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Preface

These notes are a work in progress, based partly on a Fall 2014 course at
Cornell. Thanks very much to all the participants in that course. Almost nothing
(correct) in this manuscript is original, but right now the references are extremely
incomplete. If you see a mistake or missing reference please let me know about
it! Thanks to Pallavi Dani and Chaitanya Tappu for pointing out errors in earlier
versions. All errors remaining are due to me.
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Introduction: Subgroup
separability





CHAPTER 1

Outline and conventions

1. Dependence of chapters written so far

2 3

4 7 9

5

6 8 10

11 12 13

14

2. Things this text covers or should eventually cover

• Residual properties of groups. (Chapter 2.)
• NPC cube complexes. (Part I, starting with Chapter 3.)
• RAAGs and special cube complexes. (Chapters 4,5.)
• Geometry of CAT(0) cube complexes. (Chapter 7.)
• Hyperbolic groups. (Part II, starting with Chapter 10)
• Cubulating with codimension 1 subgroups. (Chapter 9, and much of Part

II.)
• Hierarchies and (special) combination theorems.
• MSQT and Dehn filling.
• Agol’s theorem.

Some highlights of the part written already are Haglund and Wise’s virtual spe-
cialness criterion for cubulated hyperbolic groups (Chapter 11) and the finiteness
criteria of Sageev and Bergeron–Wise for hyperbolic groups acting on cube com-
plexes given in Chapter 14.

3. Conventions

H<̇G means H is a finite index subgroup of G. H�̇G means H is a finite index
normal subgroup of G. All metrics are written d(·, ·) unless there is a chance of
ambiguity about the ambient metric space X, in which case the metric is written
dX(·, ·).

9





CHAPTER 2

Subgroup separability in free and surface groups

The purpose of this section is to prove some profinite statements about free
and surface groups using the geometric methods of Stallings and Scott.

1. Residual finiteness

Definition 2.1. A group G is residually finite if for every g ∈ Gr {1}, there
is a finite Q and a homomorphism φ : G→ Q so that φ(g) 6= 1.

This basic notion has a number of equivalent formulations. One is in terms of
the profinite topology on a group, which is the topology generated by finite index
subgroups and their cosets. We collect a few here:

Lemma 2.2. Let G be a group. The following conditions are equivalent:

(1) G is residually finite.
(2) G is fully residually finite: For any finite set F ⊆ G, there is a finite

quotient φ : G→ Q so that φ|F is injective.
(3)

⋂
{H<̇G} = {1}.

(4) The profinite topology on G is Hausdorff.

Verification is left to the reader.
One could argue that all the characterizations in Lemma 2.2 are essentially

algebraic. Here is a topological characterization from Scott [Sco78].

Proposition 2.3. [Sco78, Lemma 1.3] Let K be a connected CW-complex,

with G = π1K, and let π : K̃ → K be the universal cover.1 The following are
equivalent:

(1) G is residually finite.

(2) For any compact C ⊆ K̃ there is a G0<̇G with gC ∩ C = ∅ for all g ∈
G0 r {1}.

(3) For any compact C ⊆ K̃ there is a finite-sheeted cover KC → K so that

the natural covering map K̃ → KC restricts to an embedding of C.

Condition (3) is saying that the green part of the following diagram can be
filled in, where all maps not from C are covering maps (the one from KC to K

1Scott more generally allows K̃ to be any Hausdorff space on which G acts freely and properly
discontinuously.

11



12 2. SUBGROUP SEPARABILITY IN FREE AND SURFACE GROUPS

being finite sheeted).

C K̃

KC

K

Proof. We fix a basepoint p ∈ K and a lift p̃ ∈ K̃, and suppose all covers of
K come with a basepoint which is the image of this p̃.

(2) ⇐⇒ (3): Here we are simply using the correspondence between subgroups

of π1K and covers of K. We have (for (2)⇒(3)) KC = G0

∖
K̃ and (for (3)⇒(2))

G0 = π1KC .
(1)⇒(2): Suppose G is RF. Let T = {g | gC ∩ C 6= ∅}. This set is finite by

proper discontinuity of the action. By Lemma 2.2.(2) there is a finite Q and a
homomorphism φ : G→ Q which is injective on T . Let G0 = kerφ.

(2)⇒(1): Suppose the condition about compact sets holds, and let g ∈ Gr{1}.
Let C = {p̃, gp̃} ⊆ K̃, and let KC be a finite cover of K in which this C embeds.
If γ is a loop based at p representing g ∈ π1K, then γ doesn’t lift to KC , so
γ /∈ π1KC<̇G. �

As an example, we give a topological proof that free groups are residually finite.

Remark 2.4. (This can also be seen using Mal′cev’s theorem that linear groups
are residually finite, after verifying the existence of free linear groups, for example〈(

1 2
0 1

)
,

(
1 0
2 1

)〉
∼= F2.

In this case we have an embedding into SL(2,Z), so it suffices to note that every
element survives in SL(2,Z/p) for some p.)

Some lemmas, to be proved by the reader:

Lemma 2.5. If finitely generated free groups are RF, then all free groups are
RF.

Lemma 2.6. Suppose H<̇G (ie H is finite index in G). H is RF ⇐⇒ G is
RF.

Lemma 2.7. A free group of rank 2 has finite index subgroups of all finite ranks
bigger than 2.

Theorem 2.8. Free groups are residually finite.

Proof. By the above lemmas we really only need to prove F = 〈a, b〉 is RF.
We have F = π1K where K is a rose with two petals (wedge of two circles). The
universal cover is a 4–valent tree. It can be identified with the Cayley graph Γ of F
with respect to the generating set {a, b}. Thus the edges can be given orientations
and labeled by the generators a and b.

Let C be a compact subset of Γ = K̃. Let D be a connected subgraph of Γ
containing C. The cover K̃ → K restricts to an immersion of D, which fails to
be a cover because of some missing edges. We correct this as follows: For each



2. SUBGROUP SEPARABILITY 13

Figure 1. Completing the red graph D to a cover of the rose.
The two generators are indicated by black and white arrow mark-
ers.

generator x ∈ {a, b}, let γx be the loop of the rose corresponding to x, and let L
be a maximal component of π−1(γx). This component is an interval, to which we
can add a single edge e so that L∪ e is a finite cover of γx. After doing this to each
such component, we have embedded D (and hence C) into a finite-sheeted cover of
the rose. �

Notice that we didn’t really use that D was a subset of a tree, but just that it
had some immersion to the rose. This suggests that there is something stronger we
could have proven!

2. Subgroup separability

Definition 2.9. Let H < G. We say H is separable if for every g ∈ G rH,
there is a finite group Q and a homomorphism φ : G→ Q so that φ(g) /∈ φ(H).

Again, there are a number of group-theoretic equivalences:

Lemma 2.10. Let H < G. The following are equivalent:

(1) H is separable.
(2)

⋂
{K | H < K<̇G} = H.

(3) H is closed in the profinite topology.

Some easy consequences:

Lemma 2.11. G is RF if and only if {1} is separable in G.

Lemma 2.12. Let G0<̇G, H < G, and let H0 = H ∩G0.
H0 is separable in G0 ⇐⇒ H0 is separable in G ⇐⇒ H is separable in G.

Here is a way to generate examples of separable subgroups of RF groups.

Definition 2.13. Say H < G is a virtual retract of G if there is some G0 < G
containing H which retracts to H.

Lemma 2.14. Let G be RF, and suppose R is a virtual retract of G. Then R
is separable in G.

Proof. By Lemma 2.12 it suffices to consider the case that G retracts to R.
Let ρ : G→ R be a retraction (i.e. ρ|R is the identity), and suppose that g ∈ GrR.
It follows that ρ(g) 6= g. Since G is residually finite, G is fully residually finite, so
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there is a finite group Q and a φ : G → Q so that φ(g) 6= φ(ρ(g)). Now consider
the map

Φ = (φ, φ ◦ ρ) : G→ Q×Q.
We have Φ(R) contained in the diagonal subgroup of Q×Q, but Φ(g) outside it. �

Again, there is a topological criterion for separability:

Theorem 2.15. [Sco78, 1.4] Let K be a CW-complex with π1K = G, and

let H < G. Let K̃H be the cover of K corresponding to H. The following are
equivalent.

(1) H < G is separable.

(2) For any compact C ⊆ K̃H , there is a finite-sheeted intermediate cover

KC → K so that the natural covering map K̃H → KC restricts to an
embedding of C.

As with the topological criterion for residual finiteness, it may be helpful to
draw a diagram of condition (2), with the part to be filled in in green.

K̃

C K̃H

KC

K

Proof. Again, we fix basepoints p ∈ K, p̃ ∈ K̃ to pin down the correspondence
between subgroups of G and covers of K. Let πH : K̃ → K̃H be the cover x 7→ Hx.

(2)⇒(1): For g ∈ G r H, we have Hp̃ 6= Hgp̃, so πH(p̃) 6= πH(gp̃). Let
C = {πH(p̃), πH(gp̃)}. The cover KC provided by (2) has the property that no
based loop representing g lifts to it, so G0 = π1KC doesn’t contain g. But since
KC is covered by K̃H , G does contain H. Since g was arbitrary, H is separable.

(1)⇒(2): Let C be a compact subset of K̃H . There is a finite subcomplex

D containing C. Lifting the open cells of D one by one, we can find a D̃ ⊆ K̃,
composed of finitely many open cells, so that πH maps D̃ bijectively to C. This D̃
is contained in a finite subcomplex E ⊆ K̃. The set T0 = {g ∈ G | gE ∩ E 6= ∅} is
finite, since G is acting properly discontinuously. Let T = T0 rH.

SinceH is separable, there is a finite index A inG so thatH < A, butH∩T = ∅.
Let KC be the cover corresponding to A, and suppose by way of contradiction that
C doesn’t embed. Then D doesn’t embed. In particular there is some g ∈ G r A
so that gD̃ ∩ D̃ 6= ∅. But GrA ⊆ GrH, so this g ∈ T , a contradiction. �

3. Stallings folds and covers of the rose

In [Sta83], Stallings gives a powerful method for understanding finitely gener-
ated subgroups of a free group. In particular, here is an algorithm, given n words
{w1, . . . , wn} in a free group F = 〈x1, . . . , xk〉, to build a core for the cover of the
rose corresponding to the group H < F generated by the words:
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Figure 2. An illustration of the topological criterion for sepa-
rability. The compact set C is the red circle, embedding in the
intermediate cover at left. The dashed circle in the cover is some
other elevation of the immersed circle in the surface K.

(1) We start with a map of roses Rn → Rk representing the map from Fn →
Fk sending the ith generator to wi. The ith petal of Rn can be subdivided
into |wi| edges so that each edge goes to a constant speed loop around
some letter. Label and direct each edge accordingly, obtaining a graph
Γ0, which we now modify inductively.

(2) Given Γi, we check to see whether some vertex has two adjacent edges
with the same direction and label. If so, Γi is foldable, and we obtain
Γi+1 from Γi by identifying these two edges. If there is more than one
choice, make one at random and check again. If Γi is not foldable, then
set ΓH = Γi.

Since each fold decreases the number of edges, the process above must terminate.
Note that each of the Γi constructed above is still a directed graph labeled by

basis elements of Fk, so it comes equipped with a canonical map to Rk. For ΓH ,
call this map ηH .

Lemma 2.16. The map ηH : ΓH → Rk is an immersion (locally injective map).

Lemma 2.17. Any immersion of connected 1–complexes i : A → B can be ex-
tended to a covering by attaching trees to A.
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Figure 3. Folding the graph representing H =
〈aaBA, abbA, aBAA〉. Note that each step in the picture is
several steps in the textual description. The resulting graph
proves that H has rank 2 and infinite index in 〈a, b〉.

Corollary 2.18. If i : A→ B is an immersion of 1–complexes, then i∗ : π1A→
π1B is injective.

Before discussing separability, let’s record two consequences of Stallings’ con-
struction:

Proposition 2.19. There is an algorithm which takes as input a finite collec-
tion w1, . . . , wn ⊆ Fk and outputs the rank and index of the subgroup they generate.

Proof. Letting H = 〈w1, . . . , wn〉 as above, the rank of H is 1 − χ(ΓH). If
ΓH → Rk is a covering map, then the index is the number of vertices in ΓH .
Otherwise, the index is infinite. �

Definition 2.20. A group G is LERF (locally extended residually finite) if
every finitely generated subgroup of G is separable.

Theorem 2.21. Free groups are LERF.

Proof. Again it suffices to consider finitely generated free groups, so fix such
a free group F of rank k. We have F = π1Rk, where Rk is the rose with k petals.
Let H = 〈w1, . . . , wn〉 be a finitely generated subgroup of F . We’ve shown how to

describe the cover R̃H corresponding to H, together with a compact core ΓH ⊆ R̃H .
Let C ⊆ ΓH be some compact subset, and let D be a connected subcomplex of R̃H
containing both C and ΓH . The covering map R̃H → Rk restricts to an immersion
of D, which we can complete to a cover in exactly the same way as we completed
D to a cover in the proof of Theorem 2.8. �

In fact the above proof finds a finite cover of the rose containing ΓH as a
subcomplex.

Lemma 2.22. Let A ⊆ B be an inclusion of connected 1–complexes. Then π1A
is a free factor of π1B.

Corollary 2.23 (Marshall Hall’s Theorem). Let H < F be finitely generated,
where F is free. Then there is a finite index F ′<̇F containing H, so that F = H ∗K
for some K.

4. Surface groups are LERF

Our aim here is to prove the following theorem of Scott.
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Theorem 2.24. Let Σ be a surface. Then π1Σ is LERF.

We more or less follow Scott’s proof from [Sco78, Sco85]. A key insight there
is to note that all closed hyperbolic surface groups are abstractly commensurable
to a certain reflection group acting on the hyperbolic plane. Before getting to that,
we deal with some simple situations.

(1) Suppose Σ is not closed. Then π1Σ is free, hence LERF by Theorem 2.21.
(2) Suppose Σ is closed, but χ(Σ) > 0. Then π1Σ ∈ {{1},Z/2} is finite, hence

LERF.
(3) Suppose Σ is closed and χ(Σ) = 0. Then π1Σ is either Z ⊕ Z (if Σ is a

torus) or contains Z ⊕ Z as an index 2 subgroup (if Σ is a Klein bottle).
It’s easy to show Z⊕ Z is LERF.

We’re left with the situation that Σ is closed and χ(Σ) < 0. In such a case, Σ
finitely covers Σ−1, the nonorientable closed surface with Euler characteristic −1.
Moreover, we’ll see that π1Σ−1 is finite index in a reflection group.

Let D be a right-angled regular pentagon in H2. Let P be the group of isome-
tries of H2 generated by reflections in the lines bounding D. There is a finite index

subgroup P0 which is torsion-free, so that P0

∖
H2

is a hyperbolic surface.

The group P preserves a family of lines L, which cut H2 into pentagons which
are translates of D. Each line in L determines two convex halfspaces which are
unions of pentagons. Call these the combinatorial halfspaces determined by P .

If C ⊂ H2, we define the combinatorial hull of C to be the intersection of the
combinatorial halfspaces containing C.

Here’s a lemma about hyperbolic geometry which will be used a couple of times
to control the size of combinatorial hulls.

Lemma 2.25. Let C be a closed convex subset of H2, and let γ : [0,∞) → H2

be a geodesic ray in H2 r C. Define α(t) to be the visual angle subtended by C, as
seen from γ(t). Then limt→∞ α(t) = 0.

Let’s warm up with the following (which is also a consequence of Mal′cev’s
theorem).

Proposition 2.26. Hyperbolic surface groups are RF.

Proof. It suffices to show P0 = π1Σ0 is RF. We’ll use the topological criterion.
Let C ⊆ H2 be a compact set, and let D be the combinatorial hull of C.

Claim. D is compact (a union of finitely many pentagons).

Proof of claim. Let l ∈ L. If l does not meet C, then D lies entirely on one
side of l. It follows that if l meets the interior of D, then l meets C. Since C is
bounded, there are only finitely many lines l meeting the interior of D. If each only
meets D in a bounded set, there can only be finitely many pentagons in D.

Let l ∈ L be some line which intersects the interior of D, and therefore hits C.
Since C is bounded, there are two unbounded components of l r C. Each of these
is a geodesic ray to which we can apply Lemma 2.25. Moreover, this ray crosses
infinitely many perpendicular lines k1, k2, . . . from L. Let pi = ki ∩ l, and let αi be
the visual angle subtended by C at pi. Lemma 2.25 implies that limi→∞ αi = 0.
In particular it is eventually less than π/2, so the ki must eventually miss C. The
part of l separated from C by ki cannot be part of D, so l ∩D is bounded. �
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Let Γ be the group generated by reflections in the lines bounding D. Since

Γ

∖
H2

is compact, the group Γ is finite index in P . It follows that H = Γ ∩ P0 is

also finite index in P0, so that if Σ = H

∖
H2

, then Σ is a finite-sheeted cover of

Σ0. But since C embeds in Γ

∖
H2

, it also embeds in Σ. �

We’ll show:

Theorem 2.27. For every finitely generated H < P0, there is a finite index
P ′ < P containing H as a retract.

Proof. If H<̇P0, there is nothing to show, so assume that H is infinite index in

P0. We can also assume that H 6= 1. It follows that Σ = H

∖
H2

is a noncompact

hyperbolic surface. Since P doesn’t contain any parabolics, this surface has no
cusps, so its convex core C is compact, bounded by finitely many simple geodesic
loops. (Or possibly C consists of a single simple geodesic loop.) Let πH : H2 → Σ

be the covering map, and let C̃ = π−1H (C). This is some convex subset of H2. Let

Y be the combinatorial convex core of C̃.

Claim. Ȳ = πH(Y ) is compact, consisting of finitely many pentagons.

Given the claim, let R̃ be the subgroup of P generated by reflections in the
faces of Y , and let P ′ = 〈R̃,H〉. The quotient of H2 by P ′ is exactly Ȳ , so P ′<̇P .
We observe

(1) H normalizes R̃. (SinceH preserves Y , it conjugates generating reflections

of R̃ to other generating reflections.)

(2) H ∩ R̃ = {1}. (Every element of H preserves Y , while no nontrivial

element of R̃ does.)

These two facts together imply that P ′ = R̃oH, so P ′ retracts to H.

Proof of claim. The proof of the claim consists of two parts. First, we note
that there are finitely many H–orbits of lines l of the pentagonal tiling which meet
the interior of Y . Indeed such a line l must meet C̃, and so πH(l) meets C. Since
C is compact, there are only finitely many lines of the tiling meeting C.

Second we show that each such line has compact intersection with Ȳ . Note
first that if l ∩ C̃ is noncompact, then l ⊆ C̃, so πH(l) is a closed (hence compact)

curve. So we may suppose that l ∩ C̃ is compact, and so l r C̃ is a pair of rays.
Let γ : [0,∞)→ H2 be a geodesic ray in lr C̃. Lemma 2.25 implies that the visual

angle of C̃ as seen from γ(t) is eventually less than π/2, say for t ≥ t0. Let k ∈ L be

a line crossed by γ(t) for t ≥ t0. Then k separates C̃ from γ([t,∞)), so γ(t) is not
in the interior of Y . We’ve shown that l ∩ Y is compact, so πH(l) ∩ Ȳ is compact.

It follows that there are only finitely many pentagons in πH(Y ), since each such
pentagon must meet the interior of πH(Y ). �

�

We’ve shown that surface groups are RF (2.26) and that finitely generated sub-
groups are virtual retracts (2.27). By Lemma 2.14, we have the following Corollary:

Corollary 2.28. Surface groups are LERF.
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CHAPTER 3

Introduction to cube complexes

1. Nonpositive curvature

An n–cube is a copy of In = [0, 1]n metrized as a subset of Euclidean space. A
k–dimensional face of In is a subset in which all but k of the coordinates are held
constant at either 0 or 1. A cube complex is built from a disjoint union of cubes of
various dimensions, glued together by isometries of faces. The 0–cubes will also be
referred to as vertices; the 1–cubes as edges.

Definition 3.1. The 1
3–neighborhood of a vertex v in a cube complex inherits

the structure of a ∆–complex from the cube-complex structure: Each n–cube in-
cident to v contributes an (n− 1)–simplex, and simplices are glued together along
faces exactly when the cubes are glued along a face incident to v. This ∆–complex
is called the link of v, or lk(v).

Definition 3.2. A cube complex is non-positively curved or NPC if every link
of a vertex is a flag simplicial complex.

Example 3.3. A square complex (2–dimensional cube complex) is NPC if and
only if there is no cycle of length less than 4 in any link.

Example 3.4. Let K ⊆ S3 be a knot, and consider a (generic) projection of
that knot K to an equatorial sphere E. Let N and S be the north and south poles.
For each region R of ErK, choose a geodesic arc from N to S through that region,
and label it with the region R. For each crossing we attach a square with labels
given by the following rule:

Figure 1. Picture of the link of a vertex in a simple cube complex

21
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R1 N S

R4 R2

R3 S N

R1

R4

R3

R2

It’s not too hard to show that the resulting square complex is NPC if and only if
the link projection was alternating.

2. The cube complex associated to a right angled Artin group

Let Γ be an unoriented simplicial graph, with vertex set V , and let E ⊆ V ×V
be the edge set. We define the right angled Artin group (or RAAG) based on Γ to
be the group:

A(Γ) = 〈V | vw = wv, for (v, w) ∈ E〉 .
Some important examples:

(1) If Γ has no edges, then A(Γ) is free of rank ‖Γ(0)‖.
(2) If Γ = Kn, the complete graph on n vertices, then A(Γ) ∼= Zn.
(3) If Γ = Kp,q is a complete bipartite graph, then A(Γ) ∼= Fp×Fq, a product

of free groups.
(4) If Γ is a segment of length 2, then A(Γ) is the fundamental group of the

complement of a certain 3–component link (see Figure).

The last (3–manifold) example can be generalized. Droms [Dro87] showed
that A(Γ) is a 3–manifold group if and only if Γ is a disjoint union of trees and
triangles. One direction is a straightforward construction. To show the others are
not 3–manifold groups, one either embeds Z4 (if there is a K4) or shows the groups
are incoherent, contradicting the Scott–Shalen Core Theorem.

Remark 3.5. RAAGs are not LERF in general. In fact even F2 × F2 is not
LERF since it has unsolvable membership problem [].

Definition 3.6. If V is a finite set, one can form the torus TV = (S1)V .
This torus has a nice CW-complex structure with the set of cells in one-to-one
correspondence with 2V . In this correspondence, the empty set corresponds to the
unique 0–cell, the singletons to 1–cells, 2–cells to pairs, etc. Notice that this CW
complex is also a NPC cube complex.

If Γ is a graph with vertex V , then the Salvetti complex S(Γ) is the subcomplex
of TV consisting of those cubes corresponding to cliques in Γ.

Lemma 3.7. Let Γ be a finite simplicial graph. The Salvetti complex S(Γ) is a
NPC cube complex with π1S(Γ) ∼= A(Γ).

To prove the lemma, we need a couple of definitions

Definition 3.8. Let Λ be a simplicial graph. The flagification Flag(Λ) is the
unique flag complex whose 1–skeleton is Λ.

Definition 3.9. Let K be a simplicial complex with vertex set V . The double
D(K) is the complex with vertex set V + t V − (two disjoint copies of V ), and so
that vertices {vε00 , . . . , vεnn } span a simplex if and only if {v0, . . . , vn} do.
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The proof of Lemma 3.7 thus boils down to the following:

Exercise 1. (1) The double of a flag complex is flag.
(2) The link of the vertex of S(Γ) is the double of Flag(Γ).

Right-angled Artin groups turn out to be absolutely central to the subject of
these notes. In particular, finding geometrically nice embeddings of groups into
RAAGs turns out to be very useful. One reason for this is that RAAGs are linear,
meaning they admit faithful representations into GL(n,C) for some n. This fol-
lows from the fact that they are abstractly commensurable to right-angled Coxeter
groups, as we now explain.

Definition 3.10. Let Γ be a graph with vertex set V and edge set E. The
right-angled Coxeter group C(Γ) based on Γ is the group

C(Γ) = 〈V | v2 = 1 for v ∈ V ; (vw)2 = 1 for (v, w) ∈ E〉.

(More general Coxeter groups are also generated by involutions, but the rela-
tions (vw)2 = 1 are replaced by (vw)m(v,w) = 1 for some collection of m(v, w) ∈
{2, 3, . . . ,∞}

Theorem 3.11. (Tits) [Dav08, Appendix D] Each Coxeter group embeds into
SL(n,Z) for some n. In particular, Coxeter groups are linear.

Proof. (Idea) We won’t really prove this; just give the representation in the
right-angled case. The proof of faithfulness can be found in Davis’ book (also in
Bourbaki). Let C(Γ) is the right-angled Coxeter group based on Γ, with vertex set
V and edge set E ⊆ V × V . We describe an action of C(Γ) on RV which preserves
a certain quadratic form. Let v 7→ ev be a bijection between V and the basis of
RV . For v, w ∈ V , define

(1) 〈ev, ew〉 =

{
0, if (v, w) ∈ E
−1, otherwise.

