix a scale ε so
that all of the following hold.

(1) 0 < ε < D/4, where D is the constant furnished by Lemma 2.1.
(2) U contains all maps f such that d(x, f(x)) ≤ ε for all x ∈ ∂Γ.

Definition 2.5 (Fixing a pair of covers). Since ε < D/4, we can apply Lemma 2.3.

For each z ∈ ∂Γ choose a pair of open neighborhoods V̂z ⊂ Wz of z as in the
conclusion of Lemma 2.3. Let I ⊂ ∂Γ be a finite collection so that the sets {V̂z}z∈I
cover ∂Γ. Parts (1) and (2) of Lemma 2.3 imply that the Wz satisfy the following
conditions.
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(C1) diam(Wz) ≤ ε;
(C2) diam(α−1

z Wz) > 3ε

Our sets V̂z could have the inconvenient property that for some pair y, z, the inter-

section of closures V̂ z ∩ α−1
y V̂ y is non-empty, even when the corresponding inter-

section V̂z ∩ α−1
y V̂y is empty, meaning that this intersection may not persist under

small perturbations of αy. However, since there are only finitely many such pairs

to consider, we may modify the sets V̂z slightly to change each such unstable in-
tersection to a stable one. Precisely, we replace each set V̂z by a larger set Vz so
that no unstable intersections occur, and we take the enlargements small enough
so that Vz ⊂Wz still holds, and there are no further intersections of these sets and
their images under the αz. For a sufficiently small modification, condition (3) of
Lemma 2.3 will still hold if 1.5ε is replaced by ε. In summary, the sets Vz have the
following properties:

(C3) Nε(α
−1
z Vz) ⊂ α−1

z Wz.
(C4) For any pair y, z ∈ I, the intersection V z ∩ α−1

y V y is either empty or has
nonempty interior.

For the rest of the paper we fix the scale ε, the indexing set I and pair of covers
Vz ⊂ Wz from Definition 2.5. For each z ∈ I we also fix the group element αz
from Lemma 2.3.

Lemma 2.6. For each z, y ∈ I, if V z meets α−1
y V y, then Wz is contained in

α−1
y (Wy).

Proof. Suppose V z ∩ α−1
y V y is non-empty. Property (C3) of Definition 2.5 implies

that V z ⊂ Wz, so we deduce that Wz ∩ α−1
y V y is nonempty. Property (C1) of

Definition 2.5 implies diam(Wz) ≤ ε. Thus W z is contained in Nε(a
−1
y Vy), which

is contained in α−1
y Wy by Property (C3) of Definition 2.5. �

The index set I can be given the structure of a directed graph as follows.

Definition 2.7 (The associated automaton). We let G be the graph with vertex
set I, with an edge from y to z if and only if α−1

y (V y) ∩ V z 6= ∅ (see Figure 1). A
G–coding is an infinite sequence {z(k)}k∈N of points of I so that there is an edge
from z(k) to z(k + 1) for each k. If

p ∈
∞⋂
k=0

αz(1) · · ·αz(k)W z(k+1)

we say that {z(k)}k∈N is a G–coding of p. If G is understood, we may omit it, and
speak of a coding of p.

Remark 2.8. Lemma 2.6 implies that for any directed path {z(k)}k∈N, we have
αz(k)W z(k+1) ⊂Wz(k). Thus, the intersection

∞⋂
k=0

αz(1) · · ·αz(k)W z(k+1)

is an intersection of nested closed sets, and so by compactness of ∂Γ, it is always
nonempty. In particular every G–coding is a G–coding of at least one point. We
will see below that it is a G–coding for only one point.
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αy

Wz

α−1
y (Wy)

Wy

Vy

α−1
y (Vy)

Vz

y z

Figure 1. There is an edge from y to z when α−1
y (Vy) meets V z.

Lemma 2.9. Every p ∈ ∂Γ has a coding.

Proof. Let p ∈ ∂Γ be given. Take z(1) ∈ I so that p ∈ V z(1). Suppose that
z(1), . . . , z(k) have been defined, and let gk = αz(1) · · ·αz(k). Then there is some

z(k + 1) so that g−1
k p ∈ V z(k+1). Inductively we have g−1

k−1(p) ∈ V z(k), so g−1
k p =

α−1
z(k)g

−1
k−1(p) is a point in the intersection of α−1

z(k)V z(k) with V z(k+1). In particular

there is an edge joining z(k) to z(k + 1). From the construction we have

p ∈
∞⋂
k=0

gkV z(k+1) ⊂
∞⋂
k=0

gkW z(k+1),

so the sequence {z(k)}k∈N is a G–coding of p. �

Lemma 2.10 (Bounded backtracking property). Let {z(k)}k∈N be a G–coding. For
any k define

Uk = αz(1) · · ·αz(k−1)Wz(k).

Then Uk+1 is a proper subset of Uk for any k ≥ 1. Moreover, in the sequence
{gk = αz(1) · · ·αz(k)}k∈N, no element gk is repeated more than #I times.

Proof. Fix k ≥ 1. By the definition of the graph G, we have

α−1
z(k)(V z(k)) ∩ V z(k+1) 6= ∅.

