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Preface

These notes are a work in progress, based partly on a Fall 2014 course at
Cornell. Thanks very much to all the participants in that course. Almost nothing
(correct) in this manuscript is original, but right now the references are extremely
incomplete. If you see a mistake or missing reference please let me know about
it! Thanks to Pallavi Dani and Chaitanya Tappu for pointing out errors in earlier
versions. All errors remaining are due to me.
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CHAPTER 1

Outline and conventions

1. Dependence of chapters written so far
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2. Things this text covers or should eventually cover

=
x

Residual properties of groups. (Chapter [2])

NPC cube complexes. (Part [l starting with Chapter [3])

RAAGs and special cube complexes. (Chapters [4}5])

Geometry of CAT(0) cube complexes. (Chapter [7])

Hyperbolic groups. (Part [lI} starting with Chapter [10)

Cubulating with codimension 1 subgroups. (Chapter |9} and much of Part
m)

e Hierarchies and (special) combination theorems.

e MSQT and Dehn filling.

e Agol’s theorem.

Some highlights of the part written already are Haglund and Wise’s virtual spe-
cialness criterion for cubulated hyperbolic groups (Chapter and the finiteness
criteria of Sageev and Bergeron—Wise for hyperbolic groups acting on cube com-
plexes given in Chapter

3. Conventions

H<G means H is a finite index subgroup of G. H<1G means H is a finite index
normal subgroup of G. All metrics are written d(-,-) unless there is a chance of
ambiguity about the ambient metric space X, in which case the metric is written

dx ().






CHAPTER 2

Subgroup separability in free and surface groups

The purpose of this section is to prove some profinite statements about free
and surface groups using the geometric methods of Stallings and Scott.

1. Residual finiteness

DEFINITION 2.1. A group G is residually finite if for every g € G ~ {1}, there
is a finite @ and a homomorphism ¢: G — @ so that ¢(g) # 1.

This basic notion has a number of equivalent formulations. One is in terms of
the profinite topology on a group, which is the topology generated by finite index
subgroups and their cosets. We collect a few here:

LEMMA 2.2. Let G be a group. The following conditions are equivalent:

(1) G is residually finite.

(2) G is fully residually finite: For any finite set F C G, there is a finite
quotient ¢: G — Q so that ¢|F is injective.

(3) N{H<GY = {1}.

(4) The profinite topology on G is Hausdorf}.

Verification is left to the reader.
One could argue that all the characterizations in Lemma are essentially
algebraic. Here is a topological characterization from Scott [Sco78].

PROPOSITION 2.3. [Sco78| Lemma 1.3] Let K be a connected CW-complez,
with G = m K, and let m: K — K be the universal cover The following are
equivalent:

(1) G is residually finite.

(2) For any compact C C K there is a Go<G with gC N C = ( for all g €
Go N {1}

(3) For any compact C C K there is a finite-sheeted cover Ko — K so that
the natural covering map K — K¢ restricts to an embedding of C.

Condition is saying that the green part of the following diagram can be
filled in, where all maps not from C are covering maps (the one from Kg to K

1Scott more generally allows K to be any Hausdorff space on which G acts freely and properly
discontinuously.

11



12 2. SUBGROUP SEPARABILITY IN FREE AND SURFACE GROUPS

being finite sheeted).

C—— K

K

PrOOF. We fix a basepoint p € K and a lift p € K, and suppose all covers of
K come with a basepoint which is the image of this p.
(2) < (3): Here we are simply using the correspondence between subgroups

of w1 K and covers of K. We have (for :>) Ko = GO\K and (for :>)
Go = 7T1Kc.

(I)=(): Suppose G is RF. Let T' = {g | gC N C # 0}. This set is finite by
proper discontinuity of the action. By Lemma there is a finite @ and a
homomorphism ¢: G — @ which is injective on T'. Let Gg = ker ¢.

([2)=(1): Suppose the condition about compact sets holds, and let g € G~ {1}.
Let C = {p,gp} C K, and let K¢ be a finite cover of K in which this C' embeds.
If v is a loop based at p representing g € m K, then v doesn’t lift to K¢, so
Y ¢ 7T1KC<G. O

As an example, we give a topological proof that free groups are residually finite.

REMARK 2.4. (This can also be seen using Mal’cev’s theorem that linear groups
are residually finite, after verifying the existence of free linear groups, for example

(o 7)o v))=r

In this case we have an embedding into SL(2,Z), so it suffices to note that every
element survives in SL(2,Z/p) for some p.)

Some lemmas, to be proved by the reader:

LEMMA 2.5. If finitely generated free groups are RF, then all free groups are
RF.

LEMMA 2.6. Suppose H<G (ie H is finite indezx in G). H is RF < G is
RF.

LEMMA 2.7. A free group of rank 2 has finite index subgroups of all finite ranks
bigger than 2.

THEOREM 2.8. Free groups are residually finite.

PrOOF. By the above lemmas we really only need to prove F' = (a,b) is RF.
We have F' = m K where K is a rose with two petals (wedge of two circles). The
universal cover is a 4—valent tree. It can be identified with the Cayley graph I of F’
with respect to the generating set {a,b}. Thus the edges can be given orientations
and labeled by the generators a and b.

Let C be a compact subset of I' = K. Let D be a connected subgraph of T
containing C. The cover K — K restricts to an immersion of D, which fails to
be a cover because of some missing edges. We correct this as follows: For each
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G
FicUre 1. Completing the red graph D to a cover of the rose.

The two generators are indicated by black and white arrow mark-
ers.

generator x € {a, b}, let 7, be the loop of the rose corresponding to z, and let L
be a maximal component of 7= 1(v,). This component is an interval, to which we
can add a single edge e so that L Ue is a finite cover of 7y,. After doing this to each
such component, we have embedded D (and hence C) into a finite-sheeted cover of
the rose. O

Notice that we didn’t really use that D was a subset of a tree, but just that it
had some immersion to the rose. This suggests that there is something stronger we
could have proven!

2. Subgroup separability

DEFINITION 2.9. Let H < G. We say H is separable if for every g € G\ H,
there is a finite group @ and a homomorphism ¢: G — @ so that ¢(g) ¢ ¢(H).

Again, there are a number of group-theoretic equivalences:

LEMMA 2.10. Let H < G. The following are equivalent:

(1) H is separable.
(2) ({K|H<K<G}=H.
(3) H is closed in the profinite topology.

Some easy consequences:
LEMMA 2.11. G is RF if and only if {1} is separable in G.

LEMMA 2.12. Let Go<G, H < G, and let Hy = HN Gy.
Hy is separable in Gy <= Hy is separable in G <= H is separable in G.

Here is a way to generate examples of separable subgroups of RF groups.

DEFINITION 2.13. Say H < G is a virtual retract of G if there is some Gy < G
containing H which retracts to H.

LEMMA 2.14. Let G be RF, and suppose R is a virtual retract of G. Then R
is separable in G.

PRrROOF. By Lemma it suffices to consider the case that G retracts to R.
Let p: G — R be aretraction (i.e. p|R is the identity), and suppose that g € G\ R.
It follows that p(g) # g. Since G is residually finite, G is fully residually finite, so
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there is a finite group @ and a ¢: G — @ so that ¢(g) # ¢(p(g)). Now consider
the map

b= (d,pop): G QxQ.
We have ®(R) contained in the diagonal subgroup of @ x @, but ®(g) outside it. O

Again, there is a topological criterion for separability:

THEOREM 2.15. [Sco78l 1.4] Let K be a CW-complex with mK = G, and
let H < G. Let Ky be the cover of K corresponding to H. The following are
equivalent.

(1) H < G is separable.
(2) For any compact C C f(H, there is a finite-sheeted intermediate cover

Ke — K so that the natural covering map Ky — Ko restricts to an
embedding of C.

As with the topological criterion for residual finiteness, it may be helpful to
draw a diagram of condition , with the part to be filled in in green.

N(—Sl%?jl

PROOF. Again, we fix basepoints p € K, p € K to pin down the correspondence
between subgroups of G and covers of K. Let 7y : K — Ky be the cover z — Hax.

:>: For ¢ € G\ H, we have Hp # Hgp, so my(p) # wu(gp). Let
C = {mu (), 7a(gp)}. The cover K¢ provided by has the property that no
based loop representing g lifts to it, so Gg = m K¢ doesn’t contain g. But since
K¢ is covered by Kp, G does contain H. Since g was arbitrary, H is separable.

:>: Let C be a compact subset of K. There is a finite subcomplex
D containing C'. Lifting the open cells of D one by one, we can find a D C K,
composed of finitely many open cells, so that 75 maps D bijectively to C. This D
is contained in a finite subcomplex E C K. The set Ty = {g € G | gENE # 0} is
finite, since G is acting properly discontinuously. Let T'= Ty \ H.

Since H is separable, there is a finite index A in G'so that H < A, but HNT = ().
Let K¢ be the cover corresponding to A, and suppose by way of contradiction that
C doesn’t embed. Then D doesn’t embed. In particular there is some g € G\ A
so that gDND # 0. But G~ A C G~ H, so this g € T, a contradiction. O

3. Stallings folds and covers of the rose

In [Sta83], Stallings gives a powerful method for understanding finitely gener-
ated subgroups of a free group. In particular, here is an algorithm, given n words
{wy,...,w,} in a free group F = (x1,...,2k), to build a core for the cover of the
rose corresponding to the group H < F' generated by the words:
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FIGURE 2. An illustration of the topological criterion for sepa-
rability. The compact set C' is the red circle, embedding in the
intermediate cover at left. The dashed circle in the cover is some
other elevation of the immersed circle in the surface K.

(1) We start with a map of roses R,, — Ry, representing the map from F,, —
F}, sending the ith generator to w;. The ith petal of R,, can be subdivided
into |w;| edges so that each edge goes to a constant speed loop around
some letter. Label and direct each edge accordingly, obtaining a graph
T'p, which we now modify inductively.