Now we describe an action C(Γ) y RV by

v(x) = x− 2〈ev, x〉ev.
Clearly this representation has image in GL(n,Z) where n = |V |. But GL(n,Z)
embeds into SL(n+ 1,Z). �

Exercise 2. Suppose Γ consists of three vertices v1, v2, v3, where v1 and v2
are connected by an edge, and v3 is isolated. Compute the representation into
GL(3,Z). What’s the signature of the form described in equation (1)?

There is an obvious surjection A(Γ) → C(Γ), but the kernel of this map is
infinite, so it doesn’t give abstract commensurability. We have to choose a different
graph.

Theorem 3.12. (Davis-Januszkiewicz)[DJ00] Let Γ be a finite graph. Then
there is another graph Γ′ and an injective homomorphism A(Γ)→ C(Γ′) with finite
index image.

Proof. (Sketch) Let V be the vertex set of Γ and let E ⊆ V × V be the edge
set. Davis and Januszkiewicz describe Γ′ in the following way: The vertex set V ′ is
equal to two copies of V , the vertex set of Γ. Decorate the elements of V by hats
and checks so V ′ = V̂ t V̌ . The edge set E′ of Γ′ is given by three rules:
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Γ

Γ′

V̂

V̌

Figure 2. Davis–Januszkiewicz’ construction.

(1) Every pair of vertices in V̌ is connected by an edge, so V̌ spans a complete
graph.

(2) Vertices v̂ and ŵ are connected by an edge if and only if (v, w) ∈ E.
(3) Connect v̂ to w̌ if and only if v 6= w.

An example is shown in Figure 2. Notice that 〈v̌, v̂〉 ∼= Z/2∗Z/2 is virtually infinite
cyclic, and that v̌v̂ is infinite order. The embedding β : A(Γ) → C(Γ′) is given by
v 7→ v̌v̂. Davis and Januszkiewicz show that C(Γ′) has a proper and cocompact
action on the universal cover X of the Salvetti complex for A(Γ) which agrees (via
β) with the usual action of A(Γ) on X. �

Using Mal′cev’s theorem that linear groups are residually finite (actually very
easy in this case), we obtain the corollary:

Corollary 3.13. For any finite graph Γ, A(Γ) is residually finite.

But as we will see below, there is a geometric proof of residual finiteness along
the lines of the proof for free groups given in Theorem 2.8. Moreover, though A(Γ)
is often not LERF, we will be able to use a geometric argument as in 2.21 to show
many subgroups are separable.



CHAPTER 4

Special cube complexes

In this section we will meet special cube complexes for the first time, as cube
complexes which lack certain “hyperplane pathologies.” We’ll also see the connec-
tion with RAAGs, which Haglund and Wise only discovered after noticing how
useful the notion was for geometric separability arguments[HW08].

1. Special via hyperplanes

A cube In = [0, 1]n has one midcubes for each dimension: Mi = {(x1, . . . , xn) ∈
In | xi = 1

2}. Some midcubes are pictured in Figure 1.

Figure 1. Some midcubes

Let X be a cube complex. The midcube complex of X, M(X) is a cube com-
plex whose cubes are in one-to-one correspondence with midcubes of cubes of X.
Whenever one of the face-identifications of X identifies two faces of midcubes, we
identify those faces in M(X). A component H of M(X) is called a hyperplane. It
comes equipped with an immersion mH : H → X. An example is shown in Figure
2. A hyperplane is embedded if this immersion is an embedding. Otherwise we say
the hyperplane self-intersects.

Each cube of X can be thought of as an I–bundle over any of its midcubes. We
can therefore pull back an I–bundle over H, for any hyperplane. The hyperplane
is said to be 2–sided if this bundle is trivial; otherwise it is 1–sided.

Two (unoriented) edges e1, e2 corner a square if there is a square of the form:

e1

e2

Suppose H is a 2–sided hyperplane in X, so that mH : H → X extends to a
cubical immersion m̄H : H × [0, 1] → X. Suppose there are distinct vertices v1, v2
of H so that m̄H(v1, 0) = m̄H(v2, 0) or m̄H(v1, 1) = m̄H(v2, 1), and suppose that
m̄H(v1 × I) and m̄H(v2 × I) don’t corner a square. Then H is said to self-osculate
(see Figure 3 for an example).

25
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Figure 2. An immersed hyperplane. The cube complex shown
has four other hyperplanes, each consisting of a single midcube.

Figure 3. A self-osculating hyperplane

Let H1 and H2 be distinct 2–sided hyperplanes in X. It’s not hard to see
that H1 ∩ H2 is nonempty if and only if there are vertices vi ∈ Hi so the edges
m̄Hi

(vi × I) corner a square.
Two hyperplanes H1 and H2 are said to osculate if there are vertices vi ∈ Hi

so that m̄H1
(v1 × ∂I) ∩ m̄H2

(v2 × ∂I) is nonempty, but the edges m̄Hi
(vi × I) do

not corner a square.
The hyperplanes H1 and H2 interosculate if they both cross and osculate. See

Figure 4 for an example.

Figure 4. Two inter-osculating hyperplanes
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Definition 4.1. A cube complex is special if all of the following hold:

(1) No hyperplane self-intersects.
(2) No hyperplane is 1–sided.
(3) No hyperplane self-osculates.
(4) No two hyperplanes inter-osculate.

2. Parallelism of edges

The definitions of the hyperplane pathologies can all be phrased in terms of
parallelism classes of edges. This point of view is important for some proofs. All
the proofs in this section are left to the reader.

Fix X a cube complex, and let ~E be the set of oriented edges of X. To any

hyperplane H in X we associate a set E(H) ⊆ ~E of edges which are dual to H in
the sense that their midpoints are 0–cubes of H. Two oriented edges e1, e2 corner
a square if there is a square of the form:

e1

e2

Lemma 4.2. H self-intersects if and only if there are two edges e1, e2 ∈ E(H)
which corner a square.

Say that e and e′ ∈ ~E are elementary parallel if there is a square of the form:

e e′

The equivalence relation ‖ of parallelism on ~E is generated by elemen-
tary parallelism.

Lemma 4.3. Let H be an i–sided hyperplane for i ∈ {1, 2}. Then E(H) contains
i parallelism classes.

A co-oriented hyperplane ~H is a hyperplane H together with a choice of par-

alellism class ~E(H) ( E(H). We refer to ~E(H) as a co-orientation of H.

Lemma 4.4. Let H be a 2–sided hyperplane. H self-osculates if and only if

there is a co-orientation ~E(H) containing two edges e1, e2 which do not corner a
square, but which have the same origin.

Lemma 4.5. Let H1 and H2 be 2–sided hyperplanes. Then H1 and H2 interoscu-

late if and only if there are co-orientations ~E(H1), ~E(H2), and edges ei, fi ∈ ~E(Hi)
so that:

(1) e1, e2 have a common origin but don’t corner a square, and
(2) f1, f2 corner a square.

Exercise 3. Draw some square complexes and see what hyperplane pathologies
occur. Can you make a special cube complex homeomorphic to a closed surface of
negative Euler characteristic?





CHAPTER 5

Special cube complexes and RAAGs

In this section we prove Haglund and Wise’s characterization of special cube
complexes as those which locally isometrically embed in the Salvetti complex of
some RAAG [HW08]. First note the following, which can be easily proved using
the lemmas from the last section.

Proposition 5.1. Let Γ be a finite graph, and let S(Γ) be the Salvetti complex
based on Γ. Then S(Γ) is special.

1. Kinds of maps between cube complexes

We’ll deal exclusively with combinatorial maps of cube complexes. To put it
somewhat formally, we require that if φ : X → Y is such a map, and x : Ik → X is

the characteristic map of some cube of X, then φ ◦ x|I̊k is a homeomorphism onto
the interior of some cube of Y . Moreover if y : Ik → Y is the characteristic map of

the target cube, then y−1 ◦ φ ◦ x|I̊k is an isometry.
If f : X → Y is a map of cube complexes, and v is a vertex of X, then f induces

a map of links

lk(v)
fv−→ lk(f(v)).

Recall that an immersion is a locally injective map. We can detect whether f
is an immersion by looking at the induced maps on links.

Lemma 5.2. Let f : X → Y be a map of cube complexes. Then f is an immer-
sion if and only if fv is injective for each vertex v ∈ X.

A full subcomplex S of a simplicial complex K contains every simplex in K
whose vertices are contained in S.

Definition 5.3. f : X → Y an immersion of cube complexes is a local isometry
if fv(lk(v)) is a full subcomplex of lk(f(v)) for all vertices v ∈ X.

Example 5.4. Consider any cube Y of dimension at least 2, and let X be the
subcomplex consisting of two adjacent codimension one faces. Then X is immersed
in Y , but the inclusion is not a local isometry.

Remark 5.5. If X and Y are both NPC cube complexes, then f : X → Y is
a local isometry if and only if no two non-adjacent vertices in a link are sent to
adjacent vertices in a target link.

Proposition 5.6. Let f : X → Y be a local isometry of NPC cube complexes,
where Y is special. Then X is special.

29
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Proof. Without loss of generality, we may suppose that X and Y are con-
nected. Since edges go to edges and squares to squares, there is a well-defined
induced map:

(2) ~E(X)
/
‖ −→ ~E(Y )

/
‖.

We suppose X is not special, and show that Y cannot be special either.
We consider the hyperplane pathologies in turn, according to their character-

izations in terms of edge parallelism given in Section 2. Suppose first there is a
self-intersecting hyperplane in X. Then there are two edges a ‖ b which corner
a square of X. But it follows that f(a) ‖ f(b) also corner a square, so Y is not
special.

Suppose that X contains some one-sided hyperplane. Then some oriented a is
parallel to −a, the edge with the opposite orientation. But then the same must
hold in Y using (2).

Similarly, if X contains a self-osculating hyperplane, then there is a pair of
oriented edges a ‖ b with the same source, but which don’t corner a square. The
images f(a) 6= f(b), since f is an immersion. The map from (2) gives f(a) ‖ f(b).
But since f is a local isometry, f(a) and f(b) don’t corner a square in Y . Thus Y
contains a self-osculating hyperplane.

If X contains a pair of interosculating hyperplanes, X contains edges e1 ‖ f1
and e2 ‖ f2 so that e1 ∦ e2, exhibiting the interosculation. Namely, e1 and e2 have
a common origin but don’t corner a square, but f1 and f2 corner a square. As
before, the same properties must hold of their images in Y . �

As a special case of the previous proposition, any NPC cube complex which
locally isometrically immerses to a Salvetti complex is special. Haglund and Wise
proved a remarkable converse to this fact, which we prove in the next subsection.

2. Special cube complexes embed in RAAGs

To state the result properly, we need another definition. Let X be a cube
complex, and let ΓX be the hyperplane graph of X: The vertices of ΓX correspond
to the immersed hyperplanes of X, and two vertices are connected to one another
if the corresponding hyperplanes cross. If ΓX is a finite graph, we can form the
Salvetti complex S(ΓX) (whose fundamental group is a RAAG) as in Section 2.

Theorem 5.7. [HW08] Let X be a special cube complex with finitely many
hyperplanes. Then there is a locally isometric immersion φ : X → S(ΓX) .

Before we prove the theorem, we note a corollary.

Corollary 5.8. Let G be the fundamental group of a special cube complex
with finitely many hyperplanes. Then G is a subgroup of some RAAG.

Proof of 5.7. Let X be a special cube complex with finitely many hyper-

planes. For each hyperplane H, fix a co-orientation ~E(H). For each hyperplane H,
there is a corresponding (oriented) 1–cell eH in S(ΓX), and we define φ|e : e→ eH
to be the orientation-preserving (combinatorial) map for each e ∈ ~E(H).

More generally, a k–cube C of X has k different hyperplanes passing through it
and crossing one another. (They’re different because hyperplanes of X are embed-
ded.) Since they cross one another, these hyperplanes correspond to the vertices of
a clique in ΓX , which corresponds to a cube D in S(ΓX). The map has already been
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defined on the 1–skeleton of C, and this definition extends combinatorially uniquely
to a map φ|C : C → D. It’s not hard to see that definitions on cubes which share
a face are consistent, so we’ve defined a combinatorial map φ : X → S(ΓX), just
using the fact that hyperplanes are embedded and two-sided.

To see the map is an immersion, we have to use the fact that there are no
self-osculating hyperplanes. Indeed, since the source and target are both NPC, φ
is an immersion so long as it doesn’t identify any two oriented edges with the same
origin. If φ(e1) = φ(e2) as oriented edges, then we must have had e1 ‖ e2 in X.
If e1 and e2 originate at the same point, then the corresponding hyperplane must
self-osculate, contradicting specialness.

Finally, we use the lack of inter-osculation to see that φ is a local isometry.
Again using the fact that X and Y are NPC, φ can only fail to be a local isometry
if there are vertices a and b in some lk(v) which are not connected by an edge,
but φv(a) and φv(b) are connected by an edge. Let ea, eb be the oriented edges
corresponding to a and b. If there is an edge connecting φv(a) to φv(b), then the
hyperplanes dual to ea and eb must cross somewhere. In other words there are
fa ‖ ea and fb ‖ eb which corner a square. Thus the hyperplanes dual to ea and eb
interosculate. �

Remark 5.9. The graph ΓX is not necessarily the smallest graph Γ so that X
locally isometrically immerses in S(Γ). One can often get a smaller Γ by considering
the crossing graph of a collection of not-necessarily connected “hyperplanes,” each
of which is a disjoint union of non-crossing hyperplanes. One has to be careful of
course that these “hyperplanes” don’t self-osculate or inter-osculate. In the context
of graphs, this means coloring and orienting the edges, so that no two edges of the
same color have the same origin or the same terminus. The corresponding Γ has
vertex set equal to the set of colors.





CHAPTER 6

Canonical completion and retraction, take 1

The canonical completion and retraction allows us to prove separability of sub-
groups of special cube complexes, in case the subgroup is represented by a locally
isometrically immersion of cube complexes. In this section we deal only with the
case where the target is a Salvetti complex. The “completion” step is essentially
the same as the cover described in the proof that free groups are LERF in Section
3. The canonical retraction is new.

Goal: From i : X → S = S(Γ) a locally isometric immersion, produce a finite
cover (the completion) p : {→ S with X ⊆ {, and so { retracts to X:

{

X S

r

p

i

If Γ has no edges (so A(Γ) is free) we’ve basically seen how to build { already in
Section 3: For each maximal non-closed segment mapping of X mapping to a petal
of the rose S(Γ), we add an additional edge mapping to the same petal, completing
the segment to a circle. The retraction works by mapping this additional edge
continuously onto the segment it was added to. (See Figure 1.) If a new edge is

Figure 1. An immersion of a segment to a rose with a single petal.
Complete by adding an edge; retract by projecting that edge to the
preexisting segment.

attached to a single vertex (a “length 0 segment”) then the retraction r maps that
new edge to the attaching vertex.

The 1–skeleton {(1) is produced from X(1) → S(1) in exactly the same way.
We then need to check that squares and higher-dimensional cells can be added in a
consistent way. For example let’s complete the immersion shown in Figure 2. The
procedure already described gives a graph covering the 1–skeleton of S(Γ). One
now checks that the boundary of the square in S(Γ) lifts to a path beginning at
any of the four vertices. Gluing in squares to these lifts gives a cover of S(Γ), as in
Figure 3.

1. Definition of the completion

We recall and name the completion and retraction, which we already described
informally.
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Figure 2. An immersion of the wedge of a square and circle into
the wedge of a torus and circle. The target is a Salvetti complex,
so we should be able to build a canonical completion.

Figure 3. Here we show the completion of the map from Figure
2. The original complex X consists of the square on the lower part
of the torus, in the front, together with the circle attached to the
inner rim of the torus, on the left.

Definition 6.1. Let φ : K → R be a combinatorial immersion from a finite
graph to a rose, so the petals of the rose are {P1, . . . , Pn}. For each i, let Ki be
the preimage of the petal Pi. This Ki is a disjoint union of points, circles, and
segments. We attach edges to Ki to get a cover K̄i → Pi: To each isolated point,
attach a copy of Pi, and to each segment, attach a single edge joining the endpoints
of the segment. The union of these Ki is a graph {K→R (the completion), with
covering map

p : {K→R −→ R

extending φ. Each Ki retracts to Pi, giving a retraction

r : {K→R −→ K.

These are called the canonical completion and retraction of φ : K → R.

The following lemma will imply we can extend the preceding construction to
2–complexes.

Lemma 6.2. (cf. [BRHP15, Section 2]) Let K → S be a locally isometric
immersion from an NPC cube complex K to a Salvetti complex S = S(Γ) with
1–skeleton R. Let p : {K(1)→R → R and r : {K(1)→R → K(1) be the cover and
retraction defined in 6.1.

Let σ : [0, 4] → S be the boundary map of a square of S, and let v be a vertex
in p−1(σ(0)). Then there is a lift of σ to a loop of length 4 based at v.

Proof. Let Γ = (V,E) be the graph on which S(Γ) is based, so A(Γ) = π1S(Γ)
is the corresponding RAAG. The path σ has label aba−1b−1 for some a and b in
V t V̄ which commute in A(Γ).
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1

τ1v

Figure 4. Case 1. Open arrowheads correspond to b, closed to a.
The inner path τ1 is the one completed by the new edge which is
the second edge of σ̃.

Let C = {K(1)→R be the canonical completion of the map on K(1). Since C
contains K(1), we can distinguish between old and new edges of C. Let σ̃ be a
lift of σ starting at v. We must show σ̃(0) = σ̃(4). We’ll assume that σ̃ is “non-
degenerate” in the sense that every edge of σ̃ has distinct beginning and end. The
“degenerate” cases will be left as an exercise.

If σ̃ passes through two consecutive old edges, then the local isometry assump-
tion implies that those two edges span a square in K. The entire boundary of that
square must be equal to the image of σ̃.

We can therefore assume that at least two of the edges of σ̃ are new edges,
including one of the first two.

Case 1. Some edge of σ̃ is old.

We consider only the (sub)case that the first edge is old. The other cases are
very similar.

Since the second edge is new and non-degenerate it must complete some segment
τ1 labeled bn terminating at σ(1). In particular, there is a path of old edges labeled
ab−1 starting at v. Since K → S is a locally isometric immersion, the two edges in
this path corner a square (square 1 in Figure 4). In fact there must be a rectangle
of squares all along τ1. The opposite side, τ0, of this chain of squares is also labeled
by bn, and terminates at v = σ̃(0). Opposite the rectangle from σ̃[0, 1] is another
edge labeled b, and we see that σ̃|[2, 3] must run along this (old) edge from τ1 to τ0.
It follows that σ̃[3, 4] is a new edge. In fact τ1 must be another maximal segment
labeled bn, and σ̃[3, 4] the new edge which completes it. Thus σ̃(4) = v as required.

Case 2. All the edges of σ̃ are new edges.

Again assuming non-degeneracy, this implies that there is a segment of old
edges labeled ba going through σ̃(1) and a segment of old edges labeled a−1b passing
through σ̃(2). These segments must corner squares of K (the grey squares from
Figure 5), which must be part of a strip of squares joining the a–edge issuing from
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v

Figure 5. Case 2. Open arrowheads correspond to b, closed to a.
Just the beginning of the rectangle (the two grey squares) is shown.

σ̃(1) to the a–edge issuing from σ̃(2). In particular, we get another new b–edge
parallel to σ̃[1, 2]. Continuing around the paths (labeled an) which σ̃[0, 1] and
σ̃[2, 3] complete, we find a whole rectangle of squares, whose corners are exactly
σ̃{0, 1, 2, 3}. In the end, we discover that σ̃(0) and σ̃(3) are the extremities of a
segment labeled bk for some k, which can only be completed by σ̃[3, 4]. Again we’ve
shown that σ̃(4) = v.

�

Exercise 4. What happens in the degenerate cases we omitted from the above
proof?

The following is a corollary of the preceding proof and exercise:

Corollary 6.3. Let K → S be a locally isometric immersion of an NPC cube
complex to a Salvetti complex, with R = S(1). Let {K(1)→R be the canonical com-
pletion of the map on 1–skeleta, let r : {K(1)→R → K(1) be the canonical retraction,
and let σ̃ be some lift of a square boundary. Then r◦ σ̃ bounds a rectangle of squares
in K.

In particular r ◦ σ̃ is null-homotopic.

We now can prove the main result of this section:

Theorem 6.4. For any locally isometric immersion φ : K → S where K is
an NPC cube complex and S is a Salvetti complex, K embeds in a finite-sheeted

cover K ⊆ { p−→ S, with a retraction r : { → K. Moreover, {(1) is the completion
{K(1)→S(1) described in Definition 6.1, and the maps p, r extend the maps described
there.

Proof. Lemma 6.2 tells us how to build the 2–skeleton of {: Starting with
K(2) ∪ {(1), attach a 2–cell to every lift to {(1) of the boundary of a square in S,
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which doesn’t already bound a square in K. We obtain thereby a covering space
p : {(2) → S(2). Corollary 6.3 tells us we can extend the retraction to r : {(2) → K.

Inductively suppose we have built {(n−1) for some n ≥ 3, and that we have
defined a covering map p : {(n−1) → S(n−1) and retraction r : {(n−1) → K(n−1).
We build {(n) by attaching n–cubes to K(n) ∪ {(n−1). Boundaries of n–cells in S
are simply connected, so they always lift to {(n−1), and we attach n–cubes to all
lifts not already bounding cubes in K, to get a covering space p : {(n) → S(n). For
σ : ∂In → {(n−1) such a lift, we note that r◦σ has image in the NPC cube complex
K, so it is contractible in K (actually in K(n)), so we can use this contraction to
extend the retraction r to the n–skeleton. �

Definition 6.5. We’ll denote the cover from 6.4 either by {K→S or by {φ,
depending on whether we want to emphasize the map or the complexes.

2. Geometric separability

We note some immediate corollaries:

Corollary 6.6. If X is a compact special cube complex, and G = π1X, then
G is a virtual retract of some RAAG.

Corollary 6.7. Theorem 5.7 gives a locally isometric immersion φ : X →
S(ΓX), so φ∗ : G → A(ΓX) is injective. Moreover, Theorem 6.4 gives a finite-
sheeted cover { of S(ΓX) which retracts to X. But then π1{<̇A(ΓX) retracts to
G.

The following is notable in that it doesn’t mention RAAGs or Salvetti com-
plexes at all.

Corollary 6.8. Let f : X → Y be a locally isometric immersion of compact
special cube complexes, G = π1Y , and H = f∗π1X. Then H is separable in Y .

Proof. Let φ : Y → S(ΓY ) be the locally isometric immersion from Theorem
5.7. Then φ◦f : X → S(ΓY ) is a locally isometric immersion to a Salvetti complex,
so we can form the canonical completion {φ◦f . The retraction gives a finite index
A0<̇A(ΓY ) which retracts onto H. But since H < G, we have that G0 = A0 ∩ G
also retracts onto H. Since G < A(ΓY ), it is residually finite, and so (using Lemma
2.14) H is separable in G. �

3. What’s canonical about it?

If G is the fundamental group of a special cube complex, it makes sense to call G
special. If moreover H < G is represented by a locally isometric immersion of cube
complexes, we can say that H is a geometric subgroup of G. For many purposes,
all we need to know is: Geometric subgroups of special groups are separable.

To know the above (ie to prove Corollary 6.8) we just needed to build some
finite-sheeted cover to which a given immersed subcomplex lifts. But it is important
later that this cover be built “canonically”. We’ll come back later to precisely
what this means. It’s more relevant when we complete maps between NPC cube
complexes, neither of which is a Salvetti complex.





CHAPTER 7

Geometry of CAT(0) cube complexes

In this section we take a combinatorial approach to the geometry of CAT(0)
cube complexes, very much like that discussed in Chapter 3 of Wise’s CBMS notes
[Wis12] and in Sageev’s paper [Sag95].

1. Finding disk diagrams for null-homotopic loops

We fix a CAT(0) (meaning simply connected and NPC) cube complex X. Since
X is simply connected, any combinatorial loop γ has a null-homotopy h : D2 → X
with h|∂D = γ. Cellular approximation tells us that D2 has a cell structure for
which this map can be assumed cellular. In fact the map can be improved still
further, in that the cell structure can be (nearly) a cube complex structure on
D2, so that h is combinatorial. The possibility that some subset of the disk with
nonempty interior is forced to have 1–dimensional image means that this isn’t
exactly true, but still h can be chosen to factor through a combinatorial map from
a planar 2–dimensional cube complex V , called a disk diagram.

D2 X

V

h

β φ

(See Figure 1 for an example.) The fact that this can be done is essentially van

Figure 1. A disk diagram filling a combinatorial loop. The loop
is not meant to be injective, but is shown as if it is for clarity.

Kampen’s Lemma (see [Bri02]). The disk diagram is not unique. For example

39
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in Figure 1 we could have just as well used the diagram in Figure 2. Formally, we

Figure 2. Another disk diagram filling the same combinatorial loop.

define a disk diagram over γ : S1 → X as follows:

Definition 7.1. Let X be a cube complex and let γ : S1 to X be map which is
combinatorial for some subdivision of S1. A disk diagram over γ is a 2–dimensional
square complex V ⊆ E2, together with maps β : D2 → V and φ : V → X so that:

(1) (φ ◦ β)|∂D2 = γ;
(2) φ is combinatorial;
(3) β extends to a small neighborhood Nε(D

2), and β restricted to Nε(D
2)r

D2 is an orientation-preserving homeomorphism onto Nε(V ) r V .