By Lemma 2.6, we have Wz(k+1) ⊂ α−1
z(k)(Wz(k)). By Properties (C1) and (C2) of

Definition 2.5, the set Wz(k+1) has diameter at most ε, whereas the set α−1
z(k)Wz(k)

has diameter at least 3ε. In particular the inclusion Wz(k+1) ⊂ α−1
z(k)(Wz(k)) is

proper. Multiplying on the left by αz(1) · · ·αz(k) then gives a proper inclusion
Uk+1 ⊂ Uk.

To see the last assertion, suppose #{k | gk = g} > #I for some g. Then there
must be distinct k, k′ so that gk = gk′ = g and Wz(k) = Wz(k′). For these indices,
Uk = Uk′ = gWz(k), a contradiction to proper nesting. �
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3. Properties of G–codings

In this section we establish key properties of G–codings to be used in the proof
of the main theorem. Our first goal is to show that a sequence in Γ defined by a
coding lies a uniformly bounded Hausdorff distance from a geodesic ray based at
identity.

3.1. Codings and quasi-geodesics. We begin with two general lemmas on hy-
perbolic spaces.

Lemma 3.1. Let ε0 < D/4. There is a c0 > 0 so that for any p ∈ ∂Γ, there are
points q, q′ so that d∂(p, q) > ε0 and d∂(p, q′) > ε0, and d∂(q, q′) ≥ c0.

Proof. We recall that D ≤ diam(∂Γ) is the bound from Lemma 2.1 so that any pair
of points in ∂Γ can be translated to a pair whose distance is at leastD. In particular,
there are points N,S ∈ ∂Γ with d∂(N,S) ≥ D. Since ∂Γ is perfect, there are points
N ′ ∈ Bε0(N)− {N} and S′ ∈ Bε0(S)− {S}. Let c0 = min{d∂(N,N ′), d∂(S, S′)}.

If p is further than ε0 from both N and S, we may take q = N , q′ = S. Otherwise
we may suppose after relabeling that d∂(p,N) ≤ ε0. But then

d∂(p, S) ≥ D − ε0 ≥ 3ε0

and
d∂(p, S′) ≥ D − 2ε0 ≥ 2ε0,

so we may take q = S and q′ = S′. �

Lemma 3.2. Given δ ≥ 0, there is a constant T depending only on δ so that the
following holds. Let (X, dX) be a δ–hyperbolic metric space. Let p, q, r ∈ ∂X, and
for each pair of distinct points x, y ∈ {p, q, r}, let (x, y) be a bi-infinite geodesic
joining x to y.

Then for each x, y ∈ {p, q, r} distinct, there are points cxy ∈ (x, y) such that

(1) diam({cpq, cqr, cpr}) ≤ T ;
(2) If w lies in the sub-ray [cpq, p) ⊂ (p, q), then

d(w, (q, r)) ≥ d(w, cpq)− T
and similar statements hold with p, q, r permuted.

Proof. We may assume that for any x, y distinct in {p, q, r}, we have (x, y) = (y, x).
Let c be any point which lies within 2δ of all three geodesics, and for each {x, y} ⊂
{p, q, r}, choose a closest point cyx = cxy ∈ (x, y) to c. These points clearly satisfy
(1).

The point cxy cuts (x, y) into rays [cxy, x) and [cxy, y). For each z ∈ {p, q, r},
choose a geodesic ray [c, z) from c to z. Let Y be the tripod which is the union
of these three rays, and let ∆ be the union of the geodesics (p, q), (q, r) and (p, r).
We define a map π : ∆ → Y so that π({cpq, cqr, crp}) = z, and so that π sends
the ray [cxy, y) isometrically to the ray [c, y). It is straightforward to see that
dX(π(w), w) ≤ 4δ for any w ∈ ∆, so π is a (1, 8δ)–quasi-isometry.

Let Ỹ be an abstract infinite tripod, the wedge of three rays. We claim the
obvious map from Ỹ to Y , isometric on each ray, is a (1, 8δ)–quasi-isometric em-
bedding. Indeed, the embedding is clearly distance non-increasing, and it is enough
to consider points on distinct rays. Up to relabeling, we may assume that these
two rays are [c, p) and [c, q). We consider unit-speed parameterizations τp and τq of
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p

q

r

w

cpq

cqr

cpr

Figure 2. Lemma 3.2.

these rays, and unit-speed parameterizations αp, αq of the rays [cpq, p) and [cpq, q).
Then, for any s, t ≥ 0, we have dX(αp(s), τp(s)) ≤ 4δ and dX(αq(t), τq(t)) ≤ 4δ.
Since (p, q) is geodesic, dX(τp(s), τq(t)) ≥ s+ t− 8δ.

Combining the maps from the last two paragraphs, we see that the triangle ∆
is (1, 16δ)–quasi-isometric to the abstract tripod Ỹ . Since (2) holds in the tripod
with T = 0 (taking all the cxy to be the central point of the tripod), it holds in ∆
with T = 32δ. �

Definition 3.3. The points cpq, cqr, cpr from Lemma 3.2 will be referred to as
central points of the ideal triangle with vertices p, q, r.