(2) Given TI';, we check to see whether some vertex has two adjacent edges
with the same direction and label. If so, I'; is foldable, and we obtain
;41 from T'; by identifying these two edges. If there is more than one
choice, make one at random and check again. If I'; is not foldable, then
set 'y =1T.

Since each fold decreases the number of edges, the process above must terminate.

Note that each of the I'; constructed above is still a directed graph labeled by
basis elements of Fy, so it comes equipped with a canonical map to Ry. For I'gy,
call this map ng.

LEMMA 2.16. The map ng: Ty — Ry is an immersion (locally injective map).

LEMMA 2.17. Any immersion of connected 1-complezes i: A — B can be ex-
tended to a covering by attaching trees to A.
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FiGure 3. Folding the graph representing H =
(aaBA,abbA,aBAA). Note that each step in the picture is
several steps in the textual description. The resulting graph
proves that H has rank 2 and infinite index in (a, b).

COROLLARY 2.18. Ifi: A — B is an immersion of 1—-complexes, theni,: m A —
w1 B is injective.

Before discussing separability, let’s record two consequences of Stallings’ con-
struction:

ProPOSITION 2.19. There is an algorithm which takes as input a finite collec-
tion w1, ..., w, C Fix and outputs the rank and index of the subgroup they generate.

PRrROOF. Letting H = (w1,...,w,) as above, the rank of H is 1 — x(T'g). If
I'y — Ry is a covering map, then the index is the number of vertices in I'y.
Otherwise, the index is infinite. O

DEFINITION 2.20. A group G is LERF (locally extended residually finite) if
every finitely generated subgroup of G is separable.

THEOREM 2.21. Free groups are LERF.

PROOF. Again it suffices to consider finitely generated free groups, so fix such
a free group F of rank k. We have F' = m Ry, where Ry is the rose with k petals.
Let H = (wy,...,w,) be a finitely generated subgroup of F. We’ve shown how to
describe the cover Ry corresponding to H, together with a compact core I'yy C Ry.
Let C' C I'yy be some compact subset, and let D be a connected subcomplex of Ry
containing both C' and I'. The covering map Ry — Ry, restricts to an immersion
of D, which we can complete to a cover in exactly the same way as we completed
D to a cover in the proof of Theorem [2.8 O

In fact the above proof finds a finite cover of the rose containing I'y; as a
subcomplex.

LEMMA 2.22. Let A C B be an inclusion of connected 1-complexes. Then m A
s a free factor of m1 B.

COROLLARY 2.23 (Marshall Hall’s Theorem). Let H < F' be finitely generated,
where F is free. Then there is a finite index F'<F containing H, so that F = Hx K
for some K.

4. Surface groups are LERF

Our aim here is to prove the following theorem of Scott.



4. SURFACE GROUPS ARE LERF 17

THEOREM 2.24. Let X be a surface. Then mY is LERF.

We more or less follow Scott’s proof from [Sco78), [Sco85]. A key insight there
is to note that all closed hyperbolic surface groups are abstractly commensurable
to a certain reflection group acting on the hyperbolic plane. Before getting to that,
we deal with some simple situations.

(1) Suppose ¥ is not closed. Then 71 is free, hence LERF by Theoremm

(2) Suppose X is closed, but x(X) > 0. Then m X € {{1},Z/2} is finite, hence
LERF.

(3) Suppose X is closed and x(X) = 0. Then m X is either Z @ Z (if ¥ is a
torus) or contains Z @ Z as an index 2 subgroup (if ¥ is a Klein bottle).
It’s easy to show Z @ Z is LERF.

We're left with the situation that ¥ is closed and x(3) < 0. In such a case, &
finitely covers X_1, the nonorientable closed surface with Euler characteristic —1.
Moreover, we’ll see that 3 _1 is finite index in a reflection group.

Let O be a right-angled regular pentagon in H?. Let P be the group of isome-
tries of H? generated by reflections in the lines bounding ©. There is a finite index

subgroup P, which is torsion-free, so that pO\H2 is a hyperbolic surface.

The group P preserves a family of lines £, which cut H? into pentagons which
are translates of ¢. Each line in £ determines two convex halfspaces which are
unions of pentagons. Call these the combinatorial halfspaces determined by P.

If C C H?, we define the combinatorial hull of C to be the intersection of the
combinatorial halfspaces containing C'.

Here’s a lemma about hyperbolic geometry which will be used a couple of times
to control the size of combinatorial hulls.

LEMMA 2.25. Let C be a closed convex subset of H?, and let v: [0,00) — H?>
be a geodesic ray in H2 \. C. Define a(t) to be the visual angle subtended by C, as
seen from ~y(t). Then lim; o a(t) = 0.

Let’s warm up with the following (which is also a consequence of Mal'cev’s
theorem).

PROPOSITION 2.26. Hyperbolic surface groups are RF.

PRrROOF. It suffices to show Py = 7% is RF. We’ll use the topological criterion.
Let C' C H? be a compact set, and let D be the combinatorial hull of C.

CrAaM. D is compact (a union of finitely many pentagons).

PrOOF OF cLAIM. Let [ € L. If [ does not meet C, then D lies entirely on one
side of [. It follows that if [ meets the interior of D, then [ meets C. Since C' is
bounded, there are only finitely many lines [ meeting the interior of D. If each only
meets D in a bounded set, there can only be finitely many pentagons in D.

Let | € £ be some line which intersects the interior of D, and therefore hits C.
Since C' is bounded, there are two unbounded components of [ \. C. Each of these
is a geodesic ray to which we can apply Lemma Moreover, this ray crosses
infinitely many perpendicular lines k1, ks, ... from L. Let p; = k; NI, and let «; be
the visual angle subtended by C at p;. Lemma implies that lim;_,o o; = 0.
In particular it is eventually less than 7/2, so the k; must eventually miss C. The
part of [ separated from C by k; cannot be part of D, so [N D is bounded. (]
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Let I' be the group generated by reflections in the lines bounding D. Since
F\H2 is compact, the group I is finite index in P. It follows that H =T' N Py is

also finite index in Py, so that if ¥ = H\H2, then ¥ is a finite-sheeted cover of

3. But since C' embeds in F\HQ, it also embeds in X. (I
We'll show:

THEOREM 2.27. For every finitely generated H < Py, there is a finite index
P’ < P containing H as a retract.

PROOF. If H< Py, there is nothing to show, so assume that H is infinite index in
Py. We can also assume that H # 1. It follows that X = H\H2 is a noncompact
hyperbolic surface. Since P doesn’t contain any parabolics, this surface has no
cusps, so its convex core C' is compact, bounded by finitely many simple geodesic
loops. (Or possibly C consists of a single simple geodesic loop.) Let mg: H? — 3
be the covering map, and let C' = 7r;11 (C). This is some convex subset of H2. Let

Y be the combinatorial convex core of C.
CramM. Y = g(Y) is compact, consisting of finitely many pentagons.

Given the claim, let R be the subgroup of P generated by reflections in the
faces of Y, and let P’ = (R, H). The quotient of H? by P’ is exactly Y, so P'<P.
We observe

(1) H normalizes R. (Since H preserves Y, it conjugates generating reflections
of R to other generating reflections.)

(2) Hn R = {1}. (Every element of H preserves Y, while no nontrivial
element of R does.)

These two facts together imply that P’ = R x H, so P’ retracts to H.

PROOF OF CLAIM. The proof of the claim consists of two parts. First, we note
that there are finitely many H-orbits of lines [ of the pentagonal tiling which meet
the interior of Y. Indeed such a line I must meet C', and so 7z(l) meets C. Since
C is compact, there are only finitely many lines of the tiling meeting C'.

Second we show that each such line has compact intersection with Y. Note
first that if I N C' is noncompact, then I € C, so 7 (1) is a closed (hence compact)
curve. So we may suppose that [ N C is compact, and so [ Cisa pair of rays.
Let v: [0,00) — H? be a geodesic ray in [\ C. Lemma implies that the visual
angle of C' as seen from ~(t) is eventually less than 7 /2, say for t > to. Let k € L be
a line crossed by 7(t) for t > to. Then k separates C' from ~([t, 00)), so () is not
in the interior of Y. We’ve shown that I NY is compact, so 7 () NY is compact.

It follows that there are only finitely many pentagons in 7 (Y"), since each such
pentagon must meet the interior of 7y (Y). O

O

We’ve shown that surface groups are RF (2.26]) and that finitely generated sub-
groups are virtual retracts (2.27). By Lemma|2.14} we have the following Corollary:

COROLLARY 2.28. Surface groups are LERF.
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CHAPTER 3

Introduction to cube complexes

1. Nonpositive curvature

An n—cube is a copy of I™ = [0, 1]™ metrized as a subset of Euclidean space. A
k—dimensional face of I™ is a subset in which all but k of the coordinates are held
constant at either 0 or 1. A cube complex is built from a disjoint union of cubes of
various dimensions, glued together by isometries of faces. The O—cubes will also be
referred to as vertices; the 1-cubes as edges.

DEFINITION 3.1. The %7neighborhood of a vertex v in a cube complex inherits
the structure of a A—complex from the cube-complex structure: Each n—cube in-
cident to v contributes an (n — 1)-simplex, and simplices are glued together along
faces exactly when the cubes are glued along a face incident to v. This A—complex

is called the link of v, or 1k(v).

DEFINITION 3.2. A cube complex is non-positively curved or NPC' if every link
of a vertex is a flag simplicial complex.

EXAMPLE 3.3. A square complex (2-dimensional cube complex) is NPC if and
only if there is no cycle of length less than 4 in any link.