The last requirement is so that “reading” φ counterclockwise around V gives
the same sequence of edges as reading γ counterclockwise around S1. Sometimes
we’ll omit mention of the maps φ and β and just refer to V as a disk diagram. By
the boundary ∂V of a diagram, we’ll mean the curve β|∂D2.

The van Kampen Lemma implies that any combinatorial loop in a CAT(0) cube
complex has a disk diagram as above. Since a disk diagram is a square complex,
it has hyperplanes. These are either arcs, loops, or single points (if there is an
edge which doesn’t meet the interior of V ). Extending these hyperplanes a bit
to separate a regular neighborhood N(V ), we get a system of dual curves to V
(See left hand side of Figure 3.) It’s often convenient just to work with these dual

Figure 3. The dual curves for the disk diagram in Figure 2.

curves. The neighborhood N(V ) is a disk, and we can just draw the dual curves
on a disk, as at the right hand side of Figure 3. The reader should check that V
can be recovered from this pattern of dual curves, so we haven’t really lost any
information.

Definition 7.2. A disk with a system of dual curves coming from a disk
diagram will be called a dual curve diagram.
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2. Features of disk diagrams

Let V be a disk diagram. Two edges of V are V –equivalent if they are parallel,
which is the same as to say they cross the same dual curve in the dual curve diagram.

Definition 7.3. Let γ : S1 → X be a loop, where X is NPC, and S1 has been
divided into edges to make γ combinatorial. Let

D2 β−→ V
φ−→ X and D2 β′−→ V ′

φ′−→ X

be two disk diagrams over γ (so φ ◦ β|∂D2 = φ′ ◦ β′|∂D2 = γ).
The two diagrams V and V ′ induce equivalence relations on the edges of S1.

We say the disk diagrams are ∂–equivalent, if these equivalence relations are the
same.

The dual curves of V are either arcs or loops, which cross transversely. Cross-
ings in the dual curve diagram are in one-to-one correspondence with squares of
the disk diagram.

Definition 7.4 (n–gons). A dual curve which is an embedded loop is called
a 0–gon. Let n ≥ 1, and suppose that σ is a circle made up of n consecutive arcs
of dual curves σi : [0, 1] → V so that (mod n) σi(1) = σi+1(0) is a crossing point
of dual curves. The circle σ bounds a disk D in V , and we suppose that the angle
made by σi and σi+1 inside D is π

2 . Then σ is called an n–gon. See Figure 4.

Figure 4. From left to right, a 0–gon, 1–gon, 2–gon, and 3–gon.

A 1–gon is also called a monogon; a 2–gon is called a bigon. An n–gon needn’t
be isolated; other arcs of dual curves can pass through it. If none do, we say the
n–gon is empty. The area of an n–gon is the number of crossings occurring in the
region bounded by the n–gon, including on the n–gon itself. See Figure 5 for some
examples. In particular the area of an empty n–gon is n.

Figure 5. Gray squares contribute to the area of the bigon. The
left hand bigon has area 7, and the right one has the minimal area
possible, 2.

The following is clear from the construction:

Lemma 7.5. No disk diagram contains an empty 0–gon.
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Next we deal with minimal area monogons:

Lemma 7.6. Let V be a disk diagram over γ : S1 → X where X is a CAT(0)
cube complex. Then V contains no empty 1–gon.

Proof. Figure 6 shows the only way an empty monogon could arise in a (gen-
eral) disk diagram; from a square with two incoming edges at some vertex identified.
But the existence of such a square implies that the target complex X must have a

Figure 6. A degenerate monogon coming from a single square
two of whose sides have been glued together.

link which is not simplicial. In particular it isn’t flag, so X is not NPC, a contra-
diction. �

We’ll next give some lemmas which act like “Reidemeister moves” and can
sometimes be used to simplify a diagram. We start with removing a minimal 0–
gon; by Lemma 7.5, this minimal area is 2.

Lemma 7.7 (minimal 0–gon removal). Let γ : S1 → X where X is a CAT(0)
cube complex. If a disk diagram V over γ contains a 0–gon of area 2, then there is
a ∂–equivalent diagram V ′ with Area(V ′) = Area(V )− 2. The dual curve diagram
of V ′ is obtained from the dual curve diagram of V by removing the 0–gon of area
2.

Proof. A minimal area monogon corresponds to a pair of squares with 3
4 of

their boundary identified (see Figure 7). Since the target is NPC, these squares

Figure 7. A minimal 0–gon coming from two squares which have
been glued together.

must actually go to the same square, and we can obtain a new diagram V ′ by
excising the two squares, and identifying the resulting pair of free edges. The only
effect on the dual curve diagram is to remove the 0–gon, so the new diagram is
∂–equivalent to the old one. �
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The next two lemmas give analogues of the Reidemeister moves for knot dia-
grams. See Figure 8. Note that there is no analog of Reidemeister I, since Lemma

“Reidemeister II” “Reidemeister III”

Figure 8. Lemmas 7.8 and 7.9 say that we can make local changes
to a disk diagram which induce the pictured changes on dual curve
diagrams.

7.6 rules out empty monogons.
The next lemma gives a way to remove empty bigons.

Lemma 7.8 (minimal 2–gon removal). Let γ be a loop in an CAT(0) cube
complex X, and suppose that V is a disk diagram over γ which contains an empty
2–gon σ. Then there is a ∂–equivalent diagram V ′ with

(1) Area(V ′) = Area(V )− 2.
(2) If σ is not part of a minimal 0–gon, the dual curve diagrams of V ′ and V

differ by a Reidemeister II move at σ.

Proof. If the diagram V contains a minimal area 0–gon, then we can appeal
to the minimal 0–gon removal Lemma 7.7. So suppose that there are no minimal
area 0–gons in V , but that there is an empty 2–gon, as in the right-hand side of
figure 5. Because the target X is NPC, the two squares in such a bigon must map
to the same square of X, and they can therefore be removed from the diagram (see
Figure 9) to get a new diagram over γ. This new diagram is clearly ∂–equivalent

Figure 9. Removing a minimal bigon.

to the old one. �

Finally, there is a version of the Reidemeister III move, called a hexagon move:

Lemma 7.9. (hexagon move) Suppose γ is a loop in an CAT(0) cube complex,
and that V is a disk diagram over γ containing an empty 3–gon σ. Then there is
another ∂–equivalent diagram V ′ with

(1) Area(V ′) = Area(V )
(2) The dual curve diagrams of V and V ′ differ by a Reidemeister III move

at σ.
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Proof. Let D ⊂ V be the union of the three squares corresponding to the
crossings of the empty 3–gon σ. Let v be the vertex corresponding to the empty 3–
gon, and let x be the vertex β(v) ∈ X, where β is the combinatorial map associated
to the disk diagram. The subdiagram D gives a triangle T in lk(v). Because β is
combinatorial, βv(T ) is a path of length 3 in lk(x). Since lk(x) is simplicial, this
path can only be a triangle. Since lk(x) is flag, this triangle is filled in with a
2–simplex, which corresponds to a 3–cube in X. There is a homotopy of β across
this 3–cube to a new map β′. (This homotopy fixes all points not in the interior
of D.) The new map β′ is not any more combinatorial, but D can be recubulated
(yielding a new, homeomorphic complex V ′) to make it combinatorial. Figure 10
indicates how to perform this recubulation of D: The resulting diagram V ′ clearly

β β′

Figure 10. Performing a hexagon move.

has the same area and is related to the old diagram by a Reidemeister III move. �

We now apply these lemmas to prove that minimal area diagrams don’t contain
n–gons (empty or not) for n ≤ 2:

Casson Lemma. Suppose that V is a disk diagram over γ : S1 → X, where X
is a CAT(0) cube complex. Suppose that D contains either

• an n–gon with n ≤ 2, or
• a pair of adjacent V –equivalent edges.

Then there is another disk diagram V ′ over γ, so that

(1) Area(V ′) ≤ Area(V )− 2, and
(2) V ′ is ∂–equivalent to V .

Proof. Step 1: Find a bigon. Any 0–gon, 1–gon, or pair of adjacent V –
equivalent edges gives rise to a bigon. (See Figure 11.) Note that an adjacent
pair of V –equivalent edges gives rise to a dual curve which “self-osculates” either
directly or indirectly, as in one of the two pictures at the right of Figure 11. Let σ1
be either this dual curve or the 0–gon or 1–gon. In the figure, this curve is shown
in blue. The cases illustrated have plenty of squares to see what is going on. In
particular, there is at least one dual curve σ2 (shown in green) crossing σ1, which
must form a bigon with σ1. The only way we could fail to have such an additional
dual curve is that σ1 is an empty monogon, which is forbidden by Lemma 7.6.
Step 2: Let bigons be bygones. If there is an empty 2–gon, we may finish by
applying Lemma 7.8. We choose a least area bigon σ = σ1 ∪ σ2 in V , cutting off
a disk D in the dual curve diagram. We suppose Area(σ) is strictly bigger than 2,
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?
? ? ?

Figure 11. Finding bigons.

and show how to use hexagon moves to find a diagram with the same area but a
smaller area bigon.

Since Area(σ) > 2, some other arc of a dual curve crosses σ1 or σ2. Let τ be a
maximal arc of this dual curve which meets D. If both endpoints of τ are on σ1 or
on σ2, then τ forms a bigon with that arc, which is necessarily of smaller area than
σ. Thus each such arc crosses from σ1 to σ2. We therefore have a picture something
like the left hand side of Figure 12. Let {τ1, . . . , τk} be the curves crossing from σ1

Figure 12. On the left, a bigon is formed by a blue and green
dual curve. Red dual curves cross the bigon. If there is a red curve
which forms an empty 3–gon with the dual curves, then we can do
a hexagon move to decrease the area of the bigon.

to σ2. If some τi forms an empty 3–gon with subarcs of σ1 and σ2, then we can
apply Lemma 7.9 to get a diagram with the same area, but with a smaller area
bigon, as in Figure 12.

Suppose at least some of the τi cross each other, and suppose there is an empty
3–gon involving σ1. If so, we again have an available hexagon move (see Figure 13)
to produce a new diagram V ′′ with a smaller bigon.

Figure 13. A hexagon move coming from an empty 3–gon using
σ1 but not σ2.

It therefore suffices to prove the following claim:

Claim. If σ = σ1∪σ2 is a least area bigon in the diagram V , and Area(σ) > 2,
then there is an empty 3–gon inside σ using a subarc of σ1.
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Proof. The arcs crossing σ can be ordered from left to right according to
where they cross σ1. Let τ1, . . . , τk be the ordered collection of such arcs which
cross some other such arc, ignoring those which only cross σ1 and σ2. See the left
hand side of Figure 14. Now each τi crosses some other τj after crossing σ1. Let

σ1

σ2τ1
τ6τ5τ4τ3τ2

σ1

σ2R LRLRR

Figure 14. Finding an empty 3–gon.

τj(i) be the arc which τi crosses first. We mark τi by the letter R if j(i) > i, and
by L if j(i) < i. See the right-hand side of Figure 14. If we had some j(i) = i, this
would mean τi formed a monogon, and hence we could find a smaller area bigon
than σ.

We thus obtain some sequence ofR’s and L’s. In the example we haveRRRLRL.
Note that the first letter of this sequence must be R, and the last letter must be
L. It follows that there is some initial sequence RkL. It is then easy to see that τk,
τk+1 and σ1 form an empty 3–gon. �

�

Corollary 7.10. Let γ : S1 → X be a combinatorial loop in a CAT(0) cube
complex, and let V be a minimal area disk diagram over γ. Then V contains no
n–gon for n ≤ 2, and no pair of adjacent, V –equivalent edges.

Exercise 5. Show that if V is a disk diagram for γ : S1 → X with X a CAT(0)
cube complex, then V has no monogons. (Hint: use the Reidemeister moves to get
an empty monogon)

3. Geodesics and hyperplanes in CAT(0) cube complexes

In this section we fix a CAT(0) cube complex X. It’s important to distinguish
between geodesics in X with respect to the CAT(0) metric, which need not be
(and usually aren’t) combinatorial, and combinatorial geodesics which are really
geodesics in the 1–skeleton. We’ll almost never talk about the first kind of geodesic
in these notes. The next proposition tells us how a combinatorial geodesic can
interact with a hyperplane.

Proposition 7.11. Let H be a hyperplane of X, and let γ be a combinatorial
geodesic. Then H contains at most one edge dual to H.

Proof. Let γ be a shortest counterexample to the Proposition. Then γ begins
and ends with edges e1, e2 which are parallel. Let n be the length of a shortest
gallery of squares exhibiting the fact that e1 and e2 are parallel. There are two
possible pictures, as shown in Figure 15. In either case one has a planar diagram
V0 consisting of a segment of length length(γ) together with n squares, and a
combinatorial map of this diagram into X. The inner boundary of this diagram
goes to a loop in X. Since X is simply connected, we can fill the boundary with
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e1 e2

e1 e2

Figure 15. A geodesic containing parallel edges, either oriented
together (as at left) or oppositely (as at right). In both pictures
n = 5. The green curve should be filled in with a disk diagram.

some disk diagram V1 realizing this null-homotopy. We may suppose this disk
diagram is minimal area. Let V be the disk diagram V0 ∪ V1.

If the edges e1 and e2 are oriented together along γ, as on the left hand side
of Figure 15, we see that V must contain a monogon, which violates NPC as in
Exercise 5.

We must therefore have that e1 and e2 are oriented oppositely, as in the right
hand side of Figure 15. Let α be the dual curve to the gallery in V0. Suppose
first that there is another dual curve β making a bigon with α. We may suppose
that this bigon B is least area among those involving α. If the bigon is nonempty,
then we can argue as in the proof of the Casson Lemma that there is some empty
3–gon in B meeting α, and so we can perform a hexagon move on V to obtain a
new diagram as in Figure 16. We can delete a square from this diagram to get

α α′

Figure 16. Finding a diagram with a smaller bigon, but the same
length gallery connecting e1 to e2.

a new diagram V ′ of the same type as V : The new diagram again has an outer
“gallery” exhibiting the fact that e1 is parallel to e2, and dual curve α′ running
through this gallery. However, the smallest area bigon involving α′ is smaller area
than the smallest one involving α. Eventually we obtain an empty bigon using α.
Removing the two squares involved in this bigon leaves a shorter gallery connecting
e1 to e2, contradicting our assumption that the gallery was shortest to begin with.
We deduce that there were no bigons involving α.
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But this implies that every dual curve crossing α also crosses the part of ∂V
mapping to γ. Thus the length of that part of ∂V on the outside of the gallery is
at most |γ| − 2, contradicting the assumption that γ was geodesic. �

Exercise 6. (1) Any square in a CAT(0) cube complex is embedded.
(2) Any (combinatorial) loop in a CAT(0) cube complex has even length.

We note a corollary of the exercise (remember that we only allow combinatorial
paths).

Corollary 7.12. Any path of length 2 in a CAT(0) cube complex is geodesic.

Proposition 7.13. Let X be a CAT(0) cube complex. Then X is special.

Proof. (Sketch) We rule out the hyperplane pathologies in turn.
Let H be a hyperplane of X. If H were 1–sided, we could build a nontrivial

element of H1(X,Z/2), contradicting the simple connectedness of X.
If H self-osculates or self-intersects, there are a pair of distinct dual edges to

H which meet at a point. These give a path of length two in X, which is geodesic
by Corollary 7.12, and crosses H twice, contradicting Proposition 7.11.

Suppose H1 and H2 interosculate. Then there is a combinatorial map into
X of a diagram like either the left or right side of Figure 17. In either case, we

Figure 17. Possible interosculations. The red edges represent an
osculation. Fill the green loop with a least area filling.

can fill in the diagram with some least area disk diagram. In case the diagram
is like the one on the right, this filled-in diagram will contain either a monogon,
contradicting Exercise 5, or a subdiagram like the left-hand interosculation picture.
We can therefore assume the picture is like the one at left. In this case we’ll be
able to find some hexagon move reducing the area of the filled-in part. But if the
filled-in part has no squares, there is a hexagon move available at the right, and we
can decrease the size of the diagram. Eventually we discover that the edges which
form the “osculation” actually corner a square, and so there was no inter-osculation
to begin with. �

4. π1–injectivity of locally isometrically immersed subcomplexes

One way to show that locally immersed subcomplexes of NPC cube complexes
are π1–injective would be to invoke the Cartan-Hadamard Theorem (see [BH99,
II.4.14]). Since we are avoiding explicit use of CAT(0) geometry in these notes, we
sketch a different proof. This proof also allows us to introduce Wise’s cornsquares.
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Definition 7.14. Let V be a disk diagram over γ : S1 → X, where X is
CAT(0). A corner of V is a pair of consecutive edges of ∂V which corner a square
in V .

corner

cornsquare

V

Figure 18. A corner and a cornsquare.

A cornsquare of V is a pair of consecutive edges e1 and e2 of ∂V which are
V –parallel to edges e′1 and e′2 which corner a square.

The next lemma says that, in least area diagrams, cornsquares can be improved
to corners.

Lemma 7.15. Let V be a least area diagram over γ : S1 → X where X is
CAT(0). If V has a cornsquare at e1, e2 in ∂V , then there is another least area
diagram with a corner at e1, e2.

Proof. In our picture of a cornsquare (Figure 18), the galleries leading from
the boundary to the edges which corner a square bound a nonempty region in the
diagram V . If that is the case, though, we can apply hexagon moves to V to
decrease the area of that region, eventually obtaining a diagram V ′ with the same
area, but so the cornsquare looks like the one in Figure 19. But now we can apply

cornsquare

V

empty

Figure 19. A diagram with an empty cornsquare.
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further hexagon moves to decrease the length of the galleries in the cornsquare,
eventually converting it to a corner. �

Proposition 7.16. If φ : Y → X is a locally isometric immersion of NPC
cube complexes, then φ∗ : π1Y → π1X is injective.

Proof. If φ is not π1–injective, then there is some combinatorial loop σ in
Y so that φ ◦ σ is null-homotopic, so admits a finite-area disk diagram. Fix some
σ which is least area among shortest such loops.1 Now let V be a least area disk
diagram over φ ◦ σ.

Claim. V has a cornsquare.

Given the claim we can replace V by a diagram V ′ with the same area, but
with a corner. By the local isometry property, this corner comes from a square in
Y , and we can homotope σ across that square to get a loop σ′ of the same length
as σ, but with Area(φ ◦ σ′) < Area(φ ◦ σ). This contradicts our choice of σ.

Proof of claim. We argue using the dual curves to V , which are properly
embedded arcs in D = Nε(V ). Note that a corner in V corresponds to a pair of
dual curves which have adjacent endpoints in the boundary, and which immediately
cross, forming an “empty 3–gon” together with ∂D. A cornsquare in V corresponds
to a pair of dual curves which have adjacent endpoints in the boundary and even-
tually cross each other.

Choose some point p ∈ ∂D which is not an endpoint of a dual curve. The
orientation of D gives an ordering on points of ∂D r {p}, which restricts to an
ordering of the endpoints of dual curves. Let P be the set of pairs of endpoints
(f1, f2) so that f1 < f2 in this ordering, and either:

(1) f1 and f2 are the endpoints of a single dual curve, or
(2) the dual curves issuing from f1 and f2 cross.

Let (e1, e2) be an innermost element of P: this means that if (f1, f2) ∈ P and
e1 ≤ f1 < f2 ≤ e2, then f1 = e1 and f2 = e2. One quickly sees that no endpoint f
of any dual curve satisfies e1 < f < e2.

If (e1, e2) is of type (1), so that e1 and e2 are the endpoints of a single dual
curve α, then this curve α must correspond to a backtrack in φ ◦ σ. Since φ is a
local isometry, there must also be a backtrack in σ, which implies that σ is not
shortest, a contradiction.

If (e1, e2) is of type (2), then we have found a pair of adjacent dual curves
which cross. �

�

The techniques of this section can also be used to establish the following:

Proposition 7.17. Let φ : Y → X be a locally isometric immersion of NPC
cube complexes. Then the lift φ̃ : Ỹ → X̃ to universal covers is injective, with
convex image.

Exercise 7. Prove Proposition 7.17.

1You might want to reread that sentence until it makes sense.



CHAPTER 8

Quasiconvex subcomplexes

In this subsection we prove Haglund’s theorem that quasiconvex subgroups of
cubulated groups can be represented by locally isometric immersed cube complexes.
We should emphasize that which subgroups of a cubulated group are quasiconvex
depends on the cubulation (unless the cubulated group is hyperbolic, as we’ll see
in Chapter 10).

Definition 8.1. Let X be a geodesic space, K ≥ 0. The subset A ⊆ X is
K–quasiconvex if every geodesic with endpoints in A lies in NK(A).

Exercise 8. Let Γ be the Cayley graph of Z ⊕ Z with the standard gener-
ating set. A subgroup is also a subset of Γ, so we can ask which subgroups are
quasiconvex. Show:

(1) The subgroup generated by (1, 0) is quasiconvex in X.
(2) The subgroup generated by (1, 1) is not quasiconvex in X.

Since the two subgroups in the exercise are related by an automorphism of
Z ⊕ Z, this makes it seem like quasiconvexity is a pretty unstable notion. But we
will continue on with it anyway. Our goal is the following theorem of Haglund:

Theorem 8.2. Let X be a NPC cube complex, G = π1X, X̃ → X the universal
cover. Let H < G be such that some orbit Hx0 ⊆ X̃ is quasiconvex.

Then there is a compact NPC cube complex Y with π1Y = H and a locally
isometric immersion of cube complexes φ : Y → X so that φ∗ is the inclusion
H < G.

This theorem combines with Corollary 6.8 to give a powerful tool for finding
separable subgroups of fundamental groups of special cube complexes.

1. Median spaces

Trees are distinguished by the fact that every geodesic triangle is 0–thin (a
tripod). Geodesic median spaces are those in which every triple of points is the
vertex set of some 0–thin geodesic triangle.

Definition 8.3. M a metric space is median if for all x, y, z in M , there is a
unique m (called the median of x, y, z) so that

d(x, y) = d(x,m)+d(m, y), d(y, z) = d(y,m)+d(m, z), and d(x, z) = d(x,m)+d(m, z).

We’ll show below (Gerasimov Lemma) that the 1–skeleton of a CAT(0) cube
complex is median. We first need the converse to Proposition 7.11.

Lemma 8.4. Let γ be a combinatorial path in the CAT(0) cube complex X.
Then γ is geodesic if and only if γ crosses each hyperplane at most once.

51
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Proof. Proposition 7.11 told us that geodesics cross each hyperplane at most
once.

Suppose that γ is any combinatorial path which crosses each hyperplane at
most once and let σ be a geodesic with the same endpoints as γ. Fill in the loop
γ · σ−1 with a minimal area disk diagram, and consider dual curves starting on γ.
Since γ crosses each hyperplane at most once, every such dual curve must end on σ.
But this implies that the length of γ is at most the length of σ, so γ is geodesic. �

Exercise 9. Let H be a hyperplane in a CAT(0) cube complex, and let
N(H) ∼= H × [− 1

2 ,
1
2 ] be the union of cubes intersecting H (also called the car-

rier of H). Write ∂N(H) for the subset H × {− 1
2 ,

1
2}. This has two connected

components. Show that the intersection of each with X(1) is convex.

We consider the possible ways a path γ could fail to be geodesic.

Definition 8.5. A backtrack in γ is a length 2 subsegment e1e2, so that e2 is
just e1 with the opposite orientation. By an elementary shortening of γ, we mean
a subsegment of γ of the form e1σe2, where e1 is parallel to e2 with the opposite
orientation, and σ is geodesic.

e1 e2

σ

Figure 1. An elementary shortening.

Remark 8.6. If γ has an elementary shortening e1σe2, with e1 and e2 both
dual to the hyperplane H, the endpoints of σ lie in the same component of ∂N(H).
By Exercise 9, σ is contained entirely in one component of ∂N(H). If σ̂ is the
corresponding path in the other component of ∂N(H), then γ can be modified to
a shorter path by just replacing e1σe2 with σ̂.

The next lemma says that any non-geodesic in a CAT(0) cube complex is non-
geodesic for one of these two simple reasons.

Lemma 8.7. Let X be a CAT(0) cube complex, and γ a combinatorial path. If
γ is not geodesic, then γ contains either a backtrack or an elementary shortening.

Proof. If γ is not geodesic, then by Lemma 8.4, γ must cross some hyperplane
twice. Let e1σe2 be a shortest subsegment of γ which crosses a hyperplane twice. If
σ is empty, then e1e2 is a backtrack. Otherwise σ crosses no hyperplane twice, so it
is geodesic, again using 8.4. It follows that e1σe2 is an elementary shortening. �

Gerasimov Lemma. The 0–skeleton of any CAT(0) cube complex is median
(using the metric induced from the path metric on the 1–skeleton).