The next lemma is inspired by Proposition 5.11 from [Wei22].

Lemma 3.4. Let X denote the Cayley graph of G with generating set S. Fix a
G–coding {z(k)}k∈N. For ease of notation, let αk denote αz(k), and let Wk denote
Wz(k). Then the set {gk = α1 · · ·αk}k∈N is (uniformly) finite Hausdorff distance
from a geodesic ray based at the identity in X. If {z(k)}k∈N is a G–coding for p,
then this geodesic ray tends to p.

Proof. Let {z(k)}k∈N be a G–coding for p and let gk = α1 · · ·αk. The distances
dX(gk, gk+1) are uniformly bounded, so {gk}k∈N is uniformly finite Hausdorff dis-
tance from the image of some path in X. Lemma 2.10 implies this path must be
a proper ray. So it suffices to show that the sequence {gk}k∈N lies within a uni-
formly bounded neighborhood of a geodesic ray based at the identity in X, tending
towards p.

The general strategy of proof is as follows: we first show that {gk} is contained
in a uniformly bounded neighborhood of a sub-ray of a geodesic between p and
some point q ∈ ∂Γ, and that this sub-ray also passes close to the identity vertex
in X. By varying the point q and running the same argument, we show that this
sub-ray does not extend too far in the direction of q and conclude that it is close
to a ray based at the identity vertex (see Figure 3 for a schematic).

Let c1 be a positive lower bound for the distances d∂(∂Γ−α−1
x Wx,W y) as (x, y)

ranges over the directed edges of G. Let c0 be the constant from Lemma 3.1 (applied



STABILITY OF HYPERBOLIC GROUPS ACTING ON THEIR BOUNDARIES 9

p

q

q′

e

Figure 3. If {gk} lies in a bounded neighborhood of both pq and
pq′, then it must be near a ray to p based at e

with ε0 = ε) and let c = min{c0, c1, ε}. Take C > 0 large enough (depending only
on c) so that for any pair of points x, y with d∂(x, y) ≥ c, any geodesic joining x
to y in X comes within C of the identity vertex e. The existence of such a C is
immediate if d∂ is a visual metric based at e; since the boundary is compact, such
a C will exist for any metric.

By Lemma 3.1, there are points q, q′ so that d∂(p, q) > ε, d∂(p, q′) > ε, and
d∂(q, q′) > c0. In particular, any geodesic joining a pair of distinct points in {p, q, q′}
meets the ball of radius C around the identity.

For each k ∈ N, let Uk = gk−1W k. This gives a family of nested closed neighbor-
hoods of p, each of which has diameter ≤ ε. Since d∂(p, q) and d∂(p, q′) are strictly
larger than ε, neither q nor q′ is contained in any of the sets Uk. In particular,

(1) q, q′ /∈ Uk ⊂W 1.

Now let z be either q or q′. For any k we have g−1
k (p) ∈ g−1

k Uk+1 = W k+1

and, by (1), g−1
k (z) /∈ g−1

k Uk = α−1
k (W k). Thus d∂(g−1

k (p), g−1
k (z)) ≥ c1 ≥ c,

which by our choice of C means that any geodesic from g−1
k (p) to g−1

k (z) passes
within distance C of e; in other words, if we fix a geodesic γ from z to p, we have
dX(e, g−1

k γ) ≤ C for each k. Multiplying by gk we see that dX(gk, γ) ≤ C for each
k. In particular the sequence {gk}k∈N is contained in the closed C–neighborhood
of γ.

Now fix bi-infinite geodesics (q, q′), (p, q) and (p, q′), and consider central points
cpq, cpq′ and cqq′ for the ideal triangle with vertices p, q, q′, given by Lemma 3.2.
We claim that these central points lie uniformly close to e. To see this, for each
{x, y} ⊂ {p, q, q′}, we let wxy be a point lying on the geodesic from x to y such
that wxy is within distance C of the identity. If {x, y, z} = {p, q, r}, the geodesic
segment [cxy, wxy] lies in either the sub-ray [cxy, x) or [cxy, y); up to relabeling, we
assume it lies in [cxy, x). Then, by Lemma 3.2, we have

2C ≥ dX(wxy, wyz) ≥ dX(wxy, (y, z)) ≥ dX(wxy, cxy)− T.

This gives the estimate dX(cxy, e) < 3C + T , as desired.
Using this bound, we conclude that the rays [cpq, p) ⊂ (q, p) and [cpq′ , p) ⊂ (q′, p)

are both Hausdorff distance at most 3C + T + 2δ from any geodesic ray [e, p) from
e to p.
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Let z ∈ {gk}k∈N. Then z lies within C of both (q, p) and (q′, p). If z lies within C
of [cpq, p) ⊂ (q, p), then it lies in the 4C+T +2δ–neighborhood of [e, p). Otherwise,
z lies within distance C of a point w on [cpq, q). Then by Lemma 3.2 again, we
have

dX(z, cpq) ≤ dX(w, cpq) + C ≤ dX(w, (p, q′)) + C + T ≤ dX(z, (p, q′)) + 2C + T.