EXAMPLE 3.4. Let K C S® be a knot, and consider a (generic) projection of
that knot K to an equatorial sphere . Let N and S be the north and south poles.
For each region R of £\ K, choose a geodesic arc from N to .S through that region,

and label it with the region R. For each crossing we attach a square with labels
given by the following rule:

o
/

FIGURE 1. Picture of the link of a vertex in a simple cube complex

21



22 3. INTRODUCTION TO CUBE COMPLEXES

SO

S<7N

o,

It’s not too hard to show that the resulting square complex is NPC if and only if
the link projection was alternating.

2. The cube complex associated to a right angled Artin group

Let T" be an unoriented simplicial graph, with vertex set V, and let E CV xV
be the edge set. We define the right angled Artin group (or RAAG) based on T to
be the group:

A(T) =(V | vw = wv, for (v,w) € E).
Some important examples:

(1) If T has no edges, then A(T) is free of rank ||T'(¥)].

(2) If T' = K,,, the complete graph on n vertices, then A(T") = Z™.

(3) IT' = K, , is a complete bipartite graph, then A(I") = F), x F},, a product
of free groups.

(4) If T is a segment of length 2, then A(T") is the fundamental group of the
complement of a certain 3—component link (see Figure).

The last (3—manifold) example can be generalized. Droms [Dro87] showed
that A(T") is a 3-manifold group if and only if T" is a disjoint union of trees and
triangles. One direction is a straightforward construction. To show the others are
not 3—manifold groups, one either embeds Z* (if there is a K,) or shows the groups
are incoherent, contradicting the Scott—Shalen Core Theorem.

REMARK 3.5. RAAGs are not LERF in general. In fact even Fy x F5 is not
LERF since it has unsolvable membership problem [].

DEFINITION 3.6. If V is a finite set, one can form the torus Ty = (S')V
This torus has a nice CW-complex structure with the set of cells in one-to-one
correspondence with 2V. In this correspondence, the empty set corresponds to the
unique O—cell, the singletons to 1—cells, 2—cells to pairs, etc. Notice that this CW
complex is also a NPC cube complex.

If T" is a graph with vertex V, then the Salvetti complex S(T') is the subcomplex
of Ty consisting of those cubes corresponding to cliques in I'.

LEMMA 3.7. Let T" be a finite simplicial graph. The Salvetti complez S(T') is a
NPC cube complex with m S(I') = A(T).

To prove the lemma, we need a couple of definitions

DEFINITION 3.8. Let A be a simplicial graph. The flagification Flag(A) is the
unique flag complex whose 1-skeleton is A.

DEFINITION 3.9. Let K be a simplicial complex with vertex set V. The double
D(K) is the complex with vertex set V* LIV~ (two disjoint copies of V), and so
that vertices {vg°,...,v5 } span a simplex if and only if {vo,...,v,} do.

’ren
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The proof of Lemma [3.7] thus boils down to the following:

EXERCISE 1. (1) The double of a flag complex is flag.
(2) The link of the vertex of S(I') is the double of Flag(T").

Right-angled Artin groups turn out to be absolutely central to the subject of
these notes. In particular, finding geometrically nice embeddings of groups into
RAAGs turns out to be very useful. One reason for this is that RAAGs are linear,
meaning they admit faithful representations into GL(n,C) for some n. This fol-
lows from the fact that they are abstractly commensurable to right-angled Coxeter
groups, as we now explain.

DEFINITION 3.10. Let I" be a graph with vertex set V' and edge set E. The
right-angled Cozeter group C(T') based on T is the group

CT)=(V]|vi=1forveV;(vw)?=1for (v,w) € E).

(More general Coxeter groups are also generated by involutions, but the rela-

tions (vw)? = 1 are replaced by (vw)™®®) = 1 for some collection of m (v, w) €
{2,3,...,00}

THEOREM 3.11. (Tits) [Dav08|, Appendix D] Each Cozeter group embeds into
SL(n,Z) for some n. In particular, Coxeter groups are linear.

PrOOF. (Idea) We won’t really prove this; just give the representation in the
right-angled case. The proof of faithfulness can be found in Davis’ book (also in
Bourbaki). Let C(T') is the right-angled Coxeter group based on I', with vertex set
V and edge set E C V x V. We describe an action of C(I') on RY which preserves
a certain quadratic form. Let v — e, be a bijection between V and the basis of
RY. For v,w € V, define

(1) (e, €0) = {0, if (v,w) e E

—1, otherwise.

Now we describe an action C(I') ~ RY by
v(x) =x — 2(ey, z)e,.

Clearly this representation has image in GL(n,Z) where n = |V|. But GL(n,Z)
embeds into SL(n + 1,7). O

EXERCISE 2. Suppose I' consists of three vertices vy, vo,v3, where vy and wvg
are connected by an edge, and vz is isolated. Compute the representation into
GL(3,Z). What’s the signature of the form described in equation (T))?

There is an obvious surjection A(I') — C(T'), but the kernel of this map is
infinite, so it doesn’t give abstract commensurability. We have to choose a different
graph.

THEOREM 3.12. (Davis-Januszkiewicz)[DJOO| Let T be a finite graph. Then
there is another graph T and an injective homomorphism A(I') — C(IV) with finite
index image.

ProOF. (Sketch) Let V' be the vertex set of I' and let E C V x V be the edge
set. Davis and Januszkiewicz describe I' in the following way: The vertex set V' is
equal to two copies of V| the vertex set of I'. Decorate the elements of V' by hats
and checks so V/ = V U V. The edge set E of I is given by three rules:
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FIGURE 2. Davis—Januszkiewicz’ construction.

(1) Every pair of vertices in V is connected by an edge, so V spans a complete
graph.

(2) Vertices ¢ and @ are connected by an edge if and only if (v,w) € E.

(3) Connect 9 to w if and only if v # w.
An example is shown in Figure[2] Notice that (¥,9) 2 Z/2xZ/2 is virtually infinite
cyclic, and that 90 is infinite order. The embedding 8: A(I') — C(I") is given by
v — 9. Davis and Januszkiewicz show that C(I"”) has a proper and cocompact
action on the universal cover X of the Salvetti complex for A(T") which agrees (via
B) with the usual action of A(T') on X. O

Using Mal’cev’s theorem that linear groups are residually finite (actually very
easy in this case), we obtain the corollary:

COROLLARY 3.13. For any finite graph T', A(T) is residually finite.

But as we will see below, there is a geometric proof of residual finiteness along
the lines of the proof for free groups given in Theorem Moreover, though A(T")
is often not LERF, we will be able to use a geometric argument as in to show
many subgroups are separable.



CHAPTER 4

Special cube complexes

In this section we will meet special cube complexes for the first time, as cube
complexes which lack certain “hyperplane pathologies.” We’ll also see the connec-
tion with RAAGs, which Haglund and Wise only discovered after noticing how
useful the notion was for geometric separability arguments[HWOS].

1. Special via hyperplanes

A cube I = [0, 1]™ has one midcubes for each dimension: M; = {(x1,...,2,) €
I" | z; = £}. Some midcubes are pictured in Figure

FIGURE 1. Some midcubes

Let X be a cube complex. The midcube complex of X, M(X) is a cube com-
plex whose cubes are in one-to-one correspondence with midcubes of cubes of X.
Whenever one of the face-identifications of X identifies two faces of midcubes, we
identify those faces in M (X). A component H of M(X) is called a hyperplane. It
comes equipped with an immersion mygy: H — X. An example is shown in Figure
A hyperplane is embedded if this immersion is an embedding. Otherwise we say
the hyperplane self-intersects.

Each cube of X can be thought of as an I-bundle over any of its midcubes. We
can therefore pull back an I-bundle over H, for any hyperplane. The hyperplane
is said to be 2-sided if this bundle is trivial; otherwise it is 1-sided.

Two (unoriented) edges e1, ea corner a square if there is a square of the form:

€1

€2

Suppose H is a 2-sided hyperplane in X, so that my: H — X extends to a
cubical immersion mp: H x [0,1] — X. Suppose there are distinct vertices vy, vo
of H so that mg(v1,0) = myg(ve,0) or myg(vy,1) = my(ve,1), and suppose that
mpy(vy X I) and my(ve X I) don’t corner a square. Then H is said to self-osculate
(see Figure |3| for an example).

25
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FIGURE 2. An immersed hyperplane. The cube complex shown
has four other hyperplanes, each consisting of a single midcube.

FIGURE 3. A self-osculating hyperplane

Let H; and H; be distinct 2-sided hyperplanes in X. It’s not hard to see
that Hy N Hs is nonempty if and only if there are vertices v; € H; so the edges
m, (v; X I) corner a square.

Two hyperplanes H, and H, are said to osculate if there are vertices v; € H;
so that my, (v1 x 8I) N My, (ve x OI) is nonempty, but the edges my, (v; x I) do
not corner a square.

The hyperplanes Hy and Hs interosculate if they both cross and osculate. See
Figure [f] for an example.

=

FIGURE 4. Two inter-osculating hyperplanes
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DEFINITION 4.1. A cube complex is special if all of the following hold:

(1) No hyperplane self-intersects.

(2) No hyperplane is 1-sided.

(3) No hyperplane self-osculates.

(4) No two hyperplanes inter-osculate.

2. Parallelism of edges

The definitions of the hyperplane pathologies can all be phrased in terms of
parallelism classes of edges. This point of view is important for some proofs. All
the proofs in this section are left to the reader.

Fix X a cube complex, and let E be the set of oriented edges of X. To any
hyperplane H in X we associate a set E(H) C E of edges which are dual to H in
the sense that their midpoints are O—cubes of H. Two oriented edges e1, e corner
a square if there is a square of the form:

€1

€2

LEMMA 4.2. H self-intersects if and only if there are two edges e1,es € E(H)
which corner a square.