Proof. We first prove uniqueness. Suppose there are two median points m1

and m2 for some triple x, y, z. Consider a hyperplane H separating m1 from m2.
Two of x, y, z must lie on one side of H. Without loss of generality, say x, y lie on
the same side as m1. But then there is a geodesic from x to y through m1 which
crosses H twice. This contradicts Lemma 8.4.
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We next establish existence. Let x, y, z be vertices of X. Define the set

I(x, y) = {p | d(x, p) + d(p, y) = d(x, y)},

and let m be a point of I(x, y) closest to z. We claim that m is a median point
for x, y, z. Indeed, choose geodesics [x,m], [y,m] and [m, z]. If m is not a median,
then either [x,m]∪ [m, z] or [y,m]∪ [m, z] is not geodesic. We may as well suppose
it is γ = [x,m] ∪ [m, z], and apply Lemma 8.7 to find a backtrack or elementary
shortening. If there is a backtrack, it must occur at m, and we find a point in I(x, y)
which is closer to z. If on the other hand there is an elementary shortening, then
we have some picture like Figure 2. In particular, the path γ crosses a hyperplane

e1 e2

x

m

y

z

m′

Figure 2. If m is not a median, we find some m′ ∈ I(x, y) closer to z.

H twice at edges e1 and e2, and a subsegment of the path γ looks like e1σe2, where
σ is a geodesic in ∂N(H). Since [x,m] and [m, z] are geodesic, m must occur in σ.
We claim the reflection m′ of m across H is

(1) in I(x, y) and
(2) closer to z than m is.

The path σ can be broken into two parts, σ1 ⊆ [x,m], and σ2 ⊆ [m, z]. For
i ∈ {1, 2}, let σ′i be the path obtained by reflecting σi across H. Let em be the
edge from m′ to m. The path [x,m] ∪ [m, z] can be decomposed as σxe1σe2σz.
Notice that the path σxσ

′
1em[m, y] passes through m′ and has the same length as

the geodesic [x,m] ∪ [m, y] = σxe1σ1[m, y], so m′ ∈ I(x, y).
For the second claim, note that the path σ′2σz from m′ to z has length one less

than [m, z]. �

2. Combinatorial hulls

Definition 8.8. Let X be a CAT(0) cube complex, and H ⊆ X a hyperplane.
The carrier N(H) is the union of cubes in X intersecting H. Denote the interior

of N(H) by Ṅ(H). Then X r Ṅ(H) has precisely two components, called the
halfspaces determined by H. If we co-orient H, then we can distinguish between
the positive halfspace H+ (into which the edges dual to H point) and the negative
halfspace H−.

Let X be a CAT(0) cube complex, and let A ⊆ X. The combinatorial convex
hull of A is

Hull(A) =
⋂
{B | B is a halfspace containing A}.

Remark 8.9. By exercise 9, half-spaces are convex. (This means the 1–skeleton
of a half-space is convex in X(1).)
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We now state a theorem about combinatorial hulls which will be used to prove
Theorem 8.2. A cube complex is uniformly locally finite if there is some n so that
every vertex lies in at most n cubes.

Theorem 8.10. Let X be a uniformly locally finite CAT(0) cube complex. For
all K, there exists an L so that: If Q is a K–quasiconvex subset of X, Hull(Q) is
contained in the L–neighborhood of Q.

Proof. As a reminder, we work entirely in the 1–skeleton of X. Let Q be a
K–quasiconvex subset. We will show that if d(v,Q) is too large, then v /∈ Hull(Q).

Precisely, let L be the maximum number of hyperplanes meeting a K–ball in
X, and suppose that d(v,Q) > L. We must find a hyperplane separating v from Q.

Choose some vertex w ∈ Q closest to v, and a geodesic γ from v to w. Let H
be a co-oriented hyperplane crossed by γ, with v ∈ H+, and suppose that H does
not separate v from Q. In particular, there is some u ∈ Q ∩ H+. Let m be the
median point of u, v, w. Since H+ is convex, the median m lies in H+. See Figure
3.

v

m

u

w

H

Figure 3. If H doesn’t separate v from Q, it must come close to
w ∈ Q realizing d(w,Q).

Since m lies on a geodesic from w to u, and Q is K–quasiconvex, d(m,Q) ≤ K.
Since w is closest in Q to v, we have d(m,w) ≤ K. The hyperplane H must cross
γ between m and w, so H meets a K–ball about w.

Since there are at most L hyperplanes meeting the K–ball about w, and
d(v, w) > L, the geodesic γ crosses at least one hyperplane which does separate
v from Q, so v /∈ Hull(Q). �

Theorem 8.2 now follows from Theorem 8.10 and the following exercise:

Exercise 10. Let X be a CAT(0) cube complex, with G y X freely and
cocompactly. If Q ⊆ X, then the inclusion of Hull(Q) in X is a local isometric
embedding. Thus if x ∈ X, we get H y HullHx, and after taking quotients

H

∖
Hull(Hx) → G

∖
X

is a locally isometric immersion of compact NPC cube complexes inducing H < G
on the level of fundamental groups.



CHAPTER 9

Finding cubes: codimension one subgroups and
pocsets

In this section we explain where cube complexes actually come from. The key
ideas here are due to Michah Sageev, and the following account owes a lot to his
Park City notes [Sag14].

The name “codimension one” refers to immersions of manifolds in one another.
But as we will see below, not every π1–injective codimension one submanifold has
codimension one image. There is a subtle issue to do with one-or-two-sidedness.

Let G be generated by the finite set S, and let H < G. The Schreier coset
graph Sch(G,H, S) is a graph whose vertex set is H

∖
G , and an edge joining Hg

to Hgs whenever g ∈ G, s ∈ S.

Observe that Sch(G,H, S) is equal to the quotient H

∖
Γ(G,S) , under the

natural isometric action.

Definition 9.1. If G is finitely generated and H < G, then H is codimension
one in G if Sch(G,H, S) has at least two ends.

Here’s an easy exercise and a harder one.

Exercise 11. Whether H < G is codimension one does not depend on the
finite generating set S.

Exercise 12. Let G = π1M where M is a compact aspherical n–manifold, and
let φ : N →M be a π1–injective immersion of some connected aspherical (n− 1)–
manifold. Then H = φ∗(π1N) is codimension one if and only if the immersion is
2–sided. (A codimension one submanifold is 2–sided if its normal bundle is trivial.)

1. Pocsets

The notion of a “system of half-spaces” studied by Sageev was reformalized by
Roller [Rol98] as a pocset, or poset-with-complementation.

Definition 9.2. A pocset is a poset (P,≤) together with an involution A 7→ A∗

satisfying:

(1) A and A∗ are incomparable, and
(2) A ≤ B =⇒ B∗ ≤ A∗.

Example 9.3. Let X be a set, and let P ⊆ 2X \ {X, ∅} be closed under
complementation. Then P is a pocset, with involution A∗ = X \A. A pocset of this
form is also sometimes called a space with walls. The walls are the pairs {A,A∗}.
Usually it is also required that, for x, y ∈ X, the set {A ∈ P | x ∈ A, y /∈ A} is
finite. (Note that Hruska–Wise’s notion of a wallspace is different [HW14, Section
2].)
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Example 9.4. Let X be a cube complex, and let P be the collection of com-
binatorial halfspaces. Any hyperplane determines two such halfspaces, and the
involution exchanges them. Order by inclusion.

Later, we’ll see how to get a pocset with a G–action from a codimension one
subgroup H < G. For now we continue with the general theory of how to turn a
pocset into a cube complex.

We need a few more definitions:

Definition 9.5. Let (P,≤) be a pocset, and let A,B be distinct elements of
P . Say A,B are nested if one of the following holds:

A ≤ B, A ≤ B∗, A∗ ≤ B, or A∗ ≤ B∗.

Otherwise they are transverse.

If (P,≤) is a space with walls, then A,B are transverse if and only if all four
intersections A ∩B,A ∩B∗, A∗ ∩B,A∗ ∩B∗ are nonempty.

Definition 9.6. The width of a pocset is the maximum number of pairwise
transverse elements. If there is no such maximum number, the width is ∞.

For a pocset P coming from a finite dimensional cube complex as in 9.4, the
width of P is equal to the dimension of the cube complex.

For a general pocset, we must reconstruct the cube complex. The vertices of
the cube complex will be ultrafilters: “consistent” choices of A or A∗ for every pair
{A,A∗} ⊂ P .

Definition 9.7. An ultrafilter on a pocset P is a subset α ⊂ P satisfying:

(1) (Completeness) For every A ∈ P , exactly one of {A,A∗} is in α.
(2) (Consistency) If A ∈ α, and A ≤ B, then B ∈ α.

Example 9.8. (Principal ultrafilters) Suppose P is the pocset associated to a
space with walls X. Let x ∈ X. Then αx = {A ∈ P | x ∈ A} is an ultrafilter.

In “nicely behaved” spaces with walls, principal ultrafilters also satisfy the
following:

Descending Chain Condition. Every sequence A1 > A2 > · · · of elements
of α terminates.

We say an ultrafilter is DCC if it satisfies this condition.

2. The cube complex associated to a pocset

Our cube complex will have 0–cells corresponding to DCC ultrafilters, and
edges corresponding to “flips” A ↔ A∗. We use the following notation, when ω is
a DCC ultrafilter on the pocset P , and A ∈ ω:

(ω;A) = (ω r {A}) ∪ {A∗}

Lemma 9.9. If ω is a DCC ultrafilter, the following are equivalent:

(1) (ω;A) is a DCC ultrafilter;
(2) A is minimal in ω (with respect to the order on P ).
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Proof. (1) =⇒ (2). Suppose ω and ω′ = (ω;A) are both DCC ultrafilters, and
that B < A is in ω. Then A∗ ∈ ω′, but B∗ /∈ ω′. Since A∗ < B∗, this contradicts
consistency.
(2) =⇒ (1). Let A ∈ ω be minimal, and let ω′ = (ω;A). It is clear that ω′ is
complete and DCC, so we just need to check consistency. Suppose by contradiction
that for some B < C, B ∈ ω′ but C /∈ ω′. Since ω is consistent, one of B∗ or C is
A.

In case B = A∗ < C /∈ ω′, we have C∗ < A and C∗ ∈ ω (C 6= A since A and
A∗ are incomparable). But then A is not minimal in ω.

In case C = A, we have B < A in ω, and again A is not minimal. �

Definition 9.10. Let P be a pocset. We define a cube complex X = X(P ) as
follows:

• Let X(0) be the set of DCC ultrafilters on P .
• Connect ω to ω′ by an edge if and only if ω′ = (ω;A) for a minimal A ∈ ω.
• Inductively glue in n–cubes for n ≥ 2, wherever the (n − 1)–skeleton

appears.

The following lemma follows from the construction:

Lemma 9.11. Let ω ∈ X(0), and let k ≥ 1. There is a one-to-one corre-
spondence between k–cubes incident to ω and (k − 1)–tuples of pairwise transverse
minimal elements of ω.

In particular, the link of a vertex is flag, so we have:

Corollary 9.12. For P a pocset, the cube complex X(P ) is NPC.

Connectedness is not guaranteed in general, but we do have the following:

Lemma 9.13. If P is a pocset of finite width, then X(P ) is connected.

Proof. Let ω and η be DCC ultrafilters on P . We want to find a path from
ω to η. This boils down to two claims:

Claim. If A is a minimal element of ω r η, A is minimal in ω.

Proof. Exercise. �

Claim. If P has finite width, then ω r η is finite.

Proof. Suppose that δ = ω r η is infinite. Ramsey’s theorem implies there is
either an infinite collection A of pairwise nested or pairwise transverse elements of
δ. Since P has finite width, this collection must be pairwise nested. For any two
A,B ∈ A, we claim that either A < B or B < A. Otherwise either (i) A∗ < B, or
(ii) B < A∗. In case (i), A∗ ∈ η but B /∈ η contradicts consistency of η. In case
(ii), B ∈ ω but A∗ /∈ ω contradicts consistency of ω.

But since A < B or B < A for every pair of elements of δ, we can construct an
infinitely long chain of elements of δ, of one of the two forms:

A1 < A2 < A3 < · · · or A1 > A2 > A3 > · · · .
The first kind of chain contradicts DCC of η; the second contradicts DCC of ω. �

Given the two claims, we can always choose A ∈ ω \ η so that (ω;A) is a DCC
ultrafilter closer to η than ω was. �
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Remark 9.14. In some natural situations, we don’t necessarily know finite
width, but have some other way to pick out a “canonical” component of X(P ).

Lemma 9.15. Let P be a pocset. Then any component of X(P ) is simply
connected.

Proof. Consider a shortest non-contractible edge loop σ. Note that this loop
must have length 2n for some n. Let ω and η be 0–cells cutting the loop into
two paths p1 and p2 of length n. Extending the notation (ω;A,B) := ((ω;A);B),
and so on, we have a bijection between combinatorial paths and expressions of
the form α = (β;A1, . . . , Ap). In particular, the path p1 from ω to η gives an
expression η = (ω;A1, . . . , An) for some elements A1, . . . , An of P , whereas the
path p2 from η to ω gives an expression ω = (η;An+1, . . . , A2n). Note that for each
i ∈ {n+1, . . . , 2n}, there must be a j ∈ {1, . . . , n} with Ai = A∗j , since loop σ gives
an expression

ω = (ω;A1, . . . , A2n).

In particularAn+1 = A∗k for some k < n. Consider the point ρ = (ω;A1, . . . , An, A
∗
k)

on σ. We cannot have n = k, or there would be a backtrack in σ, contradicting the
assumption that it is a shortest non-contractible edge loop.

Claim 9.15.1. For all i so that k < i ≤ n, Ak and Ai are transverse.

Proof of claim. Note that An+1 = A∗k, and that there is some j ∈ {n +
2, . . . , 2n} so that Aj = A∗i . The points ω, (ω;A1, . . . , Ai), (ω;A1, . . . , Ak), and
(ω;A1, . . . , An+1) all represent consistent ultrafilters, and all possible choices from
{Ai, A∗i } and from {Ak, A∗k} occur. Thus Ak and Ai must be transverse. �

Given the claim, we can homotope the first part of σ across a square to one
which expresses ρ = (ω;A1, . . . , An−1, A

∗
k, An); we can then continue to homotope

across squares until we arrive at a path expressing ρ = (ω;A1, . . . , Ak, A
∗
k, Ak+1, . . . , An);

this path contains a backtrack, again contradicting the assumption that the loop is
shortest. �

To summarize:

Theorem 9.16. Let P be a pocset. Then any component of X(P ) is a CAT(0)
cube complex. If P has finite width, then X(P ) is connected.

We remark that if a group G acts on a pocset, this action naturally induces an
action on the cube complex X(P ).

The following is a motivating example:

Example 9.17. Let M be a compact hyperbolic manifold, and let F be an
immersed totally geodesic submanifold of codimension one. Then any elevation F̃
to the universal cover M̃ → M divides M̃ into two half-spaces. Let P = P (M,F )
be the pocset of such half-spaces, with order given by inclusion, and involution
given by switching half-spaces.

The width of the pocset P is equal to the maximum number of pairwise crossing
elevations of F , and is finite. In particularX(P ) is finite dimensional and connected.
The fundamental group of M acts cocompactly on X(P ). An example is shown
in Figure 1 of an immersed curve in a surface. The vertices are (in this case) in
bijective correspondence with components of the complement of the preimage in
the universal cover. (This is because at most two lifts pairwise cross.) There’s
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Figure 1. An immersed curve and part of the corresponding cube complex.

one orbit of square, and the quotient of the cube complex by the group action is a
sphere with three points identified.

3. Codimension one subgroups

The main source of examples is a “coarsening” of Example 9.17: codimension
one subgroups as defined in Definition 9.1. Remember a subgroup H < G is said
to be codimension one if the Schreier coset graph Sch(G,H, S) has at least two
ends. In this subsection we construct a pocset from a collection of codimension one
subgroups, and pick out a canonical component of the associated cube complex.
This component is preserved by the natural G–action.

Definition 9.18. Let H < G. A subset A ⊆ G is H–finite if it is a union of
finitely many right cosets of H. It is H–infinite if it is a union of right cosets of H,
but isn’t H–finite.

Recall that for two sets the symmetric difference A4B = (A \B) ∪ (B \A).

Lemma 9.19. Let H < G be codimension one. Then there is an A ⊂ G satis-
fying the following:

(1) A and G \A are both H–infinite; and
(2) for every g ∈ G, Ag4A is H–finite.

Proof. Note that the right cosets of H are canonically identified with the
vertices of any Schreier coset graph Sch(G,H, S). Fix S, and let Γ = Sch(G,H, S).
Since H is codimension one, it has more than one end. Choose a neighborhood of
some end, and let E ⊂ Γ(0) be the vertices in that neighborhood. The set A is the
union of the right cosets corresponding to vertices of E. Since there is more than
one end, both A and G \A are H–infinite.

To prove statement (2), it suffices to consider g = s ∈ S. Then As is the union
of the cosets corresponding to

Es := {v | ∃w ∈ E and a directed edge labeled s from w to v}.
The symmetric difference between E and Es consists of vertices which are either
in E and connected by an edge to a vertex in Γ \ E, or in Γ \ E and connected by
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an edge to a vertex in E. In particular, this set must be finite, since E is the set of
vertices in the neighborhood of an end. It follows that the corresponding union of
cosets As4A is H–finite. �

Definition 9.20. If A is a subset of G satisfying the conclusions of Lemma
9.19, we will call A an H–halfspace in G and call the pair {A,G \A} an H–wall in
G.

Definition 9.21. Let H1, . . . ,Hn be a collection of codimension one subgroup
of G. For each i, let Ai be an Hi–halfspace in G, and let A = {A1, . . . , An}.
We suppose all the sets Ai are distinct from each other and from each others
complements Aci := G \Ai. We define a pocset (PA,≤) to be

PA = {gA | g ∈ G,A ∈ A} ∪ {gAc | g ∈ G,A ∈ A},
with order given by inclusion, and involution given by complementation.

Note that the pocset defined in 9.21 gives G the structure of a space with walls
(see 9.3). In particular, the notion of a principal ultrafilter ωg = {B ∈ P | g ∈ B}
(see 9.8) makes sense.

Lemma 9.22. Let PA be as in Definition 9.21. Any principal ultrafilter on PA is
DCC, and any two principal ultrafilters lie in the same component of the associated
cube complex X = X(PA).

Proof. Let p, q ∈ G, and define #(p, q) to be the number of pairs {B,B∗} so
that p ∈ B and q ∈ B∗.

Claim. #(p, q) <∞.

Given the claim, we prove the lemma as follows. Let αp, αq be the principal
ultrafilters associated to p, q, respectively. Let D = {B | p ∈ B, q /∈ B}, and let
n = #(p, q) = #D. We want to flip the elements of D, one at a time. Formally,
let ω0 = αp. Inductively for i ∈ 1, . . . n, choose Bi minimal in ωi−1 ∩ D, and set
ωi = (ωi−1;Bi). Thus ωn = αq, and we just need to check that each ωi is a DCC
ultrafilter. By Lemma 9.9, this is true so long as Bi is always minimal in ωi−1.

To show Bi is minimal in ωi−1, we argue as follows. Let B′ ∈ ωi−1 satisfy
Bi ⊆ B′. Since Bi ∈ D, we have q /∈ B′, so B′ must already have been in αp. In
particular p ∈ B′, so B′ ∈ D \ {B1, . . . , Bi−1}. Since Bi is minimal in ωi−1 ∩D, we
must have B′ = Bi. Thus Bi is minimal.

We now establish the claim. It suffices to consider a single set A as in the
conclusion of Lemma 9.19, associated to a single codimension one subgroup H.
We’ll show that Ψ = {gA | p ∈ gA, q ∈ gAc} is finite; a similar argument shows
that {gA | p ∈ gAc, q ∈ gA} is finite.

Let g ∈ ∪Ψ. Since p ∈ gA, we have g−1 ∈ Ap−1. Similarly since q ∈ gAc, we
have g−1 ∈ Acq−1. In particular, we have g−1 contained in Ap−1 ∩ Acq−1, which
is a finite union of right cosets Ht1 ∪ · · · ∪Hts. Equivalently, g is contained in the
finite union of left cosets t−11 H∪· · · t−1s H. Since HA = A this implies the finiteness
of the set Ψ. �

Recall that if a pocset has finite width, the associated cube complex is con-
nected. If the width is infinite, there may be many components. The lemma we just
proved says that in the special case of a pocset coming from a collection of codi-
mension one subgroups, there is nonetheless a distinguished component preserved
by the group action.
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Definition 9.23 (Sageev construction). Let H = {H1, . . . ,Hn} be a collection
of codimension one subgroups of a group G, let A = {A1, . . . , An} and PA be as
in Definition 9.21, and let X be the component of the associated cube complex
containing the principal ultrafilters. Then X is said to be obtained from (G,H) via
the Sageev construction.

Next we’ll want to find criteria for properness or cocompactness of the action.
In order to formulate such criteria, we’ll need a bit of hyperbolic geometry.





Part II

Hyperbolic geometry and cube
complexes





CHAPTER 10

Quasi-Isometries and Hyperbolicity

The technology of cube complexes really starts to shine when applied to hy-
perbolic (or at least relatively hyperbolic) groups. As we’ll see below, these groups
have a robust notion of quasiconvex subgroup, allowing us to get more mileage out
of Theorem 8.2.

We’ll just review the basics of Gromov hyperbolicity here. A good source for
more details is [BH99, III.H and III.Γ]. One key feature of hyperbolicity (not
shared by NPC-ness) is that it is coarse, in the sense that quasi-isometric groups
are either both hyperbolic or both non-hyperbolic.

1. Coarse geometry

We first recall the idea of a quasi-isometry.

Definition 10.1. Let X, Y be metric spaces, K ≥ 1, C ≥ 0. A (not necessarily
continuous) function f : X → Y is a (K,C)–quasi-isometric embedding if, for all
a, b ∈ X,

1

K
d(a, b)− C ≤ d(f(a), f(b)) ≤ Kd(a, b) + C.

If in addition, every point y ∈ Y lies within C of f(x) for some x, then f is a
(K,C)–quasi-isometry.

As usual for this kind of terminology, f is a quasi-isometric embedding if it is
a (K,C)–quasi-isometric embedding for some K, C, and so on.

Exercise 13. If this terminology is new, you should convince yourself of the
following:

(1) A composition of quasi-isometries is a quasi-isometry.
(2) Any quasi-isometry f : X → Y has a quasi-inverse; a quasi-isometry

g : Y → X so that f ◦ g and g ◦ f are bounded distance from 1Y and
1X , respectively.

(3) A metric space is quasi-isometric to a point if and only if it is bounded.
(4) A quasi-isometry of complete locally compact geodesic metric spaces in-

duces a bijection on the set of topological ends. (So R is not quasi-
isometric to R2, for example.)

Note that the first two parts of this exercise imply that quasi-isometry deter-
mines an equivalence relation on the class of all metric spaces.

The Schwarz–Milnor Lemma gives the fundamental connection between group
theory and coarse (qi) geometry. See [BH99, I.8.18] for a proof.

Schwarz–Milnor Lemma. Let X be a proper geodesic metric space on which
a group G acts properly, cocompactly, by isometries. Then
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(1) G is finitely generated by some set S, and
(2) any orbit map g 7→ gx is a quasi-isometry from (G, dS) to X.

(Here dS is the word metric on G given by the generating set S.)

We note some Corollaries/Exercises.

Corollary 10.2. Let G be finitely generated.

(1) If A and B are two finite generating sets for G, then the Cayley graphs
Γ(G,A) and Γ(G,B) are quasi-isometric. (So G determines a unique
quasi-isometry type.)

(2) If H<̇G, then H is quasi-isometric to G.
(3) If N �G is finite, then G/N is quasi-isometric to G.
(4) If G is the fundamental group of a closed hyperbolic n–manifold, then G

is quasi-isometric to Hn.
(5) If G is a finitely generated free group, then G is quasi-isometric to F2, the

free group on 2 letters.

2. Hyperbolic metric spaces

By a triangle we always mean a geodesic triangle, which is the union of three
geodesics, the sides of the triangle. A triangle T is δ–slim if each side is contained
in the δ–neighborhood of the union of the other two sides. Any particular triangle
is δ–slim for δ equal to the diameter of the triangle, for example. In the euclidean
plane, for any fixed δ there are triangles which fail to be δ–slim. Hyperbolic space,
on the other hand, has the property that all triangles are δ–slim for some universal
δ. It turns out that a great deal of geometry can be done using this fact alone.

Definition 10.3. Let δ ≥ 0. A geodesic space X is δ–hyperbolic if every
triangle in X is δ–slim.1 A space is said to be Gromov hyperbolic (or just hyperbolic)
if it is δ–hyperbolic for some δ.

Exercise 14. (1) If δ1 < δ2, then every δ1–hyperbolic space is δ2–hyperbolic.
(2) A tree is 0–hyperbolic.
(3) For any n ≥ 2, hyperbolic space Hn is δ–hyperbolic for some δ. Find a δ

which works. (Hint: think about ideal triangles)
(4) Let n ≥ 4. Any geodesic n–gon in a δ–hyperbolic space is (n− 2)δ–slim:

any side is contained in the (n − 2)δ–neighborhood of the union of the
other sides.

We’ll see that being (Gromov) hyperbolic is a quasi-isometry invariant, though
the particular δ is not. To prove this we have to understand the images of geodesics
under a quasi-isometry. But this is the same as understanding quasi-isometric
embeddings of intervals.

Definition 10.4. Let X be a metric space. Let I ⊆ R be closed and connected.
A (K,C)–quasi-isometric embedding of σ : I → X is called a (K,C)–quasi-geodesic.
(Sometimes the image of such a map is referred to as a (K,C)–quasi-geodesic.) If
I = [a, b] we say the quasi-geodesic is from σ(a) to σ(b).