Since dX(cpq, e) ≤ 3C + T and dX(z, (p, q′)) ≤ C, we have dX(z, e) ≤ 6C + 2T . In
either case z lies in the 6C + 2T + 2δ–neighborhood of the ray [e, p).

�

Corollary 3.5. For any G–coding {z(k)}k∈N, the intersection

∞⋂
k=0

αz(1) · · ·αz(k)W z(k+1)

is a singleton.

Proof. By Lemma 3.4, {z(k)}k∈N determines a set {gk}k∈N which is finite Hausdorff
distance from a geodesic ray with a unique endpoint p. If q is a point in the
intersection, then {z(k)}k∈N codes q, and therefore by Lemma 3.4, q = p. �

Combining Lemmas 3.4 and 2.9 we have the following.

Corollary 3.6. The set {αz}z∈I generates a finite index subgroup of Γ.

3.2. Uniform contraction. This section contains the primary technical applica-
tion of our work above. The following is an immediate consequence of Lemma 3.4.

Lemma 3.7. There is a finite set F ⊂ G so that the following holds. Let p ∈
∂Γ, and let {z(k)}k∈N, {y(k)}k∈N be two G–codings of p. For k > 0 let gk =
αz(1) · · ·αz(k) and hk = αy(1) · · ·αy(k). For any k > 0 there is some n(k) so that

(2) hk = gn(k)fk for some fk ∈ F.

Symmetrically, there exists m(k) ∈ N such that gk = hm(k)f
′
k for some f ′k ∈ F ,

but it is the equality (2) that we will make use of in the next step of the proof.
The following lemma is the technical heart of our main theorem.

Lemma 3.8 (Uniform Contraction). Using the notation from Lemma 3.7, there
exists a uniform N > 0 so that for any such pair of such sequences {gk}k∈N and
{hk}k∈N and any k > 0, we have

(3) gn(k)+NW z(n(k)+N+1) ⊂ hkWy(k+1).

We emphasize that by “uniform” we mean that the constant N is independent
of the point being coded and of the two chosen codings of the point.

Proof. The proof is by contradiction. We therefore assume we have a sequence of
natural numbers N tending to ∞ so that for each N in the sequence there is a
point pN ∈ ∂Γ with two distinct codings {zN (k)}k∈N and {yN (k)}k∈N, so that the
statement (3) fails for this pair of codings and some k = kN ∈ N.

Before continuing the proof, we clarify notation: Our sequences of codings
{zN (k)}k∈N and {yN (k)}k∈N are fixed and indexed by N . As in Lemma 3.7, for
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g
(N)
k = αzN (1) · · ·αzN (k) and h

(N)
k = αyN (1) · · ·αyN (k) we have indices nN (k) ∈ N

and elements f
(N)
k of the finite set F such that for each N, k there is an equality

(4) h
(N)
k = g

(N)

nN (k)
f

(N)
k .

To decrease notation slightly, we shorten nN (kN ) to nN . The failure of the nesting
condition (3) can then be expressed as

(5) g
(N)
nN+NW zN (nN+N+1) 6⊂ h

(N)
kN

WyN (kN+1).

We immediately pass to a subsequence so that

(f) f
(N)
kN

is constant, equal to f ∈ F .

We further refine our subsequence so the following three conditions are satisfied.

The sets WzN (nN+N+1) are constant, equal to some Wz.(z)

The sets WyN (kN+1) are constant, equal to some Wy.(y)

The sets αyN (kN+1)WyN (kN+2) are constant, equal to some W .(∗)
This is possible because there are only finitely many possibilities for WzN (nN+N+1)

and WyN (kN+1) (being elements of the cover) and also for αyN (kN+1)WyN (kN+2),
being a translate of an element of the cover by one of finitely many elements. A
key property we will use at the end of the proof is that

(6) W ⊂Wy.

For these values of N , we can multiply each side of (5) on the left by (g
(N)
nN )−1

and use (4) together with condition (f) to obtain

(7) αzN (nN+1) · · ·αzN (nN+N)W z 6⊂ fWy.

For each N , consider the sub-coding from {zN (k)}k∈N formed by terms nN + 1
through infinity. We denote this coding by {γN (k)}k∈N. In other words, we define
γN (k) = zN (nN + k). After passing to a subsequence {N(j)}j∈N one final time,

we may obtain a sequence of codings {γN(j)(k)}k∈N so that for all l ≥ j, the
initial segment {γN(l)(1), . . . , γN(l)(j)} is independent of l, so equal to the first j
terms of {γN(j)(k)}k∈N. That is, the codings {γN(j)(k)}k∈N converge to a coding
{γ∞(k)}k∈N, which codes a unique point p∞ ∈ ∂Γ.

For our subsequence N(j), the non-containment in (7) takes the slightly simpler
form

αγN(j)(1) · · ·αγN(j)(N(j))W z 6⊂ fWy,

which we can rewrite as(
αγ∞(1) · · ·αγ∞(j)

) (
αγN(j)(j+1) · · ·αγN(j)(N(j))

)
W z 6⊂ fWy.