Say that e and ¢’ € E are elementary parallel if there is a square of the form:

e e

The equivalence relation || of parallelism on E is generated by elemen-
tary parallelism.

LEMMA 4.3. Let H be an i—sided hyperplane fori € {1,2}. Then E(H) contains
1 parallelism classes.

A co-oriented hyperplane Hisa hyperplane H together with a choice of par-
alellism class E(H) C E(H). We refer to E(H) as a co-orientation of H.

LEMMA 4.4. Let H be a 2-sided hyperplane. H self-osculates if and only if
there is a co-orientation E(H) containing two edges ey, es which do not corner a
square, but which have the same origin.

LEMMA 4.5. Let Hy and Hs be 2—sided hyperplanes. Then Hy and Hy interoscu-
late if and only if there are co-orientations E(Hy), E(Hs), and edges e;, fi € E(H;)
so that:

(1) e1,es have a common origin but don’t corner a square, and
(2) fi, f2 corner a square.

EXERCISE 3. Draw some square complexes and see what hyperplane pathologies
occur. Can you make a special cube complex homeomorphic to a closed surface of
negative Euler characteristic?






CHAPTER 5

Special cube complexes and RAAGs

In this section we prove Haglund and Wise’s characterization of special cube
complexes as those which locally isometrically embed in the Salvetti complex of
some RAAG [HWO0S8|. First note the following, which can be easily proved using
the lemmas from the last section.

PROPOSITION 5.1. Let T be a finite graph, and let S(T') be the Salvetti complex
based on T'. Then S(T') is special.

1. Kinds of maps between cube complexes

We'll deal exclusively with combinatorial maps of cube complexes. To put it
somewhat formally, we require that if ¢: X — Y is sugh amap, and z: I*¥ — X is
the characteristic map of some cube of X, then ¢ o z|I* is a homeomorphism onto
the interior of some cube of Y. Moreover if y: I* — Y is the characteristic map of
the target cube, then y~! o ¢ o 2|I¥ is an isometry.

If f: X — Y is amap of cube complexes, and v is a vertex of X, then f induces
a map of links

Ik(v) 2% 1k(f(v)).

Recall that an immersion is a locally injective map. We can detect whether f
is an immersion by looking at the induced maps on links.

LEMMA 5.2. Let f: X — Y be a map of cube complexes. Then f is an immer-
sion if and only if f, is injective for each verter v € X.

A full subcomplex S of a simplicial complex K contains every simplex in K
whose vertices are contained in S.

DEFINITION 5.3. f: X — Y an immersion of cube complexes is a local isometry
if f,(Ik(v)) is a full subcomplex of Ik(f(v)) for all vertices v € X.

EXAMPLE 5.4. Consider any cube Y of dimension at least 2, and let X be the
subcomplex consisting of two adjacent codimension one faces. Then X is immersed
in Y, but the inclusion is not a local isometry.

REMARK 5.5. If X and Y are both NPC cube complexes, then f: X — Y is
a local isometry if and only if no two non-adjacent vertices in a link are sent to
adjacent vertices in a target link.

PROPOSITION 5.6. Let f: X — Y be a local isometry of NPC cube complezes,
where Y is special. Then X is special.

29
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PRrROOF. Without loss of generality, we may suppose that X and Y are con-
nected. Since edges go to edges and squares to squares, there is a well-defined
induced map:

(2) E(X) /Il — E(v) /Il

We suppose X is not special, and show that Y cannot be special either.

We consider the hyperplane pathologies in turn, according to their character-
izations in terms of edge parallelism given in Section [2] Suppose first there is a
self-intersecting hyperplane in X. Then there are two edges a || b which corner
a square of X. But it follows that f(a) || f(b) also corner a square, so Y is not
special.

Suppose that X contains some one-sided hyperplane. Then some oriented a is
parallel to —a, the edge with the opposite orientation. But then the same must
hold in Y using .

Similarly, if X contains a self-osculating hyperplane, then there is a pair of
oriented edges a || b with the same source, but which don’t corner a square. The
images f(a) # f(b), since f is an immersion. The map from (2)) gives f(a) || f(b).
But since f is a local isometry, f(a) and f(b) don’t corner a square in Y. Thus Y
contains a self-osculating hyperplane.

If X contains a pair of interosculating hyperplanes, X contains edges ey || f1
and es || f2 so that eg Jf e, exhibiting the interosculation. Namely, e; and es have
a common origin but don’t corner a square, but f; and f; corner a square. As
before, the same properties must hold of their images in Y. ([l

As a special case of the previous proposition, any NPC cube complex which
locally isometrically immerses to a Salvetti complex is special. Haglund and Wise
proved a remarkable converse to this fact, which we prove in the next subsection.

2. Special cube complexes embed in RAAGs

To state the result properly, we need another definition. Let X be a cube
complex, and let 'y be the hyperplane graph of X: The vertices of I'x correspond
to the immersed hyperplanes of X, and two vertices are connected to one another
if the corresponding hyperplanes cross. If I'x is a finite graph, we can form the
Salvetti complex S(I'x) (whose fundamental group is a RAAG) as in Section

THEOREM 5.7. [HWOS8| Let X be a special cube complex with finitely many
hyperplanes. Then there is a locally isometric immersion ¢: X — S(I'x) .

Before we prove the theorem, we note a corollary.

COROLLARY 5.8. Let G be the fundamental group of a special cube complex
with finitely many hyperplanes. Then G is a subgroup of some RAAG.

Proor or (.7 Let X be a special cube complex with finitely many hyper-
planes. For each hyperplane H, fix a co-orientation E (H). For each hyperplane H,
there is a corresponding (oriented) 1—cell ey in S(T'x), and we define ¢le: e — ey
to be the orientation-preserving (combinatorial) map for each e € E(H).

More generally, a k—cube C of X has k different hyperplanes passing through it
and crossing one another. (They’re different because hyperplanes of X are embed-
ded.) Since they cross one another, these hyperplanes correspond to the vertices of
a clique in I'x, which corresponds to a cube D in S(I"x ). The map has already been
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defined on the 1-skeleton of C', and this definition extends combinatorially uniquely
to a map ¢|C': C — D. It’s not hard to see that definitions on cubes which share
a face are consistent, so we’ve defined a combinatorial map ¢: X — S(I'x), just
using the fact that hyperplanes are embedded and two-sided.

To see the map is an immersion, we have to use the fact that there are no
self-osculating hyperplanes. Indeed, since the source and target are both NPC, ¢
is an immersion so long as it doesn’t identify any two oriented edges with the same
origin. If ¢(e1) = ¢(e2) as oriented edges, then we must have had e; || ex in X.
If e; and e; originate at the same point, then the corresponding hyperplane must
self-osculate, contradicting specialness.

Finally, we use the lack of inter-osculation to see that ¢ is a local isometry.
Again using the fact that X and Y are NPC, ¢ can only fail to be a local isometry
if there are vertices a and b in some lk(v) which are not connected by an edge,
but ¢,(a) and ¢,(b) are connected by an edge. Let e,, e, be the oriented edges
corresponding to a and b. If there is an edge connecting ¢, (a) to ¢,(b), then the
hyperplanes dual to e, and e, must cross somewhere. In other words there are
fa |l e and fy || €, which corner a square. Thus the hyperplanes dual to e, and ey,
interosculate. d

REMARK 5.9. The graph I'x is not necessarily the smallest graph I" so that X
locally isometrically immerses in S(T"). One can often get a smaller T" by considering
the crossing graph of a collection of not-necessarily connected “hyperplanes,” each
of which is a disjoint union of non-crossing hyperplanes. One has to be careful of
course that these “hyperplanes” don’t self-osculate or inter-osculate. In the context
of graphs, this means coloring and orienting the edges, so that no two edges of the
same color have the same origin or the same terminus. The corresponding I' has
vertex set equal to the set of colors.






CHAPTER 6

Canonical completion and retraction, take 1

The canonical completion and retraction allows us to prove separability of sub-
groups of special cube complexes, in case the subgroup is represented by a locally
isometrically immersion of cube complexes. In this section we deal only with the
case where the target is a Salvetti complex. The “completion” step is essentially
the same as the cover described in the proof that free groups are LERF in Section
Bl The canonical retraction is new.

Goal: From i: X — § = S(I') a locally isometric immersion, produce a finite
cover (the completion) p: C — S with X C C, and so C retracts to X:

s

If T has no edges (so A(T') is free) we've basically seen how to build C already in
Section [3} For each maximal non-closed segment mapping of X mapping to a petal
of the rose S(T'), we add an additional edge mapping to the same petal, completing
the segment to a circle. The retraction works by mapping this additional edge
continuously onto the segment it was added to. (See Figure ) If a new edge is

—p—o —p
—

.. s
e

FIGURE 1. An immersion of a segment to a rose with a single petal.
Complete by adding an edge; retract by projecting that edge to the
preexisting segment.

attached to a single vertex (a “length 0 segment”) then the retraction r maps that
new edge to the attaching vertex.

The 1-skeleton C(V) is produced from X — SM) in exactly the same way.
We then need to check that squares and higher-dimensional cells can be added in a
consistent way. For example let’s complete the immersion shown in Figure 2l The
procedure already described gives a graph covering the 1-skeleton of S(T'). One
now checks that the boundary of the square in S(T') lifts to a path beginning at
any of the four vertices. Gluing in squares to these lifts gives a cover of S(T'), as in

Figure [3
1. Definition of the completion

We recall and name the completion and retraction, which we already described
informally.

33
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FIGURE 2. An immersion of the wedge of a square and circle into
the wedge of a torus and circle. The target is a Salvetti complex,
so we should be able to build a canonical completion.

FIGURE 3. Here we show the completion of the map from Figure
The original complex X consists of the square on the lower part
of the torus, in the front, together with the circle attached to the
inner rim of the torus, on the left.