1But if you are skipping around in these notes be sure to read Remark 10.16.
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Quasigeodesics in general metric spaces can be quite badly behaved. (For
example t 7→ tei(1+ln(t)) gives a qi embedding of [0,∞) into C = E2 [BH99, Exercise
I.8.23].)

However, we have the following nice statement in hyperbolic spaces (by the
Hausdorff distance between two paths, we mean the Hausdorff distance between
their images).

Theorem 10.5 (Quasigeodesic Stability). [BH99, III.H.1.7] Given any K,C, δ,
there is an R so that:

If σ is a (K,C)–quasigeodesic from x to y in a δ–hyperbolic space X, and γ is
a geodesic from x to y, then the Hausdorff distance between σ and γ is at most R.

We refer to Bridson–Haefliger for the proof. Here are some easy consequences.

Corollary 10.6. Let g : Y → X be a quasi-isometric embedding of geodesic
metric spaces, where X is hyperbolic. Then Y is hyperbolic.

Proof. Fix δ so that X is δ–hyperbolic.
For some K ≥ 1, C ≥ 0 there is a (K,C)-quasi-isometry g : Y → X. Let

T be a geodesic triangle in Y . Then g(T ) is a (K,C)–quasi-geodesic triangle in
X. By Quasi-geodesic stability, each side is Hausdorff distance at most R from a
geodesic with the same endpoints, where R = R(K,C, δ). These geodesics form
a δ–slim triangle. For y on the triangle T , there is therefore some y′ on another
side of T so d(g(y′), g(y)) ≤ 2R + δ. But then since g is a (K,C)–quasi-isometry,
d(y′, y) ≤ K(2R+ δ) +KC.

Thus Y is δ′–hyperbolic for δ′ = K(2R+ δ) +KC. �

Similar arguments give the following.

Corollary 10.7. Let f : Y → X be a quasi-isometric embedding of hyperbolic
spaces, and let Q ⊆ Y . Then Q is quasi-convex if and only if f(Q) is quasi-convex.

We can therefore make the following definitions:

Definition 10.8. Let G be finitely generated. G is hyperbolic if some (equiv-
alently every) Cayley graph is Gromov hyperbolic.

If G is hyperbolic and H < G, say that H is quasiconvex if it is quasiconvex as
a subset of some (equivalently every) Cayley graph of G.

We also note the following important observation:

Lemma 10.9. Let X be hyperbolic, and let A, B be subsets of X which are a
finite Hausdorff distance apart. Then A is quasiconvex if and only if B is quasi-
convex.

3. Infinite hyperbolic groups have elements of infinite order

The result in the title of this section is a special application of the theory
of regular languages to studying hyperbolic groups. That these ideas were rele-
vant was realized by Cannon – much more information can be found in the book
[ECH+92].

Definition 10.10. Suppose G is finitely generated by S, and g ∈ G. The cone
type C(g) is the collection of words w in the free group on S so that

dS(1, gw) = dS(1, g) + |w|.
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In other words, given any geodesic γ from 1 to g in the Cayley graph Γ(G,S), the
cone type C(g) is the collection of paths which can be appended to γ to produce a
new geodesic.

Exercise 15. Notice that C(gs) depends only on C(g) and s. Associated to
(G,S) there is therefore a directed labeled graph with vertices equal to possible
cone types in G, and edges labeled by elements of S ∪ S−1. Draw this graph for G
a free group or a free abelian group of rank 2, with S the standard generators.

Theorem 10.11 (Cannon’s cone types theorem). Let G be hyperbolic, generated
by the finite set S. There is a finite collection of cone types C = {C1, . . . , Ck} so
that, for every g ∈ G, C(g) ∈ C.

Proof. The idea is that the cone type of g is determined by the shape of the
set of nearby elements which are closer to the identity than g.

Let g ∈ G. Define the tail of g to be the set of t ∈ G satisfying both

(1) dS(gt, 1) < dS(g, 1) and
(2) dS(1, t) ≤ 2δ + 3, where δ is a constant of hyperbolicity for Γ(G,S).

Claim. If g, h have the same tail, they have the same cone type.

Proof. We’ll induct on the length of a word v in C(g), showing it must also
lie in C(h). The base case is that v is the empty word. So we must show that if
v ∈ C(g) ∩ C(h), and s ∈ S, that vs ∈ C(g) implies vs ∈ C(h).

Suppose not. Then vs ∈ C(g) \ C(h). In particular, dS(1, hvs) < dS(1, h) + 1.
Let γ be a geodesic from 1 to hvs, and let w be the word labeling γ. Since v ∈ C(h),
there is a geodesic σ from 1 to hv, passing through h, labeled by some word vhv.
Together with an edge labeled s, the geodesics γ and σ form a geodesic triangle
shown in Figure 1. Write w = w1w2, where |w1| = dS(1, h) − 1. This implies

1

h

s

v

hv

hvs

γ

σ

a = ht

Figure 1. The difference between h and a lies in the tail of h.

|w2| ≤ |v| + 1. We notice that (hv |hvs)1 ≥ dS(1, h) + |v| − 1. In particular, if
w1 is a length dS(1, h) − 1 prefix of w, w represents a group element a ∈ γ with
dS(a, h) ≤ δ + 1. Since a is closer to 1 than h is, the group element t = h−1a is in
the tail of h. In G we have the equality t−1vs = w2. The tail of g is equal to the
tail of h, so dS(gt, 1) < dS(g, 1). We note now that

gvs = (gt)t−1vs = gtw2.

Using the inequalities established already, we get

dS(1, gvs) ≤ ds(1, gt) + |w2| < dS(g, 1) + |v|+ 1,

contradicting the assertion that vs ∈ C(g). �
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�

Now let’s prove the corollary promised in the title of the subsection.

Corollary 10.12. If G is an infinite hyperbolic group, G contains an infinite
order element.

Proof. This is essentially the “Pumping Lemma” from automata theory. Let
k be the number of cone types with respect to some generating set S, and let g ∈ G
satisfy d(1, g) = n > k.

Choose a geodesic word w = s1 · · · sn representing g. Each prefix wi = s1 · · · si
of w is also a geodesic representative of some group element gi. There must be some
0 ≤ i < j ≤ n so that C(gi) = C(gj). Divide up the word w into three subwords
u1u2u3 so that u1 = wi, and u1u2 = wj . (See Figure 2.) Now clearly u2u3 ∈ C(gi).

1 gi gj g

u1 u2 u3

Figure 2. The middle word begins and ends with the same cone type.

Since C(gi) = C(gj), we have u2u3 ∈ C(gj). But this means u22u3 ∈ C(gi) = C(gj).
Inductively we see that un2u3 ∈ C(gi) for all i > 0. In particular un2 is geodesic for
every n > 0. In particular un2 is never a loop, for positive n, so the group element
g−1i gj represented by u2 must be infinite order. �

4. Quasiconvexity in cube complexes with hyperbolic π1

Theorem 10.13. Let X be a compact NPC cube complex, and suppose that
G = π1X is hyperbolic. The following are equivalent, for H < G a subgroup:

(1) H is quasiconvex in G.
(2) There is a compact NPC cube complex Y and a locally isometric immer-

sion φ : Y → X so that φ∗(π1Y ) = H.

Proof. Let X̃ be the universal cover of X.
(1) =⇒ (2): Choose x ∈ X̃ and a finite generating set S for G. The Schwarz–

Milnor Lemma implies that the orbit map g 7→ gx is a quasi-isometry from (G, dS)

to X̃. Corollary 10.7 implies that Hx is κ–quasiconvex for some κ. Haglund’s Hull
theorem 8.2 implies that there is a locally isometric immersion of cube complexes
as specified.

(2) =⇒ (1): Lift φ to a map φ̃ : Ỹ → X̃ of universal covers. Proposition 7.17

says that this map is one-to-one, with convex image. If x ∈ X̃, then Hx is finite
Hausdorff distance from φ̃(Ỹ ), so Hx is quasiconvex by Lemma 10.9. But this
implies that H < G is quasiconvex by Corollary 10.7. �

Remark 10.14. In particular hyperplane subgroups (π1–images of hyperplanes)
are quasiconvex. This can be seen either by subdividing the cube complex, or by
using the carrier of a hyperplane.



70 10. QUASI-ISOMETRIES AND HYPERBOLICITY

5. Gromov products and reformulating hyperbolicity

The property of being (Gromov) hyperbolic has a number of useful reformula-
tions. It’s useful to have at least a few of these at our fingertips. (Lots more can
be found, for example in Bridson–Haefliger.) We’ll start with some terminology.

A tripod is a geodesic space which is the union of three (possibly degenerate
intervals), wedged together at a point:

(3) [x1, y1] t [x2, y2] t [x3, y3]/x1 ∼ x2 ∼ x3.

Given three points p1, p2, p3 in a metric space M , the triangle inequality implies
that there is always a comparison tripod, i.e. a tripod T as in (3) so that d(pi, pj) =
(yj − xj) + (yi − yj) for any i 6= j. If M is a geodesic space, and ∆ is a geodesic
triangle with the points p1, p2, p3 as vertices, there is always a comparison map
c : ∆� T which restricts to an isometry on each side. (Remember that a geodesic

c

p3
p2

p1 p̄1

p̄3 p̄2

o
i2 i3

i1

Figure 3. Comparison tripod and comparison map.

triangle is just a union of three geodesic segments — the triangle is not necessarily
“filled in”.) For each j, we refer to the point yj as p̄j . We refer to the common
image of the points xj as o (see Figure 3). The points {i1, i2, i3} = c−1(o) are called
the internal points of the triangle ∆. For each j ∈ {1, 2, 3}, we have (considering
subscripts mod 3)

(pj+1 | pj+2)pj := d(p̄j , o) = d(pj , ij+1) = d(pj , ij+2)

=
1

2
(d(pj , pj+1) + d(pj , pj+2)− d(pj+1, pj+2)) .

This quantity is called the Gromov product of pj+1 and pj+2 with respect to pj.
With notation as in the previous paragraph, the insize of ∆ is the diame-

ter of c−1(o). If δ ≥ 0, then ∆ is δ–thin (not to be confused with δ–slim) if
sup{diam(c−1(z)) | z ∈ T} ≤ δ.

With this language we can give a number of equivalent formulations of hyper-
bolicity.

Proposition 10.15. Let X be a geodesic space. The following are equivalent:

(1) ∃δ1 ≥ 0 so that all triangles in X are δ1–thin.
(2) ∃δ2 ≥ 0 so that all triangles in X are δ2–slim.
(3) ∃δ3 ≥ 0 so that all triangles in X have insize at most δ3.
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The (elementary) proof can be found in [BH99, III.H.1.16]. There is some
slight worsening of constants as one moves from one formulation to the next. For
a fixed δ, the strongest statement is (1), that all triangles are δ–thin.

Remark 10.16. (WARNING) We will henceforth mean, by δ–hyperbolic, the
statement that all triangles are δ–thin, not just δ–slim.

Another important interpretation of the Gromov product in hyperbolic spaces
is as the approximate distance from a basepoint to a geodesic. The following is an
exercise.

Lemma 10.17. Let x, y, z ∈ X where X is δ–hyperbolic, and let σ be a geodesic
joining x to y. Then d(z, σ)− δ ≤ (x | y)z ≤ d(z, σ).

6. Stability of paths built from geodesic segments

In this section we prove that local geodesics and “broken geodesics” are close
to geodesics. It is also possible to show such paths are quasi-geodesics (we’ll do this
later for broken geodesics) so one could deduce they are close to geodesics using the
Quasi-geodesic Stability Theorem 10.5. However it is possible to get better bounds
by attacking the question directly.

Lemma 10.18. Let c be a path in a δ–hyperbolic space, and suppose that c ⊂
NR(γ), where γ is a geodesic connecting the endpoints of c. Then γ ⊂ NR+δ(c).

Proof. Suppose the paths c and γ go from p to q. If a, b ∈ γ we’ll write [a, b]
for the subsegment of γ joining them. Let r ∈ γ. The image of c is contained in
the union of the R–neighborhoods of [p, r] and [r, q]. Since the image is closed and
connected, there is some x on c which is contained in NR([p, r]) ∩ NR([r, q]). Let
p′ ∈ [p, r] and q′ ∈ [r, q] be points within R of x, and consider the comparison tripod
for the triangle with vertices {x, p′, q′}. The image of r on this tripod is distance
at most R from the image of x, so d(r, x) ≤ R + δ. Since r ∈ γ was arbitrary, the
Lemma is proved. �

Lemma 10.19. Let γ, σ be geodesic segments in a δ–hyperbolic space. Let x be
a point of σ so that d(x, γ) ≥ d(y, γ) for all y ∈ σ. Then either

(1) σ is contained in a 2δ–neighborhood of γ, or
(2) some endpoint of σ is within 2δ of x.

Proof. Let x be the point on σ which is farthest from γ, and let x′ ∈ γ be
closest to x. Join the endpoints of σ to x′ and consider the comparison tripod T1 for
the resulting triangle. Let x̄ be the image of x in this tripod. Let y be an endpoint
of σ whose corresponding leg contains x̄. (It might be the central point, in which
case y can be either endpoint.) Let x′′ be the point on [y, x′] in the preimage of x̄,
so d(x′′, y) = d(x, y).

Let y′ be the closest point on γ to y, and consider also the triangle with vertices
{y, y′, x′} and its comparison tripod T2. The image x̄′ of x′ in T2 is either in the leg
corresponding to y or the leg corresponding to x′. If it is in the leg corresponding
to x′, then d(x′, γ) ≤ δ, and so d(x, γ) ≤ 2δ; we are in case (1).

If x̄′ is contained in the leg corresponding to y, then

d(x, y′) ≤ 2δ + d(y, y′)− d(x, y).
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(Consider the tripods.) Since x is farthest from γ,

0 ≤ d(x, y′)− d(y, y′) ≤ 2δ − d(x, y),

so d(x, y) ≤ 2δ and we are in case (2). �

Definition 10.20. Let K > 0. A K–local geodesic is a unit speed path so that
every subpath of length at most K is geodesic.

The next statement is immediate from Lemmas 10.18 and 10.19.

Corollary 10.21. Let ε > 0 and suppose c is a (4δ + ε)–local geodesic. If γ
is a geodesic with the same endpoints,

(1) c is contained in a 2δ–neighborhood of γ.
(2) γ is contained in a 3δ–neighborhood of c.

The above statement is sometimes useful, but it is more common to be given
a broken geodesic than a local geodesic. The following proposition gives a similar
statement about broken geodesics.

Proposition 10.22. Let X be a δ–hyperbolic, geodesic space, and let l ≥ 0.
Let c = c1 · · · cn be a concatenation of geodesics ci = [pi−1, pi] so that

• (Gromov products are small) for each i, (pi−1, pi+1)pi ≤ l; and
• (segments are long) for each i /∈ {1, n}, |ci| > 2l + 8δ.

Then:

(1) c is contained in a (l + 3δ)–neighborhood of γ; and
(2) γ is contained in a (l + 4δ)–neighborhood of c.

Proof. If n ≤ 2, the Proposition follows easily from slimness of triangles, so
we assume n ≥ 3.

Item (2) follows from item (1) and Lemma 10.18, so we only need to prove
item (1). Let x be the farthest point from γ on c, and let M = d(x, γ). Without
loss of generality, we suppose that M > 2δ. Then Lemma 10.19 implies that x is
within 2δ of some breakpoint pi. Since M > 2δ, the breakpoint pi cannot be either
endpoint of the geodesic γ; in particular i /∈ {0, n}. There are two cases, depending
on whether or not i ∈ {1, n− 1}.

Suppose first that i /∈ {i, n − 1}. By the assumption that segments are long,
d(x, {pi±1}) > 2l + 6δ. Choose a geodesic σ joining pi−1 to pi+1, and note that
d(x, σ) ≤ l + δ, by the assumption on Gromov products. Let y be a closest point
to pi−1 in γ, and let z be a closest point to pi+1 in γ. Choose geodesics [y, z] ⊆ γ,
[pi−1, y], and [pi+1, z]. The point x lies within l+ 3δ of some point w on the union
of these three geodesics. We claim that w ∈ [y, z], so we have M ≤ l + 3δ.

Indeed, suppose that w ∈ [pi−1, y] (the case w ∈ [pi+1, z] being identical). Now
we have

0 ≤ d(x, y)− d(pi−1, y) ≤ d(x,w) + d(w, y)− (d(pi−1, w) + d(w, y))

= d(x,w)− d(pi−1, w)

≤ d(x,w)− (d(x, pi−1)− d(x,w))

= 2d(x,w)− d(x, pi−1)

≤ 2(l + 3δ)− d(x, pi−1) < 0

a contradiction. We have established item (1) in case i /∈ {1, n− 1}.
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Now suppose i ∈ {1, n− 1}. Reversing the indices if necessary, we can assume
that i = 1. Let z be the point on γ closest to p2. Clearly we have d(p2, z) ≤ M .
Choose a geodesic [p0, p2]; the point x is within l + δ of a point x′ on [p0, p2]. The
point x′ is within δ of a point w either on [p0, z] ⊂ γ, or on a geodesic [p2, z]. If
w ∈ γ, we have d(x, γ) ≤ l + 2δ, and we are finished.

Suppose that w ∈ [p2, z]. We have

0 ≤ d(x, γ)− d(p2, z) ≤ d(x, z)− d(p2, z)

≤ d(x,w) + d(w, z)− (d(p2, w) + d(w, z))

= d(x,w)− d(p2, w)

≤ d(x,w)− (d(p2, x)− d(x,w))

= 2d(x,w)− d(p2, x)

< 2(l + 2δ)− (2l + 8δ − 2δ) ≤ −2δ,

a contradiction. �





CHAPTER 11

Characterizing virtually special in terms of
separability

We have already seen that quasiconvex subgroups of virtually special hyperbolic
groups are separable. In this chapter we see how separability can be used to remove
the hyperplane pathologies. This brings us tantalizingly close to proving that if
G = π1X is hyperbolic, and X is a compact NPC cube complex, then X is virtually
special if and only if the hyperplane subgroups are separable in G. This statement
is true, but seems to require the Malnormal Quasiconvex Hierarchy Theorem of
Hsu–Wise and Haglund–Wise.

We will be able to show:

Theorem 11.1. [HW08] Let G = π1X be hyperbolic, where X is a compact
NPC cube complex. The following are equivalent:

(1) X is virtually special.
(2) Every quasiconvex subgroup of G is separable. (“G is QCERF.”)

A crucially important corollary of this statement is that, for G hyperbolic,
virtual specialness is a property of the group G, and not of any particular cube
complex whose fundamental group is isomorphic to G.

Corollary 11.2. Let π1X ∼= π1Y ∼= G, where G is hyperbolic, and X, Y are
compact NPC cube complexes. If X is virtually special, then so is Y .

1. Resolving the “easy” pathologies

Recall the four hyperplane pathologies: one-sidedness, self-intersection, self-
osculation, and inter-osculation. The first is easiest to resolve (assuming there are
no self-intersections), and doesn’t really have anything to do with separability:

Lemma 11.3. Let X be a NPC cube complex with finitely many hyperplanes,
all of which are embedded. Then there is a finite-sheeted cover Ẍ → X so that no
hyperplane of Ẍ is one-sided.

No finite-sheeted cover of Ẍ contains a one-sided hyperplane.

Proof. If H is a hyperplane of X, let ωH : π1X → Z/2Z measure the inter-
section mod 2 with H. Notice that if H is one-sided, then ωH can’t be zero, since
there must be a loop in the closed carrier of H (as in Figure 1) which crosses H an
odd number of times. If H is the set of hyperplanes, we can put all the ωH together
to get a map:

(4) Ω: π1X → (Z/2Z)H.

Since X has finitely many hyperplanes, the kernel of Ω is finite index in π1X, and
so there is a finite-sheeted cover Ẍ → X with π1Ẍ = ker Ω. If Ω contained a

75
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H

γ

Figure 1. The blue loop γ witnesses the one-sidedness of H and
shows that ωH is nontrivial.

one-sided hyperplane H̃, there would be a loop in the carrier of H̃ as in Figure 1
witnessing that fact. The image of this loop in X would also cross some hyperplane
an odd number of times, contradicting the fact that it lifts to Ẍ. �

Remark 11.4. The “double-dot” cover of a cube complex just described as
corresponding to the kernel of the map in equation (4) has a lot of nice properties,
and will be useful for other things later.

We will remove self-intersection and self-osculation in a fairly straightforward
way, using the topological characterization of separability. In separability gives us
quite a bit more – we can lift hyperplanes to ones with “large embedded neighbor-
hoods.” Let’s make this precise:

Definition 11.5. Let H be a hyperplane of a NPC cube complex X, and let
H̃ ⊂ X̃ be an elevation of H to the universal cover of X. Let N = N(H̃) be the

(closed) carrier of H̃ in X̃. The self-interaction radius of H, written selfint(H), is

the smallest length of a combinatorial path joiningN to some γN with γ /∈ Stab(H̃).

Notice that if H self-intersects or self-osculates, then selfint(H) = 0. Observe
that self-interaction radius is monotone under covers in the following sense:

Lemma 11.6. Let H be a hyperplane of an NPC cube complex X, and let
X̂ → X be a cover. If Ĥ is any elevation of H to X̂, then selfint(Ĥ) ≥ selfint(H).

The following says essentially that if π1H is separable, then we can increase
selfint(H) in finite covers as much as we want.

Lemma 11.7. Let X be a compact NPC cube complex, and let H be a compact
hyperplane so that π1H is separable in π1X. Let n ≥ 0. Then there is a finite-
sheeted regular cover X̂ → X so that any elevation of H to X̂ has selfint(H) > n.

Proof. Let G = π1X, W = π1H, and fix an elevation H̃ to the universal cover
X̃ of X. Let S be a finite generating set for G, and endow G with the word metric
coming from S. Choose x a vertex of the closed carrier N of H̃. The Schwarz–
Milnor Lemma tells us that there is a (λ, ε)–quasi-isometry from G to Gx for some
λ, ε.

Let I = {γ | d(N, γN) ≤ n}. We claim that I is a finite union of double
cosets of the form WgW for g ∈ G. Indeed, W acts cocompactly on N . Let K
be a compact fundamental domain for the action containing x. If γ ∈ I, then
d(N, γN) ≤ n. Choose n1, n2 ∈ N so that d(n1, γn2) = d(N, γN). For i ∈ {1, 2}
there is a wi ∈ W so that ni ∈ wiK. But then we have that d(w−11 γw2K,K) ≤ n,
and so d(w−11 γw2x, x) ≤ n + 2 diam(K). This implies in G, that d(w−11 γw2, 1) ≤
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C(n) := λ(n+2 diam(K))+λε. Only finitely many cosets WγW intersect the C(n)
ball about the identity in G. List these cosets: {W,Wγ1W, . . . ,WγmW}, choosing
representatives γi so that d(x, γix) is minimal.

Since W is separable, there is a G0<̇G containing H but not containing any of
the γis. Let X0 → X be the corresponding finite-sheeted cover. Then H lifts to
a hyperplane H0 with selfint(H0) > n. There may be other elevations of H which
do not have this property, but after passing to a regular finite-sheeted cover, all
elevations will have selfint > n. �

Combining the above with Lemma 11.3, we obtain the following:

Corollary 11.8. Let X be a compact NPC whose hyperplane subgroups are all
separable. Then there is a finite-sheeted X̂ → X with every hyperplane embedded,
2–sided, and non-self-osculating.

We’ll see later that Lemma 11.7 has a lot of other applications besides dealing
with hyperplane pathologies.

In order to deal with interosculation, we’ll need to use separability of some sub-
groups obtained by amalgamating hyperplanes together. To show quasi-convexity
of these subgroups, we’ll need some version of a combination theorem, which we
prove in the next subsection.

2. Quasiconvex combination and resolving interosculations

Exercise 16. Let A, B, C be NPC cube complexes, and suppose there are
combinatorial isometric embeddings φA : C → A and φB : B → A. Let X be
obtained by gluing A and B together along C:

X = A tB/φA(c) ∼ φB(c), ∀c ∈ C.
X is a NPC cube complex.

(Hint: Work out the links, and show that gluing two flag complexes along a
full subcomplex yields a flag complex.)

In particular, we consider two hyperplanes H1, H2 ⊂ X where X is a NPC
cube complex, and suppose selfint(Hi) > 0 for each i. This implies that the closed
carriers N1 and N2 are embedded in X. Fix a component C of N1 ∩ N2. Then
Y = N1 tC N2 is a NPC cube complex with Y immersed (not necessarily locally

isometrically) in X. We can choose an elevation C̃ to the universal cover of X, and

elevations Ñi of Ni so that Ñ1 ∩ Ñ2 = C̃.

Lemma 11.9. With the notation in the previous paragraph, if γ is a shortest
path between vertices p and q in Ñ1 ∪ Ñ2, then γ is a geodesic segment in X̃.