Since {γN(j)(k)}k∈N is a coding,(
αγ∞(1) · · ·αγ∞(j)

) (
αγN(j)(j+1) · · ·αγN(j)(N(j))

)
W z ⊂ αγ∞(1) · · ·αγ∞(j−1)Wγ∞(j),

so we must therefore have

(8) αγ∞(1) · · ·αγ∞(j−1)W γ∞(j) 6⊂ fWy.

Since {γ∞(k)}k∈N is a coding for p∞, the sets on the left hand side of (8) give a
nested basis of closed neighborhoods of p∞ and we must have

(9) p∞ 6∈ fWy.



12 K. MANN, J.F. MANNING, AND T. WEISMAN

On the other hand, since {zN (k)}k∈N is a G–coding of pN , for every j we have

pN(j) ∈ αzN(j)(1) · · ·αzN(j)(nN(j)+j−1)WzN(j)(nN(j)+j)
,

or equivalently (multiplying both sides on the left by (g
(N(j))
nN(j)

)−1):

(g(N(j))
nN(j)

)−1pN(j) ∈ αzN(j)(nN(j)+1) · · ·αzN(j)(nN(j)+j−1)WzN(j)(nN(j)+j)

= αγ∞(1) · · ·αγ∞(j−1)Wγ∞(j).

Again, since {γ∞(k)}k∈N codes p∞, this last sequence of sets gives a nested neigh-
borhood basis for p∞ and we must have

lim
j→∞

(g(N(j))
nN(j)

)−1pN(j) = p∞.

We also know that

(10) (g(N)
nN

)−1pN ∈ (g(N)
nN

)−1h
(N)
kN+1WyN (kN+2)

for any N , since h
(N)
kN+1WyN (kN+2) is a neighborhood of pN . By our assumptions

(f) and (∗) on our chosen subsequence, the right-hand side of (10) is always equal
to a constant fW . But we have just seen that a subsequence of the left-hand side
converges to p∞, so we must have p∞ ∈ fW . Because of (6) this implies

p∞ ∈ fWy,

contradicting (9).
�

In our application of the uniform contraction principle above, we will use the
following key observation:

Remark 3.9 (A finite list of nesting conditions suffices). The conditions appearing
in (3) (as we vary over all possible points and codings) appear to be infinite in
number, but multiplying both sides of (3) on the left by g−1

n(k) gives an equivalent

condition of the form

(11) αz(n(k)+1) · · ·αz(n(k)+N)W z(n(k)+N+1) ⊂ fkWy(k+1).

Since N is bounded, there are only finitely many possible conditions of this form.

3.3. Conjugating by generators. For each generator s ∈ S, consider the action
ρs of Γ on ∂Γ given by conjugating the standard action by s. The sets sWz and
elements sαzs

−1 (for z ∈ I) give a graph Gs that is naturally isomorphic to G and
codes points for the conjugated action. Under the natural isomorphism, a coding
of sp in Gs corresponds to a coding of p in G. Furthermore, if {z(k)}k∈N is a
Gs–coding of sp, the corresponding path {sgks−1 = sαz(1)s

−1 · · · sαz(k)s
−1}k∈N in

Γ is a (uniformly, depending only on s) bounded distance from a geodesic ray in
Γ tending to sp, since it is the image of the path {gk = αz(1) · · ·αz(k)}k∈N under
conjugacy by s.

From the above uniformity we obtain the following analogue of Lemma 3.7.

Lemma 3.10. For each s ∈ S there is a finite set Fs ⊂ G so that the following
holds, for any p ∈ ∂Γ. Let {z(k)}k∈N be a G–coding of sp ∈ ∂Γ, and let {y(k)}k∈N
be a G–coding of p (equivalently {y(k)}k∈N is a Gs–coding of sp). For k > 0 let

gk = αz(1) · · ·αz(k) and hk = sαy(1)s
−1 · · · sαy(k)s

−1.



STABILITY OF HYPERBOLIC GROUPS ACTING ON THEIR BOUNDARIES 13

For any k > 0 there is some n(k) so that

hk = gn(k)fk for some fk ∈ Fs.

Analogous to Lemma 3.8 we have the following.

Corollary 3.11. Using the notation from Lemma 3.10, there exists a uniform
Ns > 0 so that for any pair of such sequences {gk}k∈N and {hk}k∈N and any k > 0,
we have

(12) gn(k)+Ns
W z(n(k)+Ns+1) ⊂ hksWy(k+1).

The proof follows that of Lemma 3.8 almost verbatim. The main change is that
the constant sets Wy and W from that proof are defined slightly differently as
Wy = sWyN (kN+1) and W = sαyN (kN+1)WyN (kN+2).

Remark 3.12. As in Remark 3.9, the equations of (12) reduce to only finitely
many conditions; the fact that hk = gn(k)fk for some fk ∈ Fs means that each
condition is equivalent to one of the form

(13) αz(n(k)+1) . . . αz(n(k)+Ns)W z ⊂ fsWy

for some f ∈ Fs, and Wz,Wy in our finite set, and z(n(k) + 1), . . . z(n(k) + Ns) a
path of length Ns in G.