DEFINITION 6.1. Let ¢: K — R be a combinatorial immersion from a finite
graph to a rose, so the petals of the rose are {P,..., P,}. For each i, let K; be
the preimage of the petal P;. This K; is a disjoint union of points, circles, and
segments. We attach edges to K; to get a cover K; — P;: To each isolated point,
attach a copy of P;, and to each segment, attach a single edge joining the endpoints
of the segment. The union of these K; is a graph Cx_,z (the completion), with
covering map

p: Cksr — R
extending ¢. Each K retracts to P;, giving a retraction

r: Cxkop — K.

These are called the canonical completion and retraction of ¢: K — R.

The following lemma will imply we can extend the preceding construction to
2—complexes.

LEMMA 6.2. (¢f. [BRHP15| Section 2]) Let K — S be a locally isometric
immersion from an NPC cube complex K to a Salvetti complex S = S(T') with
1-skeleton R. Let p: Crayp — R and r: Crayp — KD be the cover and
retraction defined in[6.1}

Let o: [0,4] — S be the boundary map of a square of S, and let v be a vertex
in p~1(c(0)). Then there is a lift of o to a loop of length 4 based at v.

PROOF. Let T = (V, E) be the graph on which S(T) is based, so A(T") = m1.5(T")
is the corresponding RAAG. The path o has label aba™'b~" for some a and b in
V UV which commute in A(T").
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FIGURE 4. Case[ll Open arrowheads correspond to b, closed to a.
The inner path 7y is the one completed by the new edge which is
the second edge of &.

Let C = Cxa)_,z be the canonical completion of the map on K™, Since C
contains KW, we can distinguish between old and new edges of C. Let & be a
lift of o starting at v. We must show &(0) = 5(4). We’ll assume that & is “non-
degenerate” in the sense that every edge of & has distinct beginning and end. The
“degenerate” cases will be left as an exercise.

If & passes through two consecutive old edges, then the local isometry assump-
tion implies that those two edges span a square in K. The entire boundary of that
square must be equal to the image of &.

We can therefore assume that at least two of the edges of ¢ are new edges,
including one of the first two.

CASE 1. Some edge of & is old.

We consider only the (sub)case that the first edge is old. The other cases are
very similar.

Since the second edge is new and non-degenerate it must complete some segment
71 labeled " terminating at o(1). In particular, there is a path of old edges labeled
ab~! starting at v. Since K — S is a locally isometric immersion, the two edges in
this path corner a square (square 1 in Figure . In fact there must be a rectangle
of squares all along 1. The opposite side, 7y, of this chain of squares is also labeled
by b™, and terminates at v = &(0). Opposite the rectangle from &[0, 1] is another
edge labeled b, and we see that 7|[2, 3] must run along this (old) edge from 7; to .
It follows that &[3,4] is a new edge. In fact 7 must be another maximal segment
labeled b, and &[3, 4] the new edge which completes it. Thus 6(4) = v as required.

CASE 2. All the edges of 6 are new edges.

Again assuming non-degeneracy, this implies that there is a segment of old
edges labeled ba going through (1) and a segment of old edges labeled a~!b passing
through 5(2). These segments must corner squares of K (the grey squares from
Figure [5)), which must be part of a strip of squares joining the a—edge issuing from
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FI1GURE 5. Case[2] Open arrowheads correspond to b, closed to a.
Just the beginning of the rectangle (the two grey squares) is shown.

(1) to the a—edge issuing from &(2). In particular, we get another new b—edge
parallel to &[1,2]. Continuing around the paths (labeled a™) which &[0,1] and
72, 3] complete, we find a whole rectangle of squares, whose corners are exactly
{0,1,2,3}. In the end, we discover that &(0) and 5(3) are the extremities of a
segment labeled b* for some k, which can only be completed by &[3,4]. Again we’ve
shown that (4) = v.

O

EXERCISE 4. What happens in the degenerate cases we omitted from the above
proof?

The following is a corollary of the preceding proof and exercise:

COROLLARY 6.3. Let K — S be a locally isometric immersion of an NPC' cube
complex to a Salvetti complex, with R = S . Let Cry_, g be the canonical com-
pletion of the map on 1-skeleta, let r: Cray_p — KW be the canonical retraction,
and let ¢ be some lift of a square boundary. Then rod& bounds a rectangle of squares
in K.

In particular r o & is null-homotopic.

We now can prove the main result of this section:

THEOREM 6.4. For any locally isometric immersion ¢: K — S where K is
an NPC cube complex and S is a Salvetti complex, K embeds in a finite-sheeted
cover K C 0 2 S, with a retraction r: C— K. Moreover, CV) is the completion

Cry sy described in Deﬁnition and the maps p, r extend the maps described
there.

PROOF. Lemma tells us how to build the 2-skeleton of C: Starting with
K@ UCW, attach a 2-cell to every lift to 0V of the boundary of a square in S,
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which doesn’t already bound a square in K. We obtain thereby a covering space
p: L@ — S@)_ Corollary [6.3| tells us we can extend the retraction to r: 0?) — K.

Inductively suppose we have built 0*~1) for some n > 3, and that we have
defined a covering map p: 0"~V — §(=1 and retraction r: C»~1D — K(=1),
We build 0 by attaching n—cubes to K™ UC™~D. Boundaries of n—cells in S
are simply connected, so they always lift to C(”~1), and we attach n—cubes to all
lifts not already bounding cubes in K, to get a covering space p: £ — S For
o: 9" — L= such a lift, we note that oo has image in the NPC cube complex
K, so it is contractible in K (actually in K(™)), so we can use this contraction to
extend the retraction r to the n—skeleton. (I

DEFINITION 6.5. We'll denote the cover from either by Cx_,s or by Cy,
depending on whether we want to emphasize the map or the complexes.

2. Geometric separability
We note some immediate corollaries:

COROLLARY 6.6. If X is a compact special cube complex, and G = m X, then
G is a virtual retract of some RAAG.

COROLLARY 6.7. Theorem gives a locally isometric immersion ¢: X —
S(Tx), so ¢.: G — A(Tx) is injective. Moreover, Theorem gives a finite-
sheeted cover C of S(I'x) which retracts to X. But then m0<A(Tx) retracts to
G.

The following is notable in that it doesn’t mention RAAGs or Salvetti com-
plexes at all.

COROLLARY 6.8. Let f: X — Y be a locally isometric immersion of compact
special cube complexes, G =mY, and H = f,m X. Then H is separable in Y.

PRrROOF. Let ¢: Y — S(I'y) be the locally isometric immersion from Theorem
Then ¢o f: X — S(I'y) is a locally isometric immersion to a Salvetti complex,
so we can form the canonical completion E¢o 7- The retraction gives a finite index
Ap<A(Ty) which retracts onto H. But since H < G, we have that Gy = 4o NG
also retracts onto H. Since G < A(Ty), it is residually finite, and so (using Lemma

2.14) H is separable in G. O
3. What’s canonical about it?

If G is the fundamental group of a special cube complex, it makes sense to call G
special. If moreover H < G is represented by a locally isometric immersion of cube
complexes, we can say that H is a geometric subgroup of G. For many purposes,
all we need to know is: Geometric subgroups of special groups are separable.

To know the above (ie to prove Corollary we just needed to build some
finite-sheeted cover to which a given immersed subcomplex lifts. But it is important
later that this cover be built “canonically”. We’ll come back later to precisely
what this means. It’s more relevant when we complete maps between NPC cube
complexes, neither of which is a Salvetti complex.






CHAPTER 7

Geometry of CAT(0) cube complexes

In this section we take a combinatorial approach to the geometry of CAT(0)
cube complexes, very much like that discussed in Chapter 3 of Wise’s CBMS notes
[Wis12] and in Sageev’s paper [Sag95].

1. Finding disk diagrams for null-homotopic loops

We fix a CAT(0) (meaning simply connected and NPC) cube complex X. Since
X is simply connected, any combinatorial loop 7 has a null-homotopy h: D? — X
with h|@D = 4. Cellular approximation tells us that D? has a cell structure for
which this map can be assumed cellular. In fact the map can be improved still
further, in that the cell structure can be (nearly) a cube complex structure on
D2, so that h is combinatorial. The possibility that some subset of the disk with
nonempty interior is forced to have l-dimensional image means that this isn’t
exactly true, but still & can be chosen to factor through a combinatorial map from
a planar 2-dimensional cube complex V', called a disk diagram.

DQ\‘—/>X

(See Figure |1 for an example.) The fact that this can be done is essentially van

FIGURE 1. A disk diagram filling a combinatorial loop. The loop
is not meant to be injective, but is shown as if it is for clarity.

Kampen’s Lemma (see [Bri02]).  The disk diagram is not unique. For example
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in Figure [I] we could have just as well used the diagram in Figure 2] Formally, we

FIGURE 2. Another disk diagram filling the same combinatorial loop.

define a disk diagram over v: S!' — X as follows:

DEFINITION 7.1. Let X be a cube complex and let v: S' to X be map which is
combinatorial for some subdivision of S*. A disk diagram over v is a 2-dimensional
square complex V' C E2, together with maps 8: D? — V and ¢: V — X so that:

(1) (0 B)|oD? = ;

(2) ¢ is combinatorial;

(3) B extends to a small neighborhood N.(D?), and f3 restricted to N.(D?)~
D? is an orientation-preserving homeomorphism onto N (V) \ V.

The last requirement is so that “reading” ¢ counterclockwise around V' gives
the same sequence of edges as reading v counterclockwise around S'. Sometimes
we’ll omit mention of the maps ¢ and 5 and just refer to V' as a disk diagram. By
the boundary OV of a diagram, we’ll mean the curve 5|0D2.