Proof. (Recall that paths and metrics are assumed combinatorial unless oth-

erwise stated.) If p and q are both in Ñ1 or Ñ2, there is nothing to prove, since

these sets are convex. We can therefore assume p ∈ Ñ1 and q ∈ Ñ2.
We’ll use the median property of the one-skeleton.
Choose some r ∈ γ∩C̃, and consider the median point m of p, q, r in X̃. Choose

particular geodesics [p,m], [m, q], and [r,m]. Since the Ñi and C̃ are all convex,

[r,m] lies in Ñ1 ∩ Ñ2 = C̃, [p,m] lies in Ñ1, and [q,m] lies in Ñ2. If r 6= m, then

[p,m] ∪ [m, q] is a shorter path than γ in Ñ1 ∪ Ñ2, from p to q. Thus r = m, and
dX̃(p, q) = d(p, r) + d(r, q) = |γ|. �
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The lemma we just proved shows that even if Ñ1∪Ñ2 is not locally isometrically
embedded, it is isometrically embedded, in the sense that the metric induced from
X agrees with its intrinsic metric.

We now use this lemma to prove a Hyperplane Combination Theorem, which
we’ll use (together with quasiconvex separability) to resolve interosculations.

Theorem 11.10. Let X be a compact NPC cube complex whose universal cover
X̃ is δ–hyperbolic. Let H1, H2 be hyperplanes of X whose self-interaction radii are
at least 100(δ + 1), and let N1, N2 be the closed carriers of these hyperplanes. Let
C be a component of the intersection N1 ∩N2, and choose a basepoint in C. With
respect to this basepoint, let W1 = π1N1, W2 = π1N2, and Z = π1C.

(1) 〈W1,W2〉 is 3δ–quasiconvex in G = π1X.
(2) 〈W1,W2〉 ∼= W1 ∗Z W2.

Proof. Showing that 〈W1,W2〉 is an amalgam: Let K = N1 tC N2. Seifert–
van Kampen tells us that π1K = W1 ∗Z W2. There is a canonical immersion
φ : K → X. We lift this to a map φ̃ : K̃ → X̃ of universal covers If φ∗ : π1K → G
is not one-to-one, this means that φ̃ is not one-to-one. So we may choose any
nontrivial geodesic σ in K̃ whose endpoints are identified by φ̃. This geodesic
decomposes a concatenation σ = σ1 · · ·σn of geodesics σi each of which lies in an
elevation of N1 or of N2, alternating between elevations of the two carriers.

We claim that n ≥ 3. Indeed, n 6= 1, since the copies of the Ñi embed in X̃.
And n 6= 2 because the copies of the Ñi are convex.

Because of the assumption on self-interaction radius, the geodesics σi for 1 <
i < n must each have length at least 100(δ + 1). In particular |σ| > 100(δ + 1).

Lemma 11.9 implies that φ̃σ is a 100(δ+ 1)–local geodesic. Corollary 10.21 implies

that φ̃σ lies in a 2δ–neighborhood of any geodesic connecting its endpoints. But φ̃σ
is a loop, so it must actually lie in a ball of radius 2δ. Since it contains a geodesic
subsegment of length at least 100(δ + 1), this is a contradiction.

Showing that 〈W1,W2〉 is quasiconvex: Let p, q be two vertices of K̃, which

we now identify with its image in X̃. Let γ be an X̃–geodesic joining p to q. They
are also joined by a K̃–geodesic σ = σ1 · · ·σn as above, composed of segments σi
each contained in an elevation of N1 or N2. As before, Lemma 11.9 shows the
path σ is a 100(δ+ 1)–local geodesic, so Corollary 10.21 implies that γ is contained

in a 3δ–neighborhood of σ. In particular γ lies in a 3δ–neighborhood of K̃, as
required. �

We want to rule out inter-osculation. The following lemma can be proved using
hexagon moves:

Lemma 11.11. Let X be a NPC cube complex, and let H1, H2 be hyperplanes
of X. Suppose selfint(H1) and selfint(H2) are positive, and let N1, N2 be the closed
carriers of the hyperplanes. If N1 ∩N2 is connected, then H1 and H2 do not inter-
osculate.

Exercise 17. Assume all the hypotheses of Theorem 11.10. Let A = 〈W1,W2〉,
and let XA be the cover of X corresponding to A. The complex K = N1 tC N2

embeds in this cover, so the hyperplanes H1 and H2 lift in a canonical way to this
cover. Show that these lifts do not interosculate. (If they did, there would be an

osculation of lifts of N1 and N2 in the image of K̃ in X̃.)
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Exercise 18. Let X be a NPC cube complex, and let H1, H2 be two embedded
hyperplanes which don’t interosculate. If X̂ → X is a finite-sheeted cover, and Ĥi

is an elevation of Hi for each i, then Ĥ1 and Ĥ2 don’t interosculate.

Applying the Scott’s topological characterization of separability to the cover in
Exercise 17, we can obtain the following:

Corollary 11.12. Assuming the hypotheses of Theorem 11.10, if Z is sepa-
rable in π1X, then there is a finite cover X̂ → X in which no elevations of H1 and
H2 interosculate.

Proof. The exercise says that K = N1 tC N2 embeds in the cover corre-
sponding to π1K = 〈W1,W2〉. Scott’s criterion says that we can then embed K in

a finite-sheeted cover X0 → X. Let X̂ → X be the regular cover corresponding to
the normal core of π1X0 < π1X.

Then K ⊂ X0 contains elevations of H1 and H2 which cross but do not osculate.
Passing to the regular cover X̂, we have that any crossing pair of elevations fail to
osculate. (Note that two elevations of H1, say, cannot cross or osculate because of
the assumption of large self-interaction radius.) �

We’ve now seen how to resolve all the hyperplane pathologies in finite-sheeted
covers, using separability of quasiconvex subgroups. This completes the proof of
Theorem 11.1.





CHAPTER 12

Reformulations of hyperbolicity, loxodromic
isometries

In this chapter we return to our general discussion of hyperbolic spaces.

1. Four-point reformulations of hyperbolicity

The hyperbolicity condition can also be formulated entirely in terms of Gromov
products. We remark (see Figure 1) that if x, y, z, w are any four points in a tree,

x
y

z
w

(x | y)w = (z | y)w

Figure 1. the smallest two pairwise Gromov products among
three points must coincide

then the smallest two of the quantities

(x | y)w, (x | z)w, (y | z)w
must be the same. Another way to say this is that in a tree T we have

(5) ∀x, y, z, w ∈ T, (x | y)w ≥ min {(x | z)w, (z | y)w} .

Exercise 19. Convince yourself that this is really a reformulation.

Since δ–hyperbolic spaces are “treelike”, it should come as no surprise that the
above statement is nearly true there. In a δ–hyperbolic space, the following holds:

(6) For x, y, z, w ∈ X the two smallest of

 (x | y)w,
(x | z)w,
(y | z)w

 differ by at most δ.

This is usually formulated in the following way:

(7) (x | y)w ≥ min {(x | z)w, (z | y)w} − δ, ∀x, y, z, w ∈ X.

In trees, one also has the following more symmetric “four-point” condition:

(8) ∀x, y, z, w ∈ T, d(x,w) + d(y, z) ≤ max {d(x, y) + d(z, w), d(x, z) + d(y, w)} .

81
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This corresponds to the fact that, among all the ways of adding up pairs of distances
between four points without repeating any points, the two largest are the same (See
Figure 2). An equivalent condition to the hyperbolicity condition (7) is the four-

x
y

z
w

l

Figure 2. Here d(x, y) + d(z, w) = d(x,w) + d(z, y) and d(x, z) +
d(y, w) is smaller by 2l.

point condition: For x, y, z, w ∈ X,

(9) The two largest of

 d(x, y) + d(z, w),
d(x, z) + d(y, w),
d(x,w) + d(y, z)

 differ by at most 2δ.

Again this is usually phrased more obscurely as:

(10) d(x,w) + d(y, z) ≤ max

{
d(x, y) + d(z, w),
d(x, z) + d(y, w)

}
+ 2δ, ∀x, y, z, w ∈ X.

We won’t need this, but Equation (7) can be used as a definition of hyperbolic-
ity, and it makes sense for metric spaces, not just for geodesic metric spaces. Using
this expanded notion of hyperbolic space, any subset of a hyperbolic space, with
the restricted metric, is itself a hyperbolic space. (For example one can consider
the 0–skeleton of a graph.)

Exercise 20. Show that (6),(7),(9) and (10) hold in any δ–hyperbolic space,
and that they are equivalent to each other in general.

2. Broken geodesics are quasi-geodesics

The “stability” results 10.21 and 10.22 suggest that local geodesics and broken
geodesics with small Gromov products are like quasi-geodesics. We next see that
they are in fact quasi-geodesics. For local geodesics it is possible to get a little nicer
quantitative statement, see [BH99, III.H.1.13].

Proposition 12.1. Let X be a δ–hyperbolic, geodesic space, and let l ≥ 0. Let
c = c1 · · · cn be a concatenation of geodesics ci = [pi−1, pi] so that

• (Gromov products are small) for each i, (pi−1, pi+1)pi ≤ l; and
• (segments are long) for each i /∈ {1, n}, |ci| ≥ R > 2(l + δ).

Then c is a quasi-geodesic whose quality depends only on l, δ, R. More precisely,
for any s, t in the domain of c,

(11) d(c(s), c(t)) ≥
(

1− 2(l + δ)

R

)
|s− t| − 4(l + δ).
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Proof. Our proof is based on the following claim which will be proved induc-
tively.

Claim. For each i, d(pi+1, p0) ≥ d(pi, p0) + l(ci+1)− 2(l + δ).

Now assuming the bound, we derive the quasi-geodesic inequality (11). First
we prove the inequality for t = 0 and s equal to the length of c:

d(p, q) = d(pn, p0) ≥
∑
i

(l(ci)− 2(l + δ))

= c1 + cn − 4(l + δ) +

n−1∑
i=2

(l(ci)− 2(l + δ))

≥ c1 + cn − 4(l + δ) +

n−1∑
i=2

(
1− 2(l + δ)

R

)
l(ci)

≥ −4(l + δ) +
∑
i

(
1− 2(l + δ)

R

)
l(ci)

=

(
1− 2(l + δ)

R

)
l(c)− 4(l + δ).

Any subsegment of c also satisfies all the hypotheses, so we have the inequality for
arbitrary s, t.

proof of Claim. It may be helpful to refer to Figure 3. We argue inductively.
The base cases i = 1, 2 are easy, so let i ≥ 2.

pi−1

p0

pi

pi+1

Figure 3. A part of the broken geodesic c.

We first assert (p0 | pi−1)pi > l. Indeed, using the inductive hypothesis we have

(p0 | pi−1)pi =
1

2
(d(pi, p0) + l(ci−1)− d(pi−1, p0))

≥ 1

2
(d(pi−1, p0) + l(ci−1)− 2(l + δ) + l(ci−1)− d(pi−1, p0))

= l(ci)− (l + δ) ≥ R− (l + δ) > l.

Now the two smallest of (pi−1 | p0)pi , (pi−1 | pi+1)pi , (p0 | pi+1)pi must be within δ of
one another (see Exercise 20. By hypothesis we have (pi−1 | pi+1)pi ≤ l so we must
have (p0 | pi+1)pi ≤ l + δ. This implies

d(p0, pi) + d(pi+1, pi)− d(pi+1, p0) ≤ 2(l + δ),

which can be rearranged (using ci+1 = d(pi+1, pi)) to give the inductive statement

d(pi+1, p0) ≥ d(pi, p0) + ci+1 − 2(l + δ).

�
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�

Remark 12.2. It follows that c is a (λ, ε)–quasi-geodesic for some λ, ε which
can be worked out from the statement. Plugging these numbers into a generic proof
of quasi-geodesic stability (eg [BH99, III.H.1.7]) gives some R so that c is contained
in the R–neighborhood of any geodesic joining its endpoints. Note however that
the R obtained in this way will be much worse than the constant l + 3δ given by
Proposition 10.22.

In the next chapter we will classify isometries of hyperbolic spaces as elliptic,
parabolic, and loxodromic. We defer the definitions of parabolic and elliptic until
later.

Definition 12.3. An isometry g of a hyperbolic space X is called loxodromic if
the map n 7→ gnx is a quasi-isometric embedding of Z into X for some (equivalently
any) point x ∈ X.

Corollary 12.4. Let g be an isometry of the δ–hyperbolic space X, and sup-
pose that there is a point x so that

d(g2x, x) > d(gx, x) + 2δ.

Then g is loxodromic.

Proof. We may suppose d(g2x, x) ≥ d(gx, x) + C where C > 2δ. Consider
a bi-infinite broken geodesic γ made of geodesic segments ci = [gi−1x, gix]. Each
segment has length R = d(x, gx). The Gromov products between any two adjacent
segments are

1

2

(
d(gx, x) + d(gx, x)− d(g2x, x)

)
≤ 1

2
(d(gx, x)− C) .

(In particular the right hand side is non-negative.) If we set l = 1
2 (d(gx, x)− C),

and R = 2l + C, then the path γ satisfies the hypotheses of Proposition 12.1. (Or
rather any subpath between gix and gjx does, which is enough to show quasi-
geodesicity, since the constants are independent of the subpath.) �

3. Finding loxodromic isometries

Corollary 12.4 gives a criterion for an element to be loxodromic, but it isn’t
obvious how to apply it. The following gives a way to use enough non-loxodromic
elements to find a loxodromic one.

Lemma 12.5. [CDP90, Chapitre 9, Lemme 2.3] Suppose X is δ–hyperbolic,
with δ > 0. Let g, h be non-loxodromic isometries satisfying

(∗) d(gx, x) ≥ 2(gx |hx)x + 6δ, and d(hx, x) ≥ 2(gx |hx)x + 6δ.

Then gh is a loxodromic isometry of X.

Proof. To simplify notation, we write |γ| for d(x, γx) when γ is an isometry
of X. We likewise write |γ − γ′| for d(γx, γ′x). The argument consists in applying
the four-point inequality (8) to three carefully chosen quadrilaterals.

The isometries g, h are assumed not to be loxodromic. Corollary 12.4 implies

(o) |g2| ≤ |g|+ 2δ, and |h2| ≤ |h|+ 2δ.
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The assumptions (∗) can be rewritten (expanding the Gromov product and can-
celling terms):

(∗∗) |h|+ 6δ ≤ |g − h|, and |g|+ 6δ ≤ |g − h|.

Now consider the four points x, gx, ghx, g2x. The four-point inequality says that

gx

x ghx

g2x

|g| |g − h|

|gh|

|g|

|g2||h|

the two largest of the sums

|h|+ |g2|, |gh|+ |g|, |g|+ |g − h|

must differ from one another by at most 2δ. The inequalities (∗∗) and (o) imply

|h|+ |g2| ≤ |g − h|+ |g| − 4δ,

so the first of the three is smallest. Since the second and third sums are at most 2δ
apart, ||gh| − |g − h|| ≤ 2δ. A symmetric argument gives ||hg| − |g − h|| ≤ 2δ.

Combining these bounds with the inequalities (∗∗) we obtain

(†) max{|g|, |h|}+ 4δ ≤ min{|hg|, |gh|}

The second quadrilateral to consider has corners x, gx, ghx, ghgx. Again, the

gx

x ghgx

ghx

|g| |g|

|ghg|

|h|

|gh||hg|

four-point inequality tells us that the two larger of the following three sums must
differ by at most 2δ:

|g|+ |h|, |hg|+ |gh|, |h|+ |ghg|.

Using (†), we get |g|+ |h| ≤ |hg|+ |gh| − 8δ, so again the first sum is smallest and
the second and third differ by at most 2δ. In particular

|ghg|+ |h| ≥ |hg|+ |gh| − 2δ.

Since |hg| − |h| ≥ 4δ (using (†) again), we have

(D) |ghg| ≥ |gh|+ 2δ.

The third and final quadrilateral has corners x, ghx, ghgx, ghghx. The four-
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ghx

x ghghx

ghgx

|gh| |h|

|ghgh|

|g|

|ghg||gh|

point inequality tells us the two larger of these sums must differ by at most 2δ:

|gh|+ |h|, |gh|+ |ghg|, |g|+ |(gh)2|.
Again we claim the first of the three is smallest; indeed, using (∗∗), (†), and (D) in
turn we have

|h|+ 6δ ≤ |g − h| ≤ |gh|+ 2δ ≤ |ghg|.
Since the second and third sums differ by at most 2δ, we deduce (using (D) and
then (†)):

|(gh)2| ≥ |gh|+ |ghg| − |g| − 2δ

≥ |gh|+ |gh| − |g|
≥ |gh|+ 4δ.

We can therefore apply Corollary 12.4 to conclude that gh is a loxodromic isometry.
�



CHAPTER 13

Boundaries of hyperbolic metric spaces

In this chapter we study the boundary of a hyperbolic group, and use it to
study quasi-convex subgroups. In particular we show that they have the properties
of finite height, finite width, and bounded packing, all of which are useful for proving
things about cube complexes.

1. The boundary at infinity

Let X be a proper, geodesic, δ–hyperbolic space. Then X can be compactified
by its Gromov boundary ∂X. We’ll see that any quasiisometry X → Y of such
spaces extends to a continuous map ∂X → ∂Y . In particular, if X is the Cayley
graph of a group G, then G acts on ∂X by homeomorphisms.1

1.1. The boundary as equivalence classes of rays. Points of ∂X are
equivalence classes of geodesic rays γ : [0,∞)→ X; the equivalence relation is that
γ ∼ γ′ if the Hausdorff distance between γ and γ′ is finite.

We topologize ∂X by describing when sequences converge. First we need a
lemma, which is left as an exercise:

Lemma 13.1. Fix p ∈ X. Then every point in ∂X is represented by a ray
starting at p.

Definition 13.2 (Topology on Gromov boundary). Let [γ] be a point in ∂X,
and let {γi}i∈N be a sequence of rays with the same initial point as γ. We have
{[γi]}i∈N → [γ] in case:

There is some K > 0 and a sequence of positive numbers {ti}i∈N →∞ so that,
for all i, dHaus(γi|[0,ti], γ|[0,ti]) ≤ K.

The idea of this definition is that [γi] converge to [γ] if the rays γi have longer
and longer initial segments which fellow travel γ. A sometimes-useful fact is that
one can always take K to be a small multiple of δ, independent of the sequence.

Remark 13.3. Definition 13.2 can be extended to describe the compactification
X̄ = X∪∂X if you think of a point in X as an equivalence class of maps γ : [0,∞)→
X which is geodesic on some initial subsegment, and then constant thereafter. Two
such maps are equivalent if the eventually constant values coincide. Convergence
is then defined in exactly the same way.

The following is a consequence of quasi-geodesic stability (Theorem 10.5).

Proposition 13.4. If φ : Y → X is a quasi-isometric embedding of hyperbolic

spaces, then φ induces a continuous embedding φ̂ : ∂Y → ∂X.

1In fact the Gromov boundary makes sense even when X is not proper or geodesic; see
[BH99, III.H] for details.

87



88 13. BOUNDARIES OF HYPERBOLIC METRIC SPACES

Proof. (Exercise.) �

Definition 13.5. Let γ : R→ X be a bi-infinite geodesic (i.e. γ is an isometric
embedding). Define γ−, γ+ : [0,∞) → X by γ−(t) = γ(−t), and γ+(t) = γ(t). If
[γ−] = η, and [γ+] = ξ say γ connects η to ξ. The points η and ξ are said to be the
endpoints at infinity of γ.

The next lemma says that such geodesics form slim bigons.

Lemma 13.6. Let γ1, γ2 be two bi-infinite geodesics with the same endpoints at
infinity. Then the Hausdorff distance between γ1 and γ2 is at most 2δ.

Proof. Let x lie on the image of γ1. Without loss of generality we may suppose
x = γ1(0). Let R > 0 be any number so that dHaus(γ

+
1 , γ

+
2 ), dHaus(γ

−
1 , γ

−
2 ) < R.

Choose points a±1 ∈ γ
±
1 so that d(x, a±1 ) > R + 2δ. Choose points a±2 on γ2 which

are within R of a±1 , and consider a quadrilateral with cornels a−1 , a
+
1 , a

+
2 , a

−
2 so the

side containing the points a±i is a subsegment of γi. This quadrilateral is 2δ–slim,
and the sides [a+1 , a

+
2 ] and [a−1 , a

−
2 ] are further than 2δ from x, so there must be a

point x′ on the side which is a subsegment of γ2 which is at most 2δ from x. �

They also form slim triangles (called ideal triangles), with coarsely well-defined
centers. Say that a point is a K–center for a triangle if it is contained in the
intersection of the K–neighborhoods of the sides.

Lemma 13.7. If γ1, γ2, γ3 are bi-infinite geodesics, each pair of which shares
a single endpoint at infinity, then every point on γ1 is within 5δ of a point on γ1
or γ2. For any K ≥ 5δ, the set of K–centers is nonempty, with diameter bounded
above by a constant which depends only on δ and K.

Proof. The proof of the first assertion is much like the proof of Lemma 13.6,
but uses a hexagon instead of a quadrilateral. Letting x be on one of the sides,
say γ1, we choose three sides of the hexagon to be segments, very far away from
x, joining γ1 to γ2, etc. The other three sides are subsegments of the sides of the
ideal triangle. The point x must be within 5δ of some other side of the hexagon,
but the only sides close enough are subsegments of γ2 and γ3.

Now let K ≥ 5δ. The side γ1 is contained in the 5δ–neighborhood of γ2 ∪ γ3.
Since each pair of γi shares only one point at infinity, there must be points of γ1
which are 5δ–close to both γ2 and γ3. The set of 5δ–centers is nonempty, and the
set C of K–centers contains the set of 5δ–centers.

Let a, b ∈ C. We must bound d(a, b) from above. For 1 ≤ i < j ≤ 3 choose a
point xij so that d(xij , γi), d(xij , γj) ≤ 5δ, but d(xij , γk) ≥ 100δ+2K for k /∈ {i, j}.
Each pair of these points is within 5δ of just one of the γi; call the geodesic segment
joining them σi. Using 2δ–slimness of quadrilaterals, there must be points ai, bi ∈ σi
so that d(a, ai), d(b, bi) ≤ K+2δ for each i. Let T be the comparison tripod for the
triangle ∆ made of the segments σi. The set {ai} must project to at least two legs,
and can have diameter at most 2K + 2δ. It follows that the set {ai} is contained
in the 2K + 3δ–neighborhood of the central point. In particular, each ai is within
2K + 4δ of any internal point z of the triangle ∆, so d(a, z) ≤ 3K + 4δ. The same
argument shows d(b, z) ≤ 3K + 4δ, so d(a, b) ≤ 6K + 8δ. �

Exercise 21. Let X be proper and hyperbolic. Then any two points at infinity
are connected by a bi-infinite geodesic. (Hint: pick representatives α, β whose
distance from one another is always fairly large. Then use thin-ness of quadrilaterals
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to show that geodesic segments [α(n), β(n)] all pass through some compact set, and
properness to show these sub-converge to a bi-infinite geodesic.)

1.2. Gromov product definition and limit sets. There is another way
to define the boundary at infinity, which works whenever X is δ–hyperbolic, even
if X isn’t proper. Namely, fix a basepoint p (which in the end won’t matter).
Say the sequence {ai}i∈N converges to infinity if limi,j→∞(ai | aj)p = ∞. Now
define points in the (sequential) Gromov boundary ∂sX to be equivalence classes
of sequences which converge to infinity, under the following equivalence relation:
{ai}i∈N ∼ {bi}i∈N whenever limi,j→∞(ai | bj)p = ∞. If p = [{ai}] we can write
limi→∞ ai = p. We are going to topologize X ∪ ∂sX so this really is a convergent
sequence.

First we extend the Gromov product to infinity; if η, ξ ∈ X ∪ ∂sX, define

(12) (η | ξ)p = sup

{
lim inf
i,j→∞

(ai | bj)p
∣∣∣∣ lim
i→∞

ai = η, lim
i→∞

bi = ξ

}
.

Ok, this is kind of ugly, but what you want to think about is that if you could
draw geodesic rays from p to the points η and ξ, then (η | ξ)p measures (up to an
additive constant) the length of maximal initial subsegments of η and ξ which δ–
fellow travel. Rays which fellow-travel for more time should be considered closer,
so we say that limk→∞ ηk = ξ in ∂sX exactly if limk→∞(ηk | ξ)p =∞. Points {ai}
in X converge to a point in ∂sX exactly when limi,j→∞(ai | aj)p = ∞, in which
case they converge to [{ai}]. We thus get a topology on all of X ∪ ∂sX.

Proposition 13.8. If X is proper and δ–hyperbolic, then X ∪ ∂X is homeo-
morphic to X ∪ ∂sX by a homeomorphism which restricts to the identity on X.

Proof. Sketch: Define a map from ∂X to ∂sX by sending the equivalence
class of the ray γ to the equivalence class of the sequence {γ(i)}i∈N. This map
doesn’t need properness. To define a map in the other direction, fix a basepoint
p. If {xi}i∈N represents a point of ∂sX, choose geodesic segments [p, xi]. Arzela-
Ascoli (properness is used here) can be used to show these segments subconverge
to a geodesic ray. For more see [BH99, III.H.3]. �

Definition 13.9. If Z ⊂ X is any subset of the δ–hyperbolic space X, then the
limit set Λ(Z) is that part of ∂sX which can be represented by sequences {zi}i∈bN
of points in Z. If Gy X is a group of isometries of X, we define the limit set Λ(G)
to be the limit set of any orbit of G.