3.4. Relationship with annulus systems. We conclude this section by indicat-
ing how Bowditch’s framework of annulus systems on spaces with a convergence
group action can give an alternative strategy towards the proof of the uniform
contraction lemma (Lemma 3.8). In fact, one could use Bowditch’s framework to
prove a stronger version of Lemma 3.4, showing that for any G–coding {z(k)}k∈N,
the map N → Γ given by k 7→ αz(1) · · ·αz(k) is actually a (uniform) quasi-geodesic
embedding. However, since we do not need this stronger statement anywhere in
the paper, and the setup is somewhat involved, we only provide a sketch of the
argument for the purpose of describing the relationship.

The general setting is as follows. In [Bow98], Bowditch showed that whenever Γ
acts on a perfect compact metrizable space Z as uniform convergence group, then
it is possible to completely recover a word-hyperbolic metric on Γ from the data of
the convergence group action. To do so, Bowditch defines a notion of a system of
annuli on Z, and relates the topological behavior of such a system to a Γ–invariant
cross-ratio (which in turn defines a hyperbolic metric on the space of triples in Z).

Definition 3.13. An annulus in ∂Γ is an ordered pair A = (A−, A+) of disjoint
closed subsets of ∂Γ, such that A− ∪A+ 6= ∂Γ. A symmetric system of annuli is a
collection A of annuli such that if A = (A−, A+) is in A, then −A = (A+, A−) is
also in A.

A sequence of annuli A1, . . . , An is said to be nested if A−i contains ∂Γ − A+
i+1

for all 1 ≤ i < n.

The terminology is inspired by the example ∂Γ ' S2, where an “annulus” con-
sisting of a pair of disjoint closed disks determines an annulus (in the usual sense)
in S2. Any system of annuli A defines a four-point cross-ratio on ∂Γ, denoted
(·, ·; ·, ·)A: for x, y, z, w ∈ ∂Γ, the cross-ratio (x, y; z, w)A is the maximum length of
a nested sequence of annuli A1, . . . , An in A such that A+

1 contains {x, y} and A−n
contains {z, w}.



14 K. MANN, J.F. MANNING, AND T. WEISMAN

Work of Bowditch (see [Bow98], Proposition 4.8 and Sections 6 and 7) shows
that whenever A is a symmetric annulus system satisfying certain hypotheses, then
the cross-ratio (·, ·; ·, ·)A is within bounded additive and multiplicative error of a
standard cross-ratio (·, ·; ·, ·) on ∂Γ. This cross-ratio is defined by realizing ∂Γ as the
Gromov boundary of a hyperbolic metric space X ′ (which is Γ–equivariantly quasi-
isometric to the Cayley graph X of Γ) and defining (a, b; c, d) to be the minimum
distance between a geodesic in X ′ joining a to b and a geodesic joining c to d.

We can use our sets Wy for y ∈ I to define a suitable annulus system: for each
y ∈ I, take Ay = (A+

y , A
−
y ), with

A+
y = ∂Γ−Wy, A−y =

⋃
y→z

αyWz.

Then take A = {γAy | γ ∈ Γ, y ∈ I} ∪ {−(γAy) | γ ∈ Γ, y ∈ I}. One can then
check that this system of annuli meets all of Bowditch’s conditions, and therefore
the induced cross-ratio (·, ·; ·, ·)A approximates (·, ·; ·, ·).

Now let {z(k)}k∈N be a G–coding, and for each n ∈ N, let qn, q
′
n be a pair

of distinct points in Uz(n+1), joined by a geodesic passing within some uniformly
bounded distance of the identity. Let gn = αz(1) · · ·αz(n). For any q1, q

′
1 lying

outside of Uz(1), the cross-ratio (gnqn, gnq
′
n; q1, q

′
1) must be at least n. It follows

that (up to uniform additive and multiplicative error) the distance from gn to the
identity in Γ is at least n.

4. Proof of Theorem 1.1

We can now prove the main theorem. Recall our standing assumptions: Γ is
a hyperbolic group with fixed generating set S. We have fixed a metric d∂ on
∂Γ, and the constant D from Lemma 2.1. Moreover in Definition 2.4 we fixed a
neighborhood U of the identity in the space of continuous self-maps of ∂Γ, and a
constant ε < D/4 small enough so that U contains all maps f such that d(x, f(x)) ≤
ε for all x ∈ ∂Γ.

We have also fixed covers {Wz ⊃ Vz}z∈I in Definition 2.5 that define a coding
of boundary points as in Section 2, so that the results of Section 3 follow. Recall
also that the sets Wz have diameter bounded by ε; we will use this property later.

Our goal is to specify a neighborhood V of the standard boundary action in
Hom(Γ,Homeo(∂Γ)) such that every action in V is an extension of the standard
boundary action via a semi-conjugacy in U .

Definition 4.1. We say that ρ ∈ Hom(Γ,Homeo(∂Γ)) has the same combinatorics
as the standard boundary action if the following hold for every y, z ∈ I.

(1) V z ∩ (α−1
y V y) 6= ∅ iff V z ∩ (ρ(αy)−1V y) 6= ∅, and

(2) if V z ∩ (α−1
y V y) 6= ∅, then Wz ⊂ ρ(αy)−1(Wy).