The van Kampen Lemma implies that any combinatorial loop in a CAT(0) cube
complex has a disk diagram as above. Since a disk diagram is a square complex,
it has hyperplanes. These are either arcs, loops, or single points (if there is an
edge which doesn’t meet the interior of V). Extending these hyperplanes a bit
to separate a regular neighborhood N(V), we get a system of dual curves to V
(See left hand side of Figure[3]) It’s often convenient just to work with these dual

F1GURE 3. The dual curves for the disk diagram in Figure

curves. The neighborhood N (V) is a disk, and we can just draw the dual curves
on a disk, as at the right hand side of Figure |3 The reader should check that V'
can be recovered from this pattern of dual curves, so we haven’t really lost any
information.

DEFINITION 7.2. A disk with a system of dual curves coming from a disk
diagram will be called a dual curve diagram.
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2. Features of disk diagrams

Let V be a disk diagram. Two edges of V are V —equivalent if they are parallel,
which is the same as to say they cross the same dual curve in the dual curve diagram.

DEFINITION 7.3. Let v: S* — X be a loop, where X is NPC, and S* has been
divided into edges to make y combinatorial. Let

p? 2 v 2 xand 0> L v L x
be two disk diagrams over v (so ¢ o 3|0D? = ¢' 0 B'|0D? = 7).
The two diagrams V and V' induce equivalence relations on the edges of S*.

We say the disk diagrams are d—equivalent, if these equivalence relations are the
same.

The dual curves of V' are either arcs or loops, which cross transversely. Cross-
ings in the dual curve diagram are in one-to-one correspondence with squares of
the disk diagram.

DEFINITION 7.4 (n—gons). A dual curve which is an embedded loop is called

a 0—gon. Let n > 1, and suppose that ¢ is a circle made up of n consecutive arcs

of dual curves o;: [0,1] — V so that (mod n) 0;(1) = 0,4+1(0) is a crossing point

of dual curves. The circle o bounds a disk D in V', and we suppose that the angle
s

made by o; and 0;41 inside D is 3. Then o is called an n-gon. See Figure @

O o s

FIGURE 4. From left to right, a 0—gon, 1-gon, 2-gon, and 3—-gon.

A 1-gon is also called a monogon; a 2—gon is called a bigon. An n—gon needn’t
be isolated; other arcs of dual curves can pass through it. If none do, we say the
n—gon is empty. The area of an n—gon is the number of crossings occurring in the
region bounded by the n—gon, including on the n—gon itself. See Figure [5] for some
examples. In particular the area of an empty n—gon is n.

K K

FI1GURE 5. Gray squares contribute to the area of the bigon. The
left hand bigon has area 7, and the right one has the minimal area
possible, 2.

The following is clear from the construction:

LEMMA 7.5. No disk diagram contains an empty 0—gon.
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Next we deal with minimal area monogons:

LEMMA 7.6. Let V be a disk diagram over v: St — X where X is a CAT(0)
cube complex. Then V' contains no empty 1-gon.

Proor. Figure |§| shows the only way an empty monogon could arise in a (gen-
eral) disk diagram; from a square with two incoming edges at some vertex identified.
But the existence of such a square implies that the target complex X must have a

FIGURE 6. A degenerate monogon coming from a single square
two of whose sides have been glued together.

link which is not simplicial. In particular it isn’t flag, so X is not NPC, a contra-
diction. 0

We’ll next give some lemmas which act like “Reidemeister moves” and can
sometimes be used to simplify a diagram. We start with removing a minimal 0-
gon; by Lemma [7.5] this minimal area is 2.

LEMMA 7.7 (minimal O-gon removal). Let v: S' — X where X is a CAT(0)
cube complex. If a disk diagram V over -y contains a 0—gon of area 2, then there is
a O—equivalent diagram V' with Area(V') = Area(V)) — 2. The dual curve diagram

of V' is obtained from the dual curve diagram of V' by removing the O—gon of area
2.

PROOF. A minimal area monogon corresponds to a pair of squares with % of
their boundary identified (see Figure [7). Since the target is NPC, these squares

FIGURE 7. A minimal O—gon coming from two squares which have
been glued together.

must actually go to the same square, and we can obtain a new diagram V' by
excising the two squares, and identifying the resulting pair of free edges. The only
effect on the dual curve diagram is to remove the O-gon, so the new diagram is
O—equivalent to the old one. [
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The next two lemmas give analogues of the Reidemeister moves for knot dia-
grams. See Figure |8| Note that there is no analog of Reidemeister I, since Lemma

“Reidemeister II” “Reidemeister 1117

FIGURE 8. Lemmas[7.8)and [7.9]say that we can make local changes
to a disk diagram which induce the pictured changes on dual curve
diagrams.

[7.6] rules out empty monogons.
The next lemma gives a way to remove empty bigons.

LEMMA 7.8 (minimal 2-gon removal). Let v be a loop in an CAT(0) cube
complex X, and suppose that V is a disk diagram over vy which contains an empty
2—gon o. Then there is a O—equivalent diagram V' with

(1) Area(V') = Area(V) — 2.
(2) If o is not part of a minimal 0—gon, the dual curve diagrams of V' and V
differ by a Reidemeister II move at o.

PRrROOF. If the diagram V contains a minimal area 0—gon, then we can appeal
to the minimal 0-gon removal Lemma So suppose that there are no minimal
area 0—gons in V, but that there is an empty 2—gon, as in the right-hand side of
figure [5| Because the target X is NPC, the two squares in such a bigon must map
to the same square of X, and they can therefore be removed from the diagram (see
Figure E[) to get a new diagram over 7. This new diagram is clearly d—equivalent

FIGURE 9. Removing a minimal bigon.

to the old one. O

Finally, there is a version of the Reidemeister IIT move, called a hexagon move:

LEMMA 7.9. (hexagon move) Suppose v is a loop in an CAT(0) cube complex,
and that V is a disk diagram over v containing an empty 3—gon o. Then there is
another O—equivalent diagram V' with

(1) Area(V’) = Area(V)
(2) The dual curve diagrams of V. and V' differ by a Reidemeister III move
at o.
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PROOF. Let D C V be the union of the three squares corresponding to the
crossings of the empty 3—gon 0. Let v be the vertex corresponding to the empty 3-
gon, and let x be the vertex 3(v) € X, where [ is the combinatorial map associated
to the disk diagram. The subdiagram D gives a triangle T in lk(v). Because 3 is
combinatorial, 3,(7T) is a path of length 3 in lk(x). Since lk(x) is simplicial, this
path can only be a triangle. Since lk(z) is flag, this triangle is filled in with a
2-simplex, which corresponds to a 3—cube in X. There is a homotopy of 8 across
this 3—cube to a new map f’. (This homotopy fixes all points not in the interior
of D.) The new map (' is not any more combinatorial, but D can be recubulated
(vielding a new, homeomorphic complex V') to make it combinatorial. Figure
indicates how to perform this recubulation of D: The resulting diagram V' clearly

\ Yy

FIGURE 10. Performing a hexagon move.

has the same area and is related to the old diagram by a Reidemeister III move. [

We now apply these lemmas to prove that minimal area diagrams don’t contain
n—gons (empty or not) for n < 2:

CASSON LEMMA. Suppose that V is a disk diagram over v: S* — X, where X
is a CAT(0) cube complex. Suppose that D contains either
e an n—gon withn < 2, or
e a pair of adjacent V —equivalent edges.
Then there is another disk diagram V' over v, so that
(1) Area(V') < Area(V) — 2, and
(2) V' is O—equivalent to V.

Proor. Step 1: Find a bigon. Any 0-gon, 1-gon, or pair of adjacent V—
equivalent edges gives rise to a bigon. (See Figure ) Note that an adjacent
pair of V—equivalent edges gives rise to a dual curve which “self-osculates” either
directly or indirectly, as in one of the two pictures at the right of Figure Let o1
be either this dual curve or the O-gon or 1-gon. In the figure, this curve is shown
in blue. The cases illustrated have plenty of squares to see what is going on. In
particular, there is at least one dual curve oy (shown in green) crossing o7, which
must form a bigon with o;. The only way we could fail to have such an additional
dual curve is that o; is an empty monogon, which is forbidden by Lemma

Step 2: Let bigons be bygones. If there is an empty 2—-gon, we may finish by
applying Lemma [7.8] We choose a least area bigon 0 = 1 U oy in V, cutting off
a disk D in the dual curve diagram. We suppose Area(o) is strictly bigger than 2,
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F1Gure 11. Finding bigons.

and show how to use hexagon moves to find a diagram with the same area but a
smaller area bigon.

Since Area(o) > 2, some other arc of a dual curve crosses oy or o3. Let 7 be a
maximal arc of this dual curve which meets D. If both endpoints of 7 are on oy or
on o2, then 7 forms a bigon with that arc, which is necessarily of smaller area than
0. Thus each such arc crosses from o1 to o2. We therefore have a picture something
T} be the curves crossing from o

FIGURE 12. On the left, a bigon is formed by a blue and green
dual curve. Red dual curves cross the bigon. If there is a red curve
which forms an empty 3—gon with the dual curves, then we can do
a hexagon move to decrease the area of the bigon.

to oo. If some 7; forms an empty 3—gon with subarcs of o; and o9, then we can
apply Lemma [7.9] to get a diagram with the same area, but with a smaller area
bigon, as in Figure [12]

Suppose at least some of the 7; cross each other, and suppose there is an empty
3—gon involving o1. If so, we again have an available hexagon move (see Figure
to produce a new diagram V" with a smaller bigon.