One final remark about the Gromov product at infinity: The supremum is
somewhat arbitrary, and could be replaced by an infimum without changing any-
thing essential. This is because of the following.

Lemma 13.10. Let η, ξ ∈ ∂X, and suppose {a′i}i∈N, {b′i}i∈N be arbitrary se-
quences representing η and ξ, respectively. Then

lim inf
i,j→∞

(a′i | b′j)p ≥ (η | ξ)p − 4δ

Proof. Let ε > 0, and let {ai}i∈N, {bi}i∈N be sequences so that lim infi,j→∞(ai | bj)p >
(η | ξ)p − ε.

Choose large i, j, i′, j′, we have (ai | a′i′)p and (bj | b′j′)p much larger than (η | ξ)p,
and so that (ai | bi)p is within ε of (η | ξ)p. Let σ be a geodesic joining xi to yj and
let σ′ be a geodesic joining x′i′ to y′i′ . It is not too hard to see under these conditions
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that d(p, σ) and d(p, σ′) differ by at most 2δ. Thus the Gromov products (xi | yi)p
and (x′i′ | y′i′)p differ by at most 4δ (See Lemma 10.17). Since the indices i′, j′ were
essentially arbitrary, we get

lim inf
i,j→∞

(x′i | y′j)p ≥ lim inf
i,j→∞

(xi | yj)p − 4δ,

and the result follows. �

There is an analog of Lemma 13.7 for triples of points in the sequential bound-
ary. Let p, q, r be distinct points in ∂sX. Say that x ∈ X is a K–center for the
triple p, q, r if the following holds: For all sequences {pi}i∈N, {qi}i∈N, {ri}i∈N there
is an N so that if i, j, k ≥ N , then x is in the K–neighborhood of any geodesic
between pi, qj , rk. A slightly more complicated version of the argument in Lemma
13.7 gives the statement:

Lemma 13.11. Let p, q, r be distinct points in ∂sX, and let K ≥ 7δ. The set of
K–centers of p, q, r is nonempty, and has diameter bounded in terms of δ and K.

2. Isometries of hyperbolic spaces

There are two main results in this section. Theorem 13.24 classifies isometries
of hyperbolic spaces into elliptic, parabolic, and loxodromic (see Definitions 12.3,
13.20). For this result we don’t assume that the space in question is proper. In
particular, when we talk about ∂X in this section, we always mean the sequential
boundary defined in the last section.

Theorem 13.25 says that any infinite subgroup of a hyperbolic group contains
a loxodromic element. Before getting to the proofs, we introduce some machinery
which makes them a bit easier to articulate.

2.1. Quasimorphisms. For much more on quasimorphisms, including proofs
of the below statements, see [Cal09, 2.2]. A quasimorphism on a group G is a
function φ : G→ R which is “almost a homomorphism” in the sense that, for some
D(φ) ≥ 0 (the defect), and all g, h ∈ G

|φ(gh)− φ(g)− φ(h)| ≤ D(φ).

A quasimorphism is called homogeneous if it is a homomorphism when restricted
to any cyclic subgroup, in other words φ(gn) = nφ(g) for all g ∈ G,n ∈ Z. Any
quasimorphism can be “homogenized”; given a quasimorphism φ, the function

φ̄(g) = lim
n→∞

φ(gn)

n

is a homogeneous quasimorphism satisfying

(13) D(φ̄) ≤ 2D(φ), and |φ̄(g)− φ(g)| ≤ D(φ), ∀g ∈ G.
(See [Cal09, Lemma 2.21 and Corollary 2.59].) Notice that if two quasimorphisms
differ by a bounded amount, their homogenizations are the same.

At first glance you may wonder whether all quasimorphisms are just bounded
perturbations of homomorphisms to R. Here’s an example of something different.

Example 13.12. LetG be the free group on {a, b}, and embed the Cayley graph
of G in the plane in the standard way. For g ∈ G, let σg be the unique embedded
edge-path from the identity to g. Let φ(g) be the number of left turns this edge-
path takes minus the number of right turns it takes. Then φ((ab)n) = 2n − 1 for
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n > 0, so φ is unbounded. On the other hand φ(an) = φ(bn) = 0 for all n, so φ is
not boundedly different from a homomorphism.

Exercise 22. Show that φ defined in the above example is a quasimorphism.
What is its defect?

2.2. A little nonstandard analysis. The book [Gol98] is a nice readable
introduction to the subject of nonstandard analysis. For the purposes of these notes,
we will only really need a few facts. One can think of nonstandard analysis as a set-
theoretic trick which avoids the cumbersome nature of arguments involving passing
repeatedly to subsequences. We will define a gadget limω which can be applied to
any bounded sequence and always consistently pick out an accumulation point of
the sequence. How does this work? Here are the relevant definitions. (Despite the
eerie similarity in terminology, try not to confuse this notion of ultrafilter with the
one defined for pocsets!)

Definition 13.13. An ultrafilter on N is a subset ω of 2N \ {∅} which satisfies:

• (Completeness) For any A ⊆ N, exactly one of A,Ac is in ω; and
• (Consistency) If A ⊆ B and A ∈ ω, then B ∈ ω.

A principal ultrafilter on N is one of the form ωn = {A ⊆ N | n ∈ A}.

Here are a couple of exercises about ultrafilters.

Exercise 23. Suppose ω is an ultrafilter on N.

(1) Let N = A1 t · · · tAn be a finite partition of N. Show Ai ∈ ω for exactly
one i ∈ {1, . . . , n}.

(2) Let A,B ∈ ω. Then A ∩B ∈ ω.

Exercise 24. Say a subset of 2N \ {∅} is a filter on N if it satisfies the Consis-
tency requirement (13.13). Show that the “cofinite sets” F = {A ⊆ N | #(N \A) <
∞} form a filter. Then use Zorn’s Lemma to show that there is an ultrafilter on N
which isn’t principal.

Conversely, show that every nonprincipal ultrafilter contains F .

This gadget (a nonprincipal ultrafilter on N) exists, but can’t be described
directly; the use of Zorn’s Lemma is essential. There is something a little unsettling
about this, but we press on anyway, fixing a nonprincipal ultrafilter ω for the
rest of the text.

Definition 13.14. Let x = {xi}i∈N be a sequence of points in a metric space
M . Say that limω xi = x if for every ε > 0 the set {i | d(xi, x) ≤ ε} is in ω. We say
the point x is the ω–ultralimit of the sequence x.

Lemma 13.15. If M is a compact metric space, then every infinite sequence
has a unique ω–ultralimit among its accumulation points.

Proof. (Sketch) This is an application of Exercise 23 above. Since M is a
compact metric space, for any N > 0, it can be partitioned into finitely many
sets MN,1, . . . ,MN,kN of diameter 1

N . One can also arrange that each set MN,j is
contained in one of the sets MN−1,j′ .

Fix a sequence {xi}i∈N. The sets AN,j = {i | xi ∈MN,j} give a finite partition
of N, exactly one of whose elements AN,j(N) is in ω. The sets MN,j(N) form a
nested sequence of subsets of M whose diameter is going to zero. Each MN,j(N)
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contains an infinite subsequence of {xi}i∈N, and the unique point in
⋂
N MN,j(N)

is the ultralimit limω xi. �

Here is the construction which will be used in the next section.

Exercise 25. Let X be a metric space, and suppose {fi}i∈N is a sequence
of K–lipschitz functions which are uniformly bounded on any bounded set. Then
fω(x) = limω fi(x) is a K–lipschitz function on X.

2.3. A quasimorphism on the stabilizer of a point at infinity. In this
subsection, we fix a δ–hyperbolic space X, and a point ξ ∈ ∂X, and a group G
acting by isometries of X. We’re not assuming our hyperbolic spaces are proper,
so the point ξ should be thought of as an equivalence class of sequences not rays,
as in Section 1.2.

We are going to define a quasimorphism βξ on Gξ = StabG(ξ) which measures
the extent to which a group element pushes elements “towards” or “away from”
ξ. (We follow [CCMT15] for this definition.) Let x = {xi}i∈N be a sequence
representing ξ, and define the Busemann horokernel on X ×X to be

hx(x, y) = lim
ω
d(x, xn)− d(y, xn).

The functions hi(x, y) = d(x, xi) − d(y, xi) are uniformly lipschitz and uniformly
bounded on compact sets, so Exercise 25 implies that hx is a lipschitz function on
X ×X.

Exercise 26. Let x ∈ X, and suppose the sequence x tends to ξ ∈ ∂X.

(1) Suppose that γ is a geodesic ray in X tending to ξ. Show

lim
t→∞

hx(x, γ(t)) =∞.

(2) Suppose that {yi}i∈N limits to some point in ∂X \ {ξ}. Show

lim
i→∞

hx(x, yi) = −∞.

Lemma 13.16. Let x = {xi}i∈N and y = {yi}i∈N both represent ξ. Then the
difference |hx − hy| is bounded by 2δ.

Proof. Let x, y ∈ X.For ε > 0, consider the sets of indices

A = {i | |hx(x, y)− (d(x, xn)− d(y, xn))| ≤ ε},
B = {i | |hy(x, y)− (d(x, yn)− d(y, yn))| ≤ ε}.

Both sets are elements of ω, so their intersection A ∩ B is also in ω. In particular
A ∩B is infinite.

We have limi,j→∞(xi | yj)x = ∞, since the sequences x and y represent the
same point at infinity. The quantities (y |xn)x or (y | yn)x are bounded by d(x, y),
and for large n we have (xn | yn)x > d(x, y). Fix some such large n contained in
A ∩ B. The Gromov product inequality (7) implies that |(y |xn)x − (y | yn)x| ≤ δ.
A computation shows

|hx(x, y)− hy(x, y)| ≤ |d(x, xn)− d(y, xn)− d(x, yn) + d(y, yn)|+ 2ε

= 2|(y |xn)x − (y | yn)x|+ 2ε

≤ 2δ + 2ε.

Since ε, x, y were arbitrary, we see that hx and hy differ by at most 2δ. �
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Now we use the Busemann kernel to define a quasimorphism.

Definition 13.17. Choose a basepoint p ∈ X. Let αx,p(g) = hx(p, gp).

Lemma 13.18. The function αx,p : Gξ → R is a quasimorphism of defect at
most 2δ. Its homogenization βξ is independent of the choice of sequence x and
basepoint p.

Proof. We first show that αx,p is a quasimorphism. Let g1, g2 ∈ Gξ, and let
D(g2, g2) = αx,p(g1g2) − αx,p(g1) − αx,p(g2). Then using the fact that ultralimits
commute with addition and that g1 is an isometry, we can write

D(g1, g2) = lim
ω

[d(p, xn)− d(g1g2p, xn)− d(p, xn) + d(g1p, xn)− d(p, xn) + d(g2p, xn)]

= lim
ω

[d(g1p, xn)− d(g1g2p, xn)− (d(p, xn)− d(g2p, xn))]

= lim
ω

[d(p, g−11 xn)− d(g2p, g
−1
1 xn)]− lim

ω
[d(p, xn)− d(g2p, xn)]

= hg−1
1 x(p, g2p)− hx(p, g2p).

Since g1 fixes ξ, the sequence g−11 x also represents ξ. Lemma 13.16 says the differ-
ence is at most 2δ.

It is straightforward to see from the definitions and from Lemma 13.16 that
changing the basepoint p or the sequence x only changes αx,p by a bounded amount,
so it doesn’t affect the homogenization β. �

We will connect this quasimorphism to the detection of loxodromic isometries
in the next subsection.

2.4. Classifying isometries of hyperbolic spaces. We have already de-
fined an isometry g of a hyperbolic space X to be loxodromic if, for some p ∈ X,
the map n 7→ gnp gives a quasi-isometric embedding of Z into X. Note that for
a loxodromic isometry the limit set Λ(〈g〉) contains two points: g+∞ = [{gip}i∈N]
and g−∞ = [{g−ip}i∈N]. Both of these points are fixed by g. More generally we
have the following.

Lemma 13.19. Let g be an isometry of a hyperbolic space X. Then g fixes every
point in Λ(〈g〉).

Proof. Fix a base point p ∈ X.
If ξ is in Λ(〈g〉), there is some sequence {ki} with {gkip} tending to ξ. The

sequence {gki+1p} therefore tends to gξ. But d(gki+1p, gkip) = d(gp, p) is constant,
and so the two sequences must tend to the same point at infinity. Thus gξ = ξ. �

Here are two other types of isometries.

Definition 13.20. Let X be hyperbolic. An isometry g : X → X is elliptic if
some orbit 〈g〉p is bounded.

It is parabolic if it is not elliptic, and #Λ(〈g〉) = 1.

Notice that g is loxodromic/parabolic/elliptic if and only if all its nonzero
powers are.

We want to classify isometries with unbounded orbits into loxodromic and
parabolic. We will do so according to their fixed point sets in ∂X. Using Lemma
13.11 it is not hard to see the following.
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Lemma 13.21. Suppose g is an isometry of a hyperbolic space X which fixes
three points in ∂X. Then g is elliptic.

We will see that for a non-elliptic isometry g, the fixed point set at infinity is
equal to the limit set of the cyclic group generated by g. First we show this limit set
is always nonempty. (When X is proper this is automatic, since ∂X compactifies
X in that case.)

Lemma 13.22. Let g be a non-elliptic isometry of a hyperbolic space X. Then
Λ(〈g〉) is non-empty.

Proof. We argue by contradiction, assuming Λ(〈g〉) is empty. If g were loxo-
dromic Λ(〈g〉) would contain the points g±∞ defined above, so g is not loxodromic.

Fix p ∈ X. Since the limit set is empty, the sequence {gkip}i∈N fails to converge
to infinity, no matter what indices ki are chosen. Since g is non-elliptic, we may
choose such a sequence so that the distances d(gkip, p) are monotone increasing.
Since the sequence fails to converge to infinity, there is a constant C so there are
arbitrarily large pairs ki, kj so that (gkip | gkjp)p ≤ C. In particular, we can fix a
pair ki, kj so that d(gkip, p), d(gkip, p) > C+6δ. Applying Lemma 12.5 we see that
gki−kj is loxodromic, contradicting the assumption that g was non-loxodromic. �

Lemma 13.23. Let g be an isometry of the hyperbolic space X, fixing ξ ∈ ∂X.
Then g is loxodromic if and only if βξ(g) 6= 0.

Proof. Suppose first that g is loxodromic. The limit set of 〈g〉 contains the
points g±∞. The isometry g fixes these points (Lemma 13.19), and isn’t elliptic,
so it can fix no others (Lemma 13.21). So, possibly replacing g by its inverse,
we can suppose that ξ = g∞. In particular, fixing some x ∈ X, we can use the
sequence x = {gix}i∈N to define a horokernel hx and a quasimorphism αx,x(k) =
hx(x, kx) whose homogenization is βξ, as in Subsection 2.3. Exercise 26 implies
that limi→∞ αx,x(g−i) = −∞. Since the difference between βξ and αx,x is bounded
βξ cannot vanish on g.

Conversely, suppose that βξ(g) 6= 0. We may suppose βξ(g) > 0. Let x =
{xi}i∈N be a sequence representing ξ, and let x ∈ X be some base point. There is
some constant C so that |hx(x, gnx) − βξ(gn)| ≤ C, independent of n. Fix n ∈ Z
and ε > 0 and choose some large k so that, for a, b ∈ {gnx, x},

|hx(a, b)− (d(a, xk)− d(b, xk))| < ε.

Now we have

d(gnx, x) ≥ d(x, xk)− d(gnx, xk)

≥ hx(x, gnx)− ε
≥ βξ(gn)− C − ε
≥ nβξ(g)− C − ε.

Since d(gpx, gqx) = d(gp−qx, x), this shows that n 7→ gnx is a quasi-isometric
embedding, and so g is loxodromic. �

Theorem 13.24. Every isometry of a hyperbolic space is either elliptic, para-
bolic, or loxodromic.
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Proof. Let g be an isometry of a hyperbolic space X, which we assume is not
elliptic, and fix a base point x ∈ X. Since it is not elliptic, Lemma 13.22 implies
that 〈g〉 has non-empty limit set. Let ξ be a point of this limit set. We claim it is
the only point. If there is another point η, there is a sequence of powers ki so that
gkix tends to η. Exercise 26 implies that limi→∞ hx(x, gxix) = −∞. In particular,
it must be the case that βξ(g) 6= 0, so Lemma 13.23 implies that g is loxodromic.

Otherwise, ξ is the only limit point, and g is parabolic. �

2.5. Torsion subgroups of hyperbolic groups are finite. We saw before
that infinite hyperbolic groups always contain infinite order elements. The next
result says this is true even for infinite subgroups of hyperbolic groups. We use an
argument adapted from [GdlH90, pp. 156–157].

Theorem 13.25. Let G be hyperbolic, and let H < G be infinite. Then H
contains a loxodromic element.

Proof. We fix a δ–hyperbolic Cayley graph X for G. Since H is infinite,
the limit set of H in ∂X is nonempty. If it has two points a, b, choose sequences
αi → a, βi → b in H. The Gromov products (αi |βj)1 are bounded, so there is
some pair α, β with min{|α|, |β|} ≥ 2(α |β)1 + 6δ. By Lemma 12.5, one of α, β, or
αβ is loxodromic.

Now we suppose for a contradiction that H has precisely one limit point, a,
so that H < Stab(a). Let βa : Stab(a) → R be the quasimorphism from Lemma
13.18. We will bound the cardinality of the set K = {g ∈ Stab(a) | βa(g) = 0}.
Since H is infinite there is some h ∈ H with βa(h) 6= 0. By Lemma 13.23, this h is
loxodromic. In particular H has at least two limit points, a contradiction.

It remains to bound the size of K. Let γ : [0,∞)→ X be a unit speed geodesic
ray starting at the identity and representing a. Let x be the sequence {γ(i)}, let hx
be the corresponding Busemann horokernel, and let α = αx,1 be the corresponding
quasimorphism. Since βa is the homogenization of α, which has defect at most 2δ,
we have |βa(g)− α(g)| ≤ 2δ for all g. In particular, |α(g)| ≤ 2δ for every g ∈ K.

Let K0 < K be any finite subset. For each g ∈ K0, there is some N0 = N0(g) so
that gγ|[N,∞) lies in a 2δ–neighborhood of γ and γ|[N,∞) lies in a 2δ–neighborhood
of gγ. Choose an integer N so that N > N0(g) for every g ∈ K0. For such N ,
the quantity hx(1, g) differs by at most δ from d(1, γ(N)) − d(g, γ(N)), and the
quantity hgx(1, g) differs by at most δ from d(1, gγ(N))− d(g, gγ(n)). By Lemma
13.16 the quantities hx(1, g) and hgx(1, g) differ by at most 2δ from each other.

For g ∈ K0, we define η(g) to be any integer so that d(γ(N + η(g)), gγ(N)) ≤
2δ + 1; we claim that α(g) is approximately η(g). Indeed

α(g) = hx(1, g) ≥ d(1, γ(N + η(g)))− d(g, γ(N + η(g)))− δ
≥ N + η(n)− (N + 2δ + 1)− δ
= η(n)− (3δ + 1),

and

α(g) ≤ hgx(1, g) + 2δ

≤ d(1, gγ(N))− d(g, gγ(N)) + 3δ

≤ N + η(g) + 2δ + 1−N + 3δ

= η(g) + 5δ + 1.
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Since |α(g)| is bounded above by 2δ, we have |η(g)| ≤ 7δ + 1 on K0. It follows
that d(γ(N), gγ(N)) ≤ 9δ + 2, for every g ∈ K0, and so the cardinality of K0 is at
most the cardinality of a (9δ + 2)–ball in the Cayley graph of G. Since K0 was an
arbitrary finite subset of K, this shows that K is finite, and that H \K is nonempty,
as desired. �

Corollary 13.26. If G is hyperbolic, it contains no parabolic element.

3. Quasiconvex subgroups of hyperbolic groups

In this section we develop some more nice properties of quasiconvex subgroups
of hyperbolic groups.

Lemma 13.27. If G is a hyperbolic group, and H < G is quasiconvex, then
H is finitely generated and quasi-isometrically embedded in G. In particular H is
hyperbolic.

Proof. Fix Γ a Cayley graph for G, and suppose that Γ is δ–hyperbolic,
and H ⊂ Γ is K–quasiconvex. The reader can verify that a closed (K + 10δ)–
neighborhood N of H in Γ is quasi-isometrically embedded. Corollary 10.6 implies
that N is Gromov hyperbolic. Schwarz–Milnor implies H is finitely generated and
H ↪→ N is a quasi-isometric embedding. Thus H ↪→ G is a composition of quasi-
isometric embeddings. �

Lemma 13.28. Any finite intersection of quasiconvex subgroups of a hyperbolic
group is quasiconvex.

Proof. It suffices to consider two quasiconvex subgroups A,B of a hyperbolic
group G. We argue by contradiction, supposing that C = A∩B is not quasiconvex.
Thus there is a sequence of elements ci ∈ C, and geodesics γi joining 1 to ci, which
contain points yi satisfying d(yi, C)→∞.

However there is a fixed quasiconvexity constant λ and elements ai ∈ A, bi ∈ B,
so that d(yi, ai) and d(yi, bi) are both bounded by λ, for all i. The distances d(ai, bi)
are all bounded by 2λ, and there are only finitely many elements in the ball of radius
2λ around 1. Therefore, we may pass to a subsequence in which ai = big for some
fixed g of length ≤ 2λ. Now note that

aia
−1
1 = big · g−1b−11 = bib

−1
1

is in C for all i. Thus d(yi, C) ≤ d(yi, ai) + d(ai, aia
−1
1 ) ≤ λ+ d(1, a−11 ) is bounded

over all i, a contradiction since the yi are supposed to be getting further and further
from C. �

4. Height and width of quasiconvex subgroups

A great many arguments involving quasiconvex subgroups are easier in case
the subgroup H involved is almost malnormal, meaning that H ∩ gHg−1 is finite
whenever g /∈ H.2 The height and width of a subgroup are different measurements
of how far a subgroup is from being almost malnormal.

2H is malnormal if H ∩ gHg−1 = {1} whenever g /∈ H.
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Definition 13.29. Let G be a group, H < G a subgroup. The height of H
in G is the largest number n so that there are distinct cosets g1H, . . . , gnH with
#(g1Hg

−1
1 ∩ · · · ∩ gnHg−1n ) =∞.

The width of H is the largest number n so that there are distinct cosets
g1H, . . . , gnH with #(giHg

−1
i ∩ gjHg

−1
j ) =∞ for all i, j.

If H < G is finite its height and width are 0. If H is infinite and almost
malnormal, its height and width are 1.

There’s no real reason to restrict to a single subgroup; the above definitions
generalize to a collection of subgroups H. Here’s another way to think about height
and width, in terms of a certain simplicial complex D = D(H). Define the zero-
skeleton as the disjoint union of coset spaces

D(0) = t{G/H | H ∈ H,#H =∞}.
Vertices g0H0, . . . , gnHn span a simplex in D if

#
(
g0Hg

−1
0 ∩ · · · gnHg−1n

)
=∞.

Let F be the flag complex with the same one-skeleton as D. The height of H is
dim(D) + 1, and the width is dim(F) + 1. (The empty set has dimension −1.)

In this section we’ll prove that quasiconvex subgroups of hyperbolic groups
have finite height and width. Essentially the same proofs apply to finite collections
of quasiconvex subgroups. These theorems appeared first in [GMRS98].

Here’s a lemma:

Lemma 13.30. Let Q be a λ–quasiconvex subset of the δ–hyperbolic space X,
and let γ be a bi-infinite geodesic with endpoints in the limit set of Q. Then γ ⊆
Nλ+2δ(Q).

Proof. Let p ∈ γ. Reparametrize γ so that γ(0) = p. Let {ai}i∈N and {bi}i∈N
be representative sequences of points in Q which limit to the two endpoints of γ
at infinity. Choose N so that (aN | γ(−N))p > R, and (bN | γ(N))p > R. Draw a
picture and convince yourself that p is within 2δ of a geodesic from aN to bN . Since
both aN and bN are in Q, which is λ–quasiconvex, p is within 2δ+ λ of some point
in Q. �

We use the above lemma to prove quasiconvex subgroups have finite height:

Proposition 13.31. Let G be hyperbolic, and H quasiconvex. Then the height
of H in G is finite.

Proof. Fix a generating set S for G, and let δ be a constant of hyperbolicity
for Γ = Γ(G,S). Let λ be the quasiconvexity constant for H ⊂ Γ. Note that
every coset gH is also a λ–quasiconvex set. Suppose that I = g1Hg

−1
1 ∩· · · gnHg−1n

is infinite. By Lemma 13.28, I is also a quasiconvex subgroup. In particular it
is infinite hyperbolic (Lemma 13.27), so it contains an element of infinite order
(Corollary 10.12). Let γ be a bi-infinite geodesic joining distinct points in the limit
set of I. The endpoints of γ are also in Λ(giH) = Λ(giHg

−1
i ) for each i. Since

each giH is λ–quasiconvex, Lemma 13.30 implies that γ ⊂
⋂n
i=1N2δ+λ(giH). In

particular, for any vertex g on γ, every coset giH intersects the 2δ+λ–neighborhood
about g. These cosets are all disjoint, so there are at most #(B2δ+λ(g)) of them.
But this ball is isomorphic to the same radius ball around the identity, so we get
that the height of H is at most #(B2δ+λ(1)) ≤ (2#S)2δ+λ+1. �



98 13. BOUNDARIES OF HYPERBOLIC METRIC SPACES

4.1. Bounded packing and finite width. Next we turn to finite width.
Finiteness of width for quasi-convex subgroups will be a consequence of a slightly
more useful notion, bounded packing.