Note that “having the same combinatorics” is an open condition, because of
Property (C4) from Definition 2.5 of our covers.

Definition 4.2. Suppose ρ has the same combinatorics as the standard boundary
action. We say that an infinite path {z(k)}k∈N in G is a (G, ρ)–coding of p if

p ∈
∞⋂
k=0

ρ(αz(1)) · · · ρ(αz(k))W z(k+1).



STABILITY OF HYPERBOLIC GROUPS ACTING ON THEIR BOUNDARIES 15

Since Lemma 2.9 only used the intersection pattern of the sets Vi and their
images under the action of Γ, its proof applies verbatim to show the following.

Lemma 4.3. If ρ : Γ → Homeo(∂Γ) has the same combinatorics as the standard
boundary action, then every p ∈ ∂Γ has a (G, ρ)–coding.

Corollary 3.5 stated that for the standard action, each G–coding determined a
unique point. But the proof of that corollary used strongly that the action on ∂Γ
was induced by the isometric action on the Cayley graph. Indeed there may be a
nondegenerate closed subset of ∂Γ all of whose points share the same (G, ρ)–coding.

Definition 4.4 (The neigborhood V). We now describe a neighborhood of the
standard boundary action in Hom(Γ,Homeo(∂Γ)) that will satisfy the requirements
of the theorem. In the following description F is the finite set from Lemma 3.7 and
N is the constant from the Uniform Contraction Lemma 3.8. Similarly for s ∈ S,
the set Fs is the finite set from Lemma 3.10, and the constant Ns is the constant
from Corollary 3.11. We let V be some neighborhood sufficiently small that all the
following hold.

(V1) If ρ ∈ V then ρ has the same combinatorics as the standard boundary
action, in the sense of Definition 4.1.

(V2) If ρ ∈ V, y, z ∈ I, and z(1) . . . z(N) is a length-N path in G so that
αz(1) · · ·αz(N)W z ⊂ fWy for some f ∈ F , then

ρ(αz(1)) · · · ρ(αz(N))W z ⊂ ρ(f)Wy

(V3) If ρ ∈ V, s ∈ S, y, z ∈ I, and z(1) . . . z(Ns) is a length-Ns path in G so that
αz(1) . . . αz(Ns)W z ⊂ fsWy for some f ∈ Fs, then

ρ(αz(1)) . . . ρ(αz(Ns))W z ⊂ ρ(fs)Wy.

From here on we fix a representation ρ from the neighborhood V just defined.

Our next goal is to define a function Φ: ∂Γ→ 2∂Γ associating each point p ∈ ∂Γ
that is G–coded by a sequence {z(k)}k∈N to the closed set

∞⋂
k=0

ρ(αz(1)) · · · ρ(αz(k))W z(k+1).

The sets Φ(p) will be the fibers of our semi-conjugacy. To show Φ is well defined,
we use the following.

Lemma 4.5. If {z(k)}k∈N and {y(k)}k∈N are two distinct G–codings of p, then

∞⋂
k=0

ρ(αz(1)) · · · ρ(αz(k))W z(k+1) =

∞⋂
k=0

ρ(αy(1)) · · · ρ(αy(k))W y(k+1)

Proof. It suffices to show that for any finite k, we can find some n such that

(14) ρ(αz(1)) · · · ρ(αz(n))W z(n+1) ⊆ ρ(αy(1)) · · · ρ(αy(k))W y(k+1).

Given k, we choose n(k) as in Lemma 3.7, so that if gk = αz(1) · · ·αz(k) and hk =
αy(1) · · ·αy(k), then hk = gn(k)f for some f ∈ F .

Then we choose N as in Lemma 3.8, so that

αz(1) · · ·αz(n(k)+N)W z(n(k)+N+1) ⊆ αy(1) · · ·αy(k)Wy(k+1).
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We claim that the containment above still holds even after we replace each αk with
its perturbed image ρ(αk), i.e. that

ρ(αz(1)) · · · ρ(αz(n(k)+N))W z(n(k)+N+1) ⊆ ρ(αy(1)) · · · ρ(αy(k))Wy(k+1).

In other words, (14) is satisfied with n = n(k)+N . To prove the claim, multiply each
side of the above inclusion by ρ(gn(k))

−1 to obtain one of the conditions assumed
in Item (V2) of Definition 4.4. �

Thus, the following gives a well-defined map from ∂Γ to the space of closed
subsets of ∂Γ.

Definition 4.6. Let

Φ(p) :=

∞⋂
k=0

ρ(αz(1)) · · · ρ(αz(k))W z(k+1),

where {z(k)}k∈N is any coding of p.

Lemma 4.7 (Equivariance). For any p ∈ ∂Γ and g ∈ Γ, we have

Φ(gp) = ρ(g)(Φ(p)).

This proof is where we use the fact that the nesting conditions for conjugates by
generators from Item (V3) also hold under our perturbation.

Proof of Lemma 4.7. It suffices to prove the statement for an element in the finite
generating set S, then apply iteratively. Let s ∈ S. Let {z(k)}k∈N be any G–coding
of sp and let {y(k)}k∈N be a G–coding of p. The left-hand side of the claimed
equality is, by definition, Φ(sp) =

⋂∞
k=0 ρ(αz(1)) · · · ρ(αz(k))W z(k+1).