FIGURE 13. A hexagon move coming from an empty 3-gon using
o1 but not os.
It therefore suffices to prove the following claim:

CrAM. Ifo = o1Uoy is a least area bigon in the diagram V, and Area(o) > 2,
then there is an empty 3—gon inside o using a subarc of oy.
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PROOF. The arcs crossing o can be ordered from left to right according to
where they cross o1. Let 71,..., 7, be the ordered collection of such arcs which
cross some other such arc, ignoring those which only cross o7 and og. See the left
hand side of Figure Now each 7; crosses some other 7; after crossing o1. Let

01 g1
: :g ﬂ ’ 76 o 02
TL Torg 1y 15 2 Z §§; ; ;

FiGURE 14. Finding an empty 3—gon.

;i) be the arc which 7; crosses first. We mark 7; by the letter R if j(i) > i, and
by L if j(i) < i. See the right-hand side of Figure If we had some j(i) = 4, this
would mean 7; formed a monogon, and hence we could find a smaller area bigon
than o.

We thus obtain some sequence of R’s and L’s. In the example we have RRRLRL.
Note that the first letter of this sequence must be R, and the last letter must be
L. Tt follows that there is some initial sequence R*L. It is then easy to see that 7y,
Te+1 and o7 form an empty 3-gon. O

O

COROLLARY 7.10. Let v: S* — X be a combinatorial loop in a CAT(0) cube
complex, and let V be a minimal area disk diagram over ~v. Then V contains no
n—gon for n < 2, and no pair of adjacent, V —equivalent edges.

EXERCISE 5. Show that if V is a disk diagram for y: S* — X with X a CAT(0)
cube complex, then V has no monogons. (Hint: use the Reidemeister moves to get
an empty monogon)

3. Geodesics and hyperplanes in CAT(0) cube complexes

In this section we fix a CAT(0) cube complex X. It’s important to distinguish
between geodesics in X with respect to the CAT(0) metric, which need not be
(and usually aren’t) combinatorial, and combinatorial geodesics which are really
geodesics in the 1-skeleton. We’ll almost never talk about the first kind of geodesic
in these notes. The next proposition tells us how a combinatorial geodesic can
interact with a hyperplane.

PROPOSITION 7.11. Let H be a hyperplane of X, and let v be a combinatorial
geodesic. Then H contains at most one edge dual to H.

PROOF. Let 7 be a shortest counterexample to the Proposition. Then v begins
and ends with edges ey, es which are parallel. Let n be the length of a shortest
gallery of squares exhibiting the fact that e; and e, are parallel. There are two
possible pictures, as shown in Figure In either case one has a planar diagram
Vo consisting of a segment of length length(y) together with n squares, and a
combinatorial map of this diagram into X. The inner boundary of this diagram
goes to a loop in X. Since X is simply connected, we can fill the boundary with
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FIGURE 15. A geodesic containing parallel edges, either oriented
together (as at left) or oppositely (as at right). In both pictures
n = 5. The green curve should be filled in with a disk diagram.

some disk diagram Vj realizing this null-homotopy. We may suppose this disk
diagram is minimal area. Let V be the disk diagram V, U V;.

If the edges e; and e are oriented together along «y, as on the left hand side
of Figure we see that V must contain a monogon, which violates NPC as in
Exercise [

We must therefore have that e; and e, are oriented oppositely, as in the right
hand side of Figure [[5] Let « be the dual curve to the gallery in V. Suppose
first that there is another dual curve 5 making a bigon with a. We may suppose
that this bigon B is least area among those involving «. If the bigon is nonempty,
then we can argue as in the proof of the Casson Lemma that there is some empty
3—gon in B meeting «a, and so we can perform a hexagon move on V to obtain a
new diagram as in Figure We can delete a square from this diagram to get

FIGURE 16. Finding a diagram with a smaller bigon, but the same
length gallery connecting e; to es.

a new diagram V' of the same type as V: The new diagram again has an outer
“gallery” exhibiting the fact that e; is parallel to ey, and dual curve o/ running
through this gallery. However, the smallest area bigon involving o’ is smaller area
than the smallest one involving a. Eventually we obtain an empty bigon using a.
Removing the two squares involved in this bigon leaves a shorter gallery connecting
e1 to es, contradicting our assumption that the gallery was shortest to begin with.
We deduce that there were no bigons involving «.
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But this implies that every dual curve crossing « also crosses the part of OV
mapping to . Thus the length of that part of OV on the outside of the gallery is
at most |y| — 2, contradicting the assumption that v was geodesic. O

EXERCISE 6. (1) Any square in a CAT(0) cube complex is embedded.
(2) Any (combinatorial) loop in a CAT(0) cube complex has even length.

We note a corollary of the exercise (remember that we only allow combinatorial
paths).

COROLLARY 7.12. Any path of length 2 in a CAT(0) cube complezx is geodesic.
PROPOSITION 7.13. Let X be a CAT(0) cube complex. Then X is special.

PROOF. (Sketch) We rule out the hyperplane pathologies in turn.

Let H be a hyperplane of X. If H were 1-sided, we could build a nontrivial
element of H'(X,7Z/2), contradicting the simple connectedness of X.

If H self-osculates or self-intersects, there are a pair of distinct dual edges to
H which meet at a point. These give a path of length two in X, which is geodesic
by Corollary and crosses H twice, contradicting Proposition [7.11}

Suppose H; and Hs interosculate. Then there is a combinatorial map into
X of a diagram like either the left or right side of Figure In either case, we

FIGURE 17. Possible interosculations. The red edges represent an
osculation. Fill the green loop with a least area filling.

can fill in the diagram with some least area disk diagram. In case the diagram
is like the one on the right, this filled-in diagram will contain either a monogon,
contradicting Exercise[5] or a subdiagram like the left-hand interosculation picture.
We can therefore assume the picture is like the one at left. In this case we’ll be
able to find some hexagon move reducing the area of the filled-in part. But if the
filled-in part has no squares, there is a hexagon move available at the right, and we
can decrease the size of the diagram. Eventually we discover that the edges which
form the “osculation” actually corner a square, and so there was no inter-osculation
to begin with. O

4. m—injectivity of locally isometrically immersed subcomplexes

One way to show that locally immersed subcomplexes of NPC cube complexes
are mi—injective would be to invoke the Cartan-Hadamard Theorem (see [BH99,
I1.4.14]). Since we are avoiding explicit use of CAT(0) geometry in these notes, we
sketch a different proof. This proof also allows us to introduce Wise’s cornsquares.
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DEFINITION 7.14. Let V be a disk diagram over v: S! — X, where X is
CAT(0). A corner of V is a pair of consecutive edges of 9V which corner a square
inV.

cornsquare

corner

FIGURE 18. A corner and a cornsquare.

A cornsquare of V is a pair of consecutive edges e; and ey of OV which are
V—parallel to edges e} and e, which corner a square.

The next lemma says that, in least area diagrams, cornsquares can be improved
to corners.

LEMMA 7.15. Let V be a least area diagram over v: S' — X where X is
CAT(0). If V has a cornsquare at ey, ez in OV, then there is another least area
diagram with a corner at ey, es.

PROOF. In our picture of a cornsquare (Figure , the galleries leading from
the boundary to the edges which corner a square bound a nonempty region in the
diagram V. If that is the case, though, we can apply hexagon moves to V to
decrease the area of that region, eventually obtaining a diagram V' with the same
area, but so the cornsquare looks like the one in Figure [I9] But now we can apply

empty
cornsquare

FI1GURE 19. A diagram with an empty cornsquare.
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further hexagon moves to decrease the length of the galleries in the cornsquare,
eventually converting it to a corner. ([

PrOPOSITION 7.16. If ¢: Y — X is a locally isometric immersion of NPC
cube complexes, then ¢.: mY — m X is injective.

PROOF. If ¢ is not m—injective, then there is some combinatorial loop ¢ in
Y so that ¢ o ¢ is null-homotopic, so admits a finite-area disk diagram. Fix some
o which is least area among shortest such loopsE| Now let V' be a least area disk
diagram over ¢ o o.

CLAIM. V' has a cornsquare.

Given the claim we can replace V by a diagram V' with the same area, but
with a corner. By the local isometry property, this corner comes from a square in
Y, and we can homotope o across that square to get a loop o’ of the same length
as o, but with Area(¢ o ¢’) < Area(¢ o ). This contradicts our choice of o.

PROOF OF cLAIM. We argue using the dual curves to V', which are properly
embedded arcs in D = N.(V). Note that a corner in V corresponds to a pair of
dual curves which have adjacent endpoints in the boundary, and which immediately
cross, forming an “empty 3—gon” together with D. A cornsquare in V' corresponds
to a pair of dual curves which have adjacent endpoints in the boundary and even-
tually cross each other.

Choose some point p € dD which is not an endpoint of a dual curve. The
orientation of D gives an ordering on points of 9D ~\ {p}, which restricts to an
ordering of the endpoints of dual curves. Let P be the set of pairs of endpoints
(f1, f2) so that fi; < fo in this ordering, and either:

(1) f1 and f5 are the endpoints of a single dual curve, or

(2) the dual curves issuing from f; and fy cross.
Let (e1,e2) be an innermost element of P: this means that if (f1, f2) € P and
e1 < f1 < fo <eq, then f; = €7 and fy = es. One quickly sees that no endpoint f
of any dual curve satisfies e; < f < es.

If (e1,eq) is of type , so that e; and e; are the endpoints of a single dual
curve «, then this curve a must correspond to a backtrack in ¢ o 0. Since ¢ is a
local isometry, there must also be a backtrack in o, which implies that ¢ is not
shortest, a contradiction.

If (e1,e2) is of type (2), then we have found a pair of adjacent dual curves
which cross. d

O
The techniques of this section can also be used to establish the following:

PROPOSITION 7.17. Let ¢: Y — X be a locally isometric immersion of NPC
cube complexes. Then the lift ¢: Y — X to universal covers is injective, with
convex image.

EXERCISE 7. Prove Proposition [7.17]

you might want to reread that sentence until it makes sense.



CHAPTER 8

Quasiconvex subcomplexes

In this subsection we prove Haglund’s theorem that quasiconvex subgroups of
cubulated groups can be represented by locally isometric immersed cube complexes.
We should emphasize that which subgroups of a cubulated group are quasiconvex
depends on the cubulation (unless the cubulated group is hyperbolic, as we’ll see

in Chapter .

DEFINITION 8.1. Let X be a geodesic space, K > 0. The subset A C X is
K —quasiconver if every geodesic with endpoints in A lies in N (A).

EXERCISE 8. Let I' be the Cayley graph of Z & Z with the standard gener-
ating set. A subgroup is also a subset of I'; so we can ask which subgroups are
quasiconvex. Show:

(1) The subgroup generated by (1,0) is quasiconvex in X.
(2) The subgroup generated by (1, 1) is not quasiconvex in X.

Since the two subgroups in the exercise are related by an automorphism of
7 @ Z, this makes it seem like quasiconvexity is a pretty unstable notion. But we
will continue on with it anyway. Our goal is the following theorem of Haglund:

THEOREM 8.2. Let X be a NPC cube complex, G = m X, X = X the universal
cover. Let H < G be such that some orbit Hxo C X is quasiconvex.

Then there is a compact NPC cube complex Y with mY = H and a locally
isometric immersion of cube complexes ¢: Y — X so that ¢. is the inclusion

H < G.
This theorem combines with Corollary [6.8] to give a powerful tool for finding
separable subgroups of fundamental groups of special cube complexes.
1. Median spaces

Trees are distinguished by the fact that every geodesic triangle is O—thin (a
tripod). Geodesic median spaces are those in which every triple of points is the
vertex set of some O-thin geodesic triangle.

DEFINITION 8.3. M a metric space is median if for all x,y,z in M, there is a
unique m (called the median of x,y, z) so that

d(z,y) = d(x,m)+d(m,y), d(y, z) = d(y,m)+d(m, z), and d(z, z) = d(x, m)+d(m, z).

We’ll show below (Gerasimov Lemma) that the 1-skeleton of a CAT(0) cube
complex is median. We first need the converse to Proposition

LEMMA 8.4. Let v be a combinatorial path in the CAT(0) cube complexr X.
Then ~y is geodesic if and only if v crosses each hyperplane at most once.

51



52 8. QUASICONVEX SUBCOMPLEXES

PROOF. Proposition [7.11] told us that geodesics cross each hyperplane at most
once.

Suppose that 7 is any combinatorial path which crosses each hyperplane at
most once and let ¢ be a geodesic with the same endpoints as . Fill in the loop
v -o~! with a minimal area disk diagram, and consider dual curves starting on 7.
Since y crosses each hyperplane at most once, every such dual curve must end on o.
But this implies that the length of v is at most the length of o, so v is geodesic. [

EXERCISE 9. Let H be a hyperplane in a CAT(0) cube complex, and let
N(H) = H x [~3, 3] be the union of cubes intersecting H (also called the car-
rier of H). Write ON(H) for the subset H x {—21,1}. This has two connected

272
components. Show that the intersection of each with X is convex.

We consider the possible ways a path « could fail to be geodesic.

DEFINITION 8.5. A backtrack in -~y is a length 2 subsegment ejes, so that es is
just e; with the opposite orientation. By an elementary shortening of v, we mean
a subsegment of 7 of the form ejoes, where ey is parallel to e; with the opposite
orientation, and o is geodesic.

e €2

FIGURE 1. An elementary shortening.

REMARK 8.6. If v has an elementary shortening ejoes, with e; and ey both
dual to the hyperplane H, the endpoints of ¢ lie in the same component of ON(H ).
By Exercise [0} o is contained entirely in one component of ON(H). If ¢ is the
corresponding path in the other component of N (H), then v can be modified to
a shorter path by just replacing e;oes with 6.

The next lemma says that any non-geodesic in a CAT(0) cube complex is non-
geodesic for one of these two simple reasons.

LEMMA 8.7. Let X be a CAT(0) cube complex, and vy a combinatorial path. If
~ 18 not geodesic, then v contains either a backtrack or an elementary shortening.

PROOF. If v is not geodesic, then by Lemma[8:4] v must cross some hyperplane
twice. Let ejoes be a shortest subsegment of v which crosses a hyperplane twice. If
o is empty, then ejes is a backtrack. Otherwise o crosses no hyperplane twice, so it
is geodesic, again using 8.4 It follows that ejoes is an elementary shortening. O

GERASIMOV LEMMA. The O-skeleton of any CAT(0) cube complex is median
(using the metric induced from the path metric on the 1-skeleton).

PROOF. We first prove uniqueness. Suppose there are two median points m;
and my for some triple x,y, z. Consider a hyperplane H separating m; from ms.
Two of z,y, z must lie on one side of H. Without loss of generality, say z,y lie on
the same side as m;. But then there is a geodesic from x to y through m; which
crosses H twice. This contradicts Lemma [8.4]
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We next establish existence. Let x,y, z be vertices of X. Define the set

I(z,y) = {p | d(z,p) + d(p,y) = d(x,y)},

and let m be a point of I(z,y) closest to z. We claim that m is a median point
for x,y, z. Indeed, choose geodesics [z, m], [y, m] and [m, z]. If m is not a median,
then either [x, m]U[m, z] or [y,m]U[m, z] is not geodesic. We may as well suppose
it is v = [x,m] U [m, 2], and apply Lemma to find a backtrack or elementary
shortening. If there is a backtrack, it must occur at m, and we find a point in I(z, y)
which is closer to z. If on the other hand there is an elementary shortening, then
we have some picture like Figure [2| In particular, the path v crosses a hyperplane

Y

el €2 z

m/

FIGURE 2. If m is not a median, we find some m’ € I(x,y) closer to z.

H twice at edges e; and es, and a subsegment of the path « looks like e;oes, where
o is a geodesic in ON(H). Since [z, m] and [m, z] are geodesic, m must occur in o.
We claim the reflection m’ of m across H is

(1) in I(z,y) and

(2) closer to z than m is.
The path o can be broken into two parts, o3 C [z,m], and o3 C [m,z]. For
i € {1,2}, let o} be the path obtained by reflecting o; across H. Let e,, be the
edge from m’ to m. The path [z,m] U [m,z] can be decomposed as o,ej0e50,.
Notice that the path 0,0 en[m,y] passes through m’ and has the same length as
the geodesic [x,m] U [m,y] = ore101[m,y], so m’' € I(x,y).

For the second claim, note that the path o4o, from m’ to z has length one less

than [m, z]. O

2. Combinatorial hulls

DEFINITION 8.8. Let X be a CAT(0) cube complex, and H C X a hyperplane.
The carrier N(H) is the union of cubes in X intersecting H. Denote the interior
of N(H) by N(H). Then X ~ N(H) has precisely two components, called the
halfspaces determined by H. If we co-orient H, then we can distinguish between
the positive halfspace HT (into which the edges dual to H point) and the negative
halfspace H™.

Let X be a CAT(0) cube complex, and let A C X. The combinatorial convex
hull of A is

Hull(4) = ﬂ{B | B is a halfspace containing A}.

REMARK 8.9. By exerciseg half-spaces are convex. (This means the 1-skeleton
of a half-space is convex in X 1))
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We now state a theorem about combinatorial hulls which will be used to prove
Theorem A cube complex is uniformly locally finite if there is some n so that
every vertex lies in at most n cubes.

THEOREM 8.10. Let X be a uniformly locally finite CAT(0) cube complex. For
all K, there exists an L so that: If Q is a K—quasiconvex subset of X, Hull(Q) is
contained in the L-neighborhood of Q.

PROOF. As a reminder, we work entirely in the 1-skeleton of X. Let Q be a
K—quasiconvex subset. We will show that if d(v, Q) is too large, then v ¢ Hull(Q).
Precisely, let L be the maximum number of hyperplanes meeting a K—ball in
X, and suppose that d(v, Q) > L. We must find a hyperplane separating v from Q.
Choose some vertex w € @ closest to v, and a geodesic v from v to w. Let H
be a co-oriented hyperplane crossed by v, with v € H*, and suppose that H does
not separate v from Q. In particular, there is some u € QN H*. Let m be the
median point of u,v,w. Since H7 is convex, the median m lies in HT. See Figure

Bl

u

FI1GURE 3. If H doesn’t separate v from @, it must come close to
w € Q realizing d(w, Q).

Since m lies on a geodesic from w to u, and @ is K—quasiconvex, d(m, Q) < K.
Since w is closest in @ to v, we have d(m,w) < K. The hyperplane H must cross
~v between m and w, so H meets a K—ball about w.

Since there are at most L hyperplanes meeting the K-ball about w, and
d(v,w) > L, the geodesic vy crosses at least one hyperplane which does separate
v from @, so v ¢ Hull(Q). O

Theorem now follows from Theorem and the following exercise:

EXERCISE 10. Let X be a CAT(0) cube complex, with G ~ X freely and
cocompactly. If @ C X, then the inclusion of Hull(Q) in X is a local isometric
embedding. Thus if z € X, we get H ~ Hull Hz, and after taking quotients

H\Hull(Hx) - o\X

is a locally isometric immersion of compact NPC cube complexes inducing H < G
on the level of fundamental groups.



CHAPTER 9

Finding cubes: codimension one subgroups and
pocsets

In this section we explain where cube complexes actually come from. The key
ideas here are due to Michah Sageev, and the following account owes a lot to his
Park City notes [Sag14].

The name “codimension one” refers to immersions of manifolds in one another.
But as we will see below, not every m—injective codimension one submanifold has
codimension one image. There is a subtle issue to do with one-or-two-sidedness.

Let G be generated by the finite set S, and let H < G. The Schreier coset
graph Sch(G, H, S) is a graph whose vertex set