Definition 13.32. Let G be finitely generated, and let H < G. Let S be
a finite generating set for G, with respect to which we measure distance. The
subgroup H has bounded packing if for any D > 0, there exists N ≥ 2 so that
among any tuple of distinct cosets {g1H, . . . , gNH}, there must be two of distance
at least D.

Exercise 27. Show that if H has bounded packing with respect to the gener-
ating set S, then it has bounded packing with respect to any other finite generating
set for G.

Exercise 28. Finite subgroups and normal subgroups always have bounded
packing.

Proposition 13.34 below shows that bounded packing of a codimension one
subgroup forces finite dimensionality of the dual cube complex (via the Sageev
construction). Part of the argument will be used again later, so we break it out as
a lemma:

Lemma 13.33. Let G be a finitely generated group with Cayley graph X. For
i ∈ {1, 2}, let Hi be a finitely generated codimension one subgroup, with associated
Hi–wall Wi. Then there is a D > 0 so that whenever g1W1 and g2W2 are transverse,
then the D–neighborhoods of H1 and H2 in X intersect.

Proof. Each of the walls Wi is really a pair of Hi–halfspaces {Ai, Aci}, and
there are finitely many Hi–orbits of edges joining Ai to Aci . Thus for some D > 0,
no edge in the complement of Ni = ND(Hi) connects Ai to Aci . Since each Hi is
finitely generated, we can suppose D is large enough that the Ni are connected.

Now suppose that g1N1∩g2N2 is empty. We want to show that g1W1 and g2W2

are nested. It suffices to take g1 = 1, g2 = g. By exchanging A1 with Ac1, we may

suppose that gN
(0)
2 ⊂ A1. If W1 and gW2 are transverse, then in particular the sets

gAc2 ∩Ac1 and gA2 ∩Ac1 must be nonempty. So let x ∈ gAc2 ∩Ac1, and y ∈ gA2 ∩Ac1.
Now every edge connecting a point of Ac1 to a point of A1 is contained in N1, and
N1 is connected, so there is a path σ connecting x to y using only vertices in Ac1
or N1. The path σ connects a vertex of gAc2 to one of gA2, so it must contain a

vertex z of gN2. Since gN
(0)
2 ⊂ A1, this vertex z must like in N1. So z ∈ gN2 ∩N1,

contradicting the assumption that it is empty. �

Proposition 13.34. Let G be finitely generated. Let H < G be a finitely
generated codimension one subgroup which has bounded packing, and suppose that
X is a cube complex obtained from (G, {H}) via the Sageev construction. Then C
is finite dimensional.

Proof. Fix a finite generating set S for G, and let X be the Cayley graph of
G with respect to S. Let A be the H–halfspace on which the Sageev construction is
based (See Lemma 9.19 for its properties), and let W be the corresponding H–wall.
By Lemma 13.33, there is some D so that if N = ND(H), and g1N ∩g2N = ∅, then
the walls g1W , g2W are nested.

The subgroup H is assumed to have bounded packing, so let M be some number
so that if {g1H, . . . , gMH} are distinct cosets, then two must be at distance at least
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2D+1. Thus there are at most M −1 pairwise transverse walls, and the dimension
of the dual cube complex is at most M − 1. �

Theorem 13.35. Let G be hyperbolic and H < G quasiconvex. Then H has
bounded packing.

Before we prove the theorem, let’s look at a couple of consequences. The first
follows directly from Proposition 13.34 above.

Corollary 13.36. Let G be hyperbolic and let H < G be quasiconvex and
codimension one. If A is an H–almost invariant subset, and C the corresponding
cube complex, then C is finite dimensional.

The second requires a little geometry.

Corollary 13.37. Let G be hyperbolic and H < G quasiconvex. Then H has
finite width.

Proof. Let Γ be a δ–hyperbolic Cayley graph for G, and suppose H is λ–
quasiconvex in Γ. Let D = λ+ 2δ. By Theorem 13.35, H has bounded packing in
G. Let N = N(D) be the constant from the definition of bounded packing.

Suppose that g1H, . . . , gkH are distinct cosets so that all intersections giHg
−1
i ∩

gjHg
−1
j are infinite. Then we may argue exactly as in the proof of Proposition 13.31

that d(giH, gjH) ≤ λ+ 2δ = D for each i, j. By the definition of bounded packing,
k (and hence the width of H) is at most N . �

The proof of Theorem 13.35 follows Hruska and Wise’s proof in [HW09] and
is likewise based on the following “magic trick” [HW09, Lemma 4.5]

Lemma 13.38. Let G be a discrete group with a proper left-invariant metric
dG. Let A,B < G, and let xA, yB be cosets, and let L > 0. Then there is an L′ so
that

NL(xA) ∩NL(yB) ⊂ NL′
(
xAx−1 ∩ yBy−1

)
.

Proof. Suppose the lemma is false. Then there is a sequence of group elements
zi ∈ NL(xA) ∩NL(yB) so that dG(zi, xAx

−1 ∩ yBy−1) tends to infinity.
For each i, there are elements pi, qi in the L–ball about 1 and ai ∈ A, bi ∈ B so

that zi = xaipi = ybiqi. The metric on G is proper, so by passing to a subsequence
we may assume that pi and qi are constant, i.e. pi = p and qi = q for all i.

But then ziz
−1
1 = xaia

−1
1 x−1 = ybib

−1
1 y−1, so dG(zi, xAx

−1 ∩ yBy−1) is
bounded above by dG(1, z1) for all i. This contradicts our initial choice of sequence
{zi}. �

Why do I call this a magic trick? As the reader can see, there are essentially
no hypotheses, but the conclusion is weaker than it might at first appear. The
constant L′ depends on all the data given.

Proof of Theorem 13.35. Let H,G constitute a counterexample, chosen to
minimize heightG(H) among all possible counterexamples. Since finite subgroups
have bounded packing, this height must be positive. We will show that we can find
another counterexample with smaller height, contradicting our initial choice.

We fix a word metric dG on G. Since H does not have bounded packing in G,
there is some L so that for every N there is a collection

HN = {H, gN,1H, . . . , gN,NH}
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so that dG(A,A′) ≤ L for each A,A′ ∈ HN . Note that if dG(gH,H) ≤ L, then
HgH meets BL(1) in G, and there are finitely many such double cosets.

Refining our sequence of collections HN , we may therefore assume that they
all consist of H together with a collection of cosets of H lying in some fixed double
coset HgH 6= H.

Let K = H ∩ gHg−1. Since K is an intersection of quasiconvex subgroups it is
quasiconvex as well, and moreover is quasiconvex in the hyperbolic group H. We
will show first that K has lower height in H than H has in G, and then that K
also fails to have bounded packing in H, completing the contradiction.

Claim 13.38.1. The height of K in H is strictly less than the height of H in
G.

Proof of Claim 13.38.1. Whenever h1K, . . . , hpK are distinct in H/K then
the reader may verify that H,h1gH, . . . , hpgH are distinct in G/H, and also

p⋂
i=1

hiKh
−1
i ⊂ H ∩

p⋂
i=1

higH(hig)−1.

If the left-hand side is infinite, so is the right, and so the height of H in G is at
least one more than the height of K in H. �

In order to show K fails to have bounded packing we first show:

Claim 13.38.2. There is an R > 0 so that if

max{dG(agH, bgH), dG(H, agH), dG(H, bgH)} ≤ D,

then dG(aK, bK) ≤ R.

Proof of Claim 13.38.2. Let x be a point of distance at most D/2 from
both agH and H, let y be within D/2 of both bgH and H, and let z be within
D/2 of both agH and bgH. Choosing geodesics [x, y], [y, z], and [z, x], there is a
number D′ (depending on δ, D, and the quasi-convexity constant of H) so that

[x, y] ⊂ ND′(H), [y, z] ⊂ ND′(bgH), [z, x] ⊂ ND′(agH).

There is a point w which is at distance at most δ from all three sides of this triangle,
and thus for D1 = D′ + δ,

ND1
(agH) ∩ND1

(bgH) ∩ND1
(H) 6= ∅.

The magic trick Lemma 13.38 gives us D2 so that ND1
(H)∩ND1

(gH) ⊂ ND2
(K).

Translating by a and b gives:

ND1
(H) ∩ND1

(agH) ⊂ ND2
(aK)

ND1
(H) ∩ND1

(bgH) ⊂ ND2
(bK)

The point w is in both of these, so we have d(aK, bK) ≤ 2D2, and we can take
R = 2D2. �

The following uses no geometry, and we leave it as an exercise:

Claim 13.38.3. The assignment ψ(hgH) = hK gives a well-defined bijection
from HgH/H to H/K.
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Now let KN = ψ(HN \{H}). This is a sequence of larger and larger collections
of cosets of K in H. By Claim 13.38.2, these cosets are uniformly pairwise close in
G. Since H is quasi-convex, Lemma 13.27 shows it is quasi-isometrically embedded
in G, and so these cosets are uniformly close in H as well. In other words, K does
not have bounded packing in H. This completes our argument. �

It seems worth remarking that whereas our bound on the height of a quasi-
convex subgroup of a hyperbolic group is constructive, the proof of bounded packing
just given is highly non-constructive.

Question 13.39. Is there a constructive proof of bounded packing? Such a
proof might be expected to give N as a function of D, the quasiconvexity constant
of H, the number of generators of G, and the hyperbolicity constant of G.

Exercise 29. What is the right notion of bounded packing for collections of
subgroups? Show that versions of Proposition 13.34 and Theorem 13.35 hold for
finite collections of subgroups.





CHAPTER 14

Hyperbolic groups acting on cube complexes:
finiteness

In this section we give some tools to show finiteness properties of a cube complex
coming from applying the Sageev construction to a hyperbolic group.

1. A cocompactness criterion

Our goal in this section is to prove that whenever the Sageev construction is
applied to a finite collection of quasi-convex subgroups of a hyperbolic group G,
the G–action on the resulting cube complex is cocompact.

We will to show that if a finite collection of quasi-convex sets in a hyperbolic
space are pairwise close, there is a point which is close to all of them. There are
a couple of ways to prove this. A slick proof based on asymptotic cones and the
topology of R–trees is given by Calegari. We will instead base the proof on
approximation of weak hulls by trees.

Definition 14.1. Let X be a δ–hyperbolic space, and let S ⊂ X. Let WH(S)
be the union of all the geodesics of X joining points of S. The set WH(S) is called
the weak hull of S.

Exercise 30. Show the weak hull of any set is λ–quasi-convex, where λ depends
only on δ.

Tree Approximation Lemma. For every n, δ, there is an ε satisfying the
following: For any n–point set Y in a δ–hyperbolic space, there is a metric tree TY
and a (1, ε)–quasi-isometry from WH(S) to TY so that every leaf of TY is the image
of a point of Y .

Proof. For now we refer to Chapter 8 of [CDP90], but we’ll insert at least a
sketch into these notes later. �

Lemma 14.2. Let n ∈ N, and let δ, λ,D ≥ 0. Then there is a D′ ≥ 0 so
that: For any collection S1, . . . , Sn of pairwise D–close λ–quasi-convex sets in a
δ–hyperbolic space X, there is a point p so that

max{dX(p, Si) | i = 1, . . . , n} ≤ D′.

Proof. Since the subsets Si are pairwise D–close there are
(
n
2

)
points pi,j ,

so that d(pi,j , Si) and d(pi,j , Sj) are at most D. Since Si is λ–quasi-convex, any
geodesic [pi,j1 , pi,j2 ] lies in a 2δ +D + λ–neighborhood of Si.

Let C be the coarse hull of the points pi,j , i.e. the union of all the geodesics
of the form [pi,j , pi′,j′ ]. By the Tree Approximation Lemma, there is an R–tree
T and a (1, ε)–quasi-isometry φ : C → T , where the constant ε depends only on
the numbers n and δ. Possibly increasing ε by a small amount (still depending

103
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only on δ and n), we can suppose that φ has an ε–quasi-inverse ψ, which is also a
(1, ε)–quasi-isometry.

For each fixed i let Ti be the convex hull in T of the points {pi,j | j 6= i}. For
each i, j, the intersection Ti∩Tj contains the point pi,j , so it is nonempty. It follows
that the intersection

⋂
i Ti is nonempty. Let z be a point in that intersection, and

let z̃ = ψ(z). Fix i, and note that since z is in Ti, it lies on a geodesic γi joining
two points pi,j and pi,j′ . Thus the point z̃ is on the (1, ε)–quasi-geodesic γ̃i = ψ(γi)
joining pi,j and pi,j′ . Let R be the constant of quasi-geodesic stability from Theorem
10.5 applied to (1, ε)–quasi-geodesics in δ–hyperbolic spaces.

Then z̃ lies in a 2δ + D + λ + R–neighborhood of Si, and we can take D′ =
2δ +D + λ+R. �

From this lemma we easily obtain the cocompactness criterion.

Theorem 14.3. [Sag97, Theorem 3.1] Let G be hyperbolic, let H be a finite
collection of quasi-convex subgroups, and suppose that X is a cube complex obtained
from (G,H) via the Sageev construction. Then the action of G on X is cocompact.

Proof. To each elementHi ofH is associated anHi–halfspace Ai ⊂ G, and the
collection of translates of these forms the space with walls PA. Let σ be a maximal
cube of X, corresponding to a collection of transverse walls g1W1, . . . , gnWn. (Each
Wi = {Aji , Acji}.) We want to show there are finitely many such cubes, up to the
G–action. So we can assume that g1 = 1, and fix H = Hj1 .

Since the walls are transverse, Lemma 13.33 implies that the D–neighborhoods
of the cosets {H} ∪ {giHji}ni=2 must intersect pairwise, where D depends only on
the collection H. By Lemma 14.2, there is a D′ depending only on n,D, and H
so that some fixed point p lies within D′ of all these cosets. Up to the H–action,
there are only finitely many choices for such a p. All the other cosets must intersect
the D′–neighborhood of p, so there are only finitely many choices of n–tuple, once
p has been fixed. Since n is bounded (See Proposition 13.34, Theorem 13.35 and
Exercise 29), there are only finitely many cubes σ up to the action of G. �

2. A properness criterion

We start with a general observation.

Lemma 14.4. Suppose G contains no infinite torsion subgroup. Suppose G acts
on the pocset (P,≤) in such a way that, for every infinite order g, there is an A ∈ P
and an n > 0 so that A ) gnA. Then the action of G on the cube complex X(P )
has finite vertex stabilizers.

Proof. Let ω be a vertex of X(P ), i.e., a DCC ultrafilter on P . We suppose
that Stab(ω) is infinite. Since G has no infinite torsion element, there is some
infinite order g with gω = ω. There is some A ∈ P and n > 0 so that A ) gnA.
Either A ∈ ω or A∗ ∈ ω. In case A ∈ ω, we must also have gknA ∈ ω for all positive
k; if A∗ ∈ ω, we have g−knA∗ ∈ ω for all positive k. In either case we obtain an
infinite descending sequence in ω, contradicting the assumption that ω is DCC. �

We will see that this lemma in particular applies to hyperbolic groups. We first
need to understand a little better how an H–wall shows up at the boundary.

Lemma 14.5. Let G be hyperbolic, H < G quasi-convex and codimension-one,
and let {A,Ac} be an H–wall. Then the following hold:
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(1) Λ(A) ∪ Λ(Ac) = ∂G.
(2) Λ(A) ∩ Λ(Ac) = Λ(H).
(3) Λ(A) \ Λ(H) is open in ∂G.

Proof. Let N = NR(H) be a neighborhood of H in a Cayley graph for G so
that every edge joining a point of A to a point of Ac is in N . There is a constant
D so that N ⊂ ND(A) ∩ND(Ac).

Let x = {xi}i∈N represent a point p of ∂G. Passing to a subsequence, we can
assume either x ⊂ A or x ⊂ Ac. So either p ∈ Λ(A) or p ∈ Λ(Ac).

Suppose that p ∈ Λ(A) ∩ Λ(Ac), and consider representative sequences x =
{xi}i∈N in A and y = {yi}i∈N in Ac. For each i, any geodesic [xi, yi] passes through
N . Let zi be any vertex of N on [xi, yi], and note z = {zi}i∈N also represents p.
The limit set of N is equal to the limit set of H, so p ∈ Λ(H).

Since limit sets are closed, the last item follows from the first two. �

Definition 14.6. Let W = {A,Ac} be a partition of a hyperbolic group G
into two subsets, and let a, b ∈ ∂G. Then W separates a from b if (possibly after
exchanging A with Ac) a ∈ Λ(A) \ Λ(Ac) and b ∈ Λ(Ac) \ Λ(A).

The following then shows us how to apply Lemma 14.4 to hyperbolic groups.

Lemma 14.7. Suppose G is hyperbolic, g ∈ G is infinite order, and that H is
a quasi-convex codimension-one subgroup of G so that the fixed points of g in ∂G
are separated by an H–wall {A,Ac}. Then for some n > 0 either gnA ( A or
gnAc ( Ac.

Proof. Let N = NR(H) be chosen so that every edge joining an element of
A to an element of Ac is contained in N . If there were arbitrarily large n so that
gnN ∩ N 6= ∅, then the limit sets of 〈g〉 and H would intersect. Since this isn’t
the case, we can choose n so that gnN ∩ N = ∅. Since N contains all the edges
connecting A to Ac, the walls {A,Ac} and {gnA, gnAc} must be nested. Thus one
of the four sets

gnA ∩A, gnAc ∩Ac, gnA ∩Ac, gnAc ∩A
must be empty.

The sets gnA ∩ A and gnAc ∩ A are not empty, as they contain all sufficiently
large positive and negative powers of g, respectively. If gnA ∩ Ac = ∅, then
gnA ( A, and if gnAc ∩A = ∅, then gnAc ( Ac. �

3. Hyperbolic groups as convergence groups

Isometric group actions on hyperbolic spaces induce topological actions on their
Gromov boundaries. Somewhat surprisingly, basically all the relevant information
is preserved. The proper actions, for example, are exactly those for which the action
on the boundary has the following “convergence” property.

Definition 14.8. Let G act on a perfect metrizable compact space M , and let
T = T (M) be the space of distinct triples of points in M . The action GyM is a
convergence action if the induced action on T is properly discontinuous.

Remark 14.9. It is not obvious why the word “convergence” is used here.
This is because of an alternative (and older) formulation: A convergence sequence in
GyM is a sequence of distinct elements gn ∈ G so that there exists a pair of points
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a, b so that gnz → a uniformly in the complement of b. An equivalent definition to
14.8 is that every sequence of distinct elements of G contains a subsequence which
is a convergence sequence. See [Bow99] for details and generalizations.

Lemma 14.10. Let X be proper and Gromov hyperbolic. If G acts properly by
isometries on X, then the induced action of G on ∂X is a convergence action.

Proof. Sketch: Define a map φ : T (∂X)→ X, taking a triple (x, y, z) to any
point which is a 7δ–center for the triple. There is a uniform bound over triples for
the diameter of the set of 7δ–centers, using either Lemma 13.11 or Lemma 13.7.
An argument along the same lines as those shows that the image of any compact
set in T is also a bounded set. Only finitely many elements of G fail to take a
given bounded set off of itself, so the same must be true of a compact set in T . In
particular, the action Gy T is properly discontinuous. �

Remark 14.11. In this proof we used a coarsely defined map from triples of
points in ∂X to X. If X is nice enough we can be more explicit and even get a
continuous map. For example if X = ∂H2, and (a, b, c) ∈ T , one can construct
φ as follows: Let γ be the bi-infinite geodesic joining a to b, and let φ(a, b, c) be
the beginning of a perpendicular geodesic ray terminating at c. In other words the
triple space can be identified with the unit tangent bundle of H2.

Exercise 31. What is T (∂X) when X is H3? How about a tree?

Definition 14.12. A convergence action G y M is uniform if the induced
action on T (M) is cocompact.

Proposition 14.13. If G is a hyperbolic group, it acts as a uniform convergence
group on ∂G.

Proof. (Sketch) Lemma 14.10 implies that G acts as a convergence group on
∂G. Choose an arbitrary basepoint (a, b, c) ∈ T = T (M). The identity 1 ∈ G is
an R–center for this triple, for some R ≥ 7δ. Let C ⊂ T be the set of triples for
which 1 is an (R+ 1)–center. This is relatively compact, and since every triple has
a 7δ–center, the translates of C cover all of T . �

Remark 14.14. There is a remarkable converse to Proposition 14.13, due to
Bowditch [Bow98]: If M is any compact metrizable space without isolated points,
and G acts as a uniform convergence group on M , then G is hyperbolic and M is
equivariantly homeomorphic to ∂G.

4. Bergeron–Wise’s properness criterion

In this section we explain the Bergeron–Wise criterion for a hyperbolic group
to be cubulated.

There is also a version of this criterion for relatively hyperbolic groups, see
[BW12, Theorem 5.1]. The idea here is to combine a compactness argument with
the results of Section 2.

Definition 14.15. Say a hyperbolic group G has enough codimension-one
quasi-convex subgroups if, for every pair of distinct points a, b ∈ ∂G, there is a
quasi-convex subgroup H and an H–wall which separates a from b (in the sense of
Definition 14.6).
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Theorem 14.16. Let G be a hyperbolic group with enough codimension-one
quasi-convex subgroups. Then G is cubulated, in the sense that G acts properly
cocompactly on a CAT(0) cube complex.

Proof. We use the assumption of enough codimension-one quasi-convex sub-
groups to find a particular open cover U of T . Let u, v, w be distinct. There is
some quasiconvex subgroup Hu,v and an Hu,v–wall {A,Ac} separating u from v.
We may suppose u ∈ Λ(A) \ Λ(Ac) = Λ(A) \ Λ(Hu,v). Choose open neighbor-
hoods U ⊂ Λ(A)\ (Λ(Hu,v) ∪ {w}) of u and V ⊂ Λ(Ac)\ (Λ(Hu,v) ∪ {w}) of v, and
an open neighborhood W of w disjoint fom U∪V . The product Mu,v,w = U×V ×W
gives an open neighborhood of (u, v, w) in T .

Since G acts cocompactly on T (Proposition 14.13), we only need finitely many
Mui,vi,wi

= Ui×Vi×Wi so that their G–translates cover all of T . For each i let Hi

be the associated quasi-convex codimension one subgroup, and let Wi = {Ai, Aci}
be the associated Hi–wall. We claim that the wall-space consisting of these finitely
many walls and their G–translates gives a cube complex X with a proper cocompact
G–action. We do this by verifying the hypotheses of Lemma 14.4.

First, since G is hyperbolic it contains no infinite torsion subgroup (Theorem
13.25. Now let g be an infinite order element. By Corollary 13.26, the element g is
loxodromic, so it has two fixed points g±∞ in ∂X. Let w be any third point of ∂X.
Then there is some i, and some h so that (g∞, g−∞, w) ∈ hMi). Let K = hHih

−1

and W = {A,Ac} = {hAi, hAci}. Note that W is a K–wall which separates g∞

from g−∞. Applying Lemma 14.7, there is an n > 0 so that either A ) gnA or
Ac ) gnAc.

But this implies that g cannot preserve any DCC ultrafilter on the pocset P .
�





Part III
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CHAPTER 15

(Counter)-examples

1. Non-RF groups

Not every group is residually finite. Here is an easy example:

BS(2, 3) = 〈a, t | t−1a2t = a3〉.

Definition 15.1. G is Hopfian if every epimorphism φ : G→ G is an isomor-
phism. (G is co-Hopfian if every monomorphism φ : G→ G is an isomorphism.)

Lemma 15.2. If G is RF, then G is Hopfian.

Proof. Suppose φ : G → G is a surjection, and let k 6= 1 be an element of
the kernel. We will show that, for any n, k is contained in every subgroup of index
n. Indeed, let Sn = {H1, . . . ,Hk} be the set of subgroups of index n. For each i,
φ−1(Hi) is also a subgroup of index n, so φ determines a bijection Sn → Sn via
Hi 7→ φ−1(Hi). But each φ−1(Hi) contains k, so k is contained in every subgroup
of index n. �

Exercise 32. The assignments t 7→ t, a 7→ a2 determine an epimorphism from
BS(2, 3) to itself which is not an isomorphism.

In fact, there are fundamental groups of NPC square complexes which fail to be
RF [Wis07]. Even stranger, they can fail to have any nontrivial normal subgroups
at all [BM00]!

2. Non-LERF RAAGs

The fundamental example of Burns–Karrass–Solitar is the presentation complex
of the group:

K = 〈a, b, t | aba−1b−1 = 1, t−1at = b〉.
This is just a torus T with a cylinder attached, one end to the meridian, and one
end to the longitude of T . It’s not hard to see this is NPC by drawing the link
of the vertex. But Burns–Karrass–Solitar show (using a slightly different presen-
tation) that the element [a, t−1bt] can’t be separated from the subgroup 〈t, ab−1〉
in any finite quotient [BKS87]. Later, Niblo and Wise note that K is abstractly
commensurable to A(Γ) where Γ is a segment of length 3 [NW01].
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