The right-hand side is

ρ(s)(Φ(p)) = ρ(s)

∞⋂
k=0

ρ(αy(1)) · · · ρ(αy(k))W y(k+1)

=

∞⋂
k=0

ρ(sαy(1)s
−1) · · · ρ(sαy(k)s

−1)ρ(s)W y(k+1).

Since {y(k)}k∈N gives a Gs–coding of sp we may apply Corollary 3.11 to find some
Ns such that for all k,

gn(k)+Ns
W z(n(k)+Ns+1) ⊂ hksWy(k+1),

where gk, hk, and n(k) are as in Lemma 3.10. Explicitly, this means that for any
k,

αz(1) . . . αz(n(k)+Ns)W z(n(k)+Ns+1) ⊂ sαy(1)s
−1 · · · sαy(k)s

−1sWy(k+1),

which gives, after multiplying both sides on the left by (αz(1) . . . αz(n(k)))
−1, one of

the finitely many containments

αz(n(k)+1) . . . αz(n(k)+Ns)W z ⊂ fsWy

with f ∈ Fs as in (13).
Our assumption (V3) implies that this containment is still satisfied after pertur-

bation, i.e.

ρ(αz(n(k)+1)) . . . ρ(αz(n(k)+Ns))W z ⊂ ρ(fs)Wy.
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After multiplying on the left by ρ(αz(1) . . . αz(n(k))) we obtain

ρ(αz(1) · · ·αz(n(k)+Ns))W z(n(k)+Ns+1) ⊂ ρ(sαy(1)s
−1 · · · sαy(k)s

−1)ρ(s)Wy(k+1)

which shows that Φ(sp) ⊂ ρ(s)(Φ(p)). Applying the same argument using s−1 we
also see that

ρ(s)(Φ(p)) = ρ(s)Φ(s−1sp) ⊂ ρ(s)ρ(s−1)Φ(sp) = Φ(sp).

�

Combined with Lemma 2.9 which states that every point has a (G, ρ) coding,
the next lemma shows that the sets Φ(p) partition ∂Γ as p ranges over ∂Γ.

Lemma 4.8. If p 6= q, then Φ(p) ∩ Φ(q) = ∅.
Proof. First consider the case where d∂(p, q) > D. Then for any coding {z(k)}k∈N
of p and {y(k)}k∈N of q, respectively, we have Wz(1)∩Wy(1) = ∅. Since Φ(p) ⊂Wz(1)

and Φ(q) ⊂ Wy(1), this proves the lemma in this case. Lemma 2.1 (that any pair
a 6= b can be taken to a pair separated by distance D by some group element) and
4.7 (equivariance) reduce the general case to this one. �

In summary, Lemma 4.3, Lemma 4.5, and Lemma 4.8 together imply that the
sets Φ(p) give a partition of ∂Γ, indexed by the points in ∂Γ. Thus this partition
defines a surjection φ : ∂Γ→ ∂Γ, determined by the condition

φ(x) = p ⇐⇒ x ∈ Φ(p).

Lemma 4.7 implies the function φ is ρ–equivariant in the sense that for every g ∈ Γ
and x ∈ ∂Γ,

gφ(x) = φ(ρ(g)x).

Lemma 4.9. For every x ∈ ∂Γ, we have d∂(x, φ(x)) ≤ ε.
Proof. Let p = φ(x), equivalently x ∈ Φ(p). For any G–coding {z(k)}k∈N of p,

Φ(p) =

∞⋂
k=0

ρ(αz(1)) · · · ρ(αz(k))W z(k+1).

In particular p and Φ(p) are both contained in W z(1), which has diameter at most
ε. Since x ∈ Φ(p), d∂(x, p) ≤ ε. �

We have now verified all of the conditions needed for φ to be a semi-conjugacy in
the specified neighborhood U of the identity, except for the fact that φ is continuous.
This last condition is implied by the properties already established, as follows.

Lemma 4.10. Let ρ : Γ → Homeo(∂Γ) be an action of Γ on its Gromov bound-
ary. For any ε0 < D/4, if φ : ∂Γ → ∂Γ is a ρ–equivariant surjection satisfying
d∂(x, φ(x)) < ε0 for all x ∈ ∂Γ, then φ is continuous.

Proof. We proceed by contradiction, and suppose that for a sequence {xn}n∈N in
∂Γ, xn converges to x, but φ(xn) = pn does not converge to φ(x) = p. Taking a
subsequence, we may assume that pn converges to q 6= p. Since φ is ρ–equivariant,
we may use Lemma 2.1 to assume that d∂(p, q) > D.

For sufficiently large n we have d∂(xn, x) < ε0. Then by the triangle inequality
we have d∂(pn, p) ≤ d∂(pn, xn) + d∂(xn, x) + d∂(x, p) < 3ε0 and thus d∂(pn, q) >
D − 3ε0 > D/4, contradicting the fact that pn → q. �

This concludes the proof of Theorem 1.1.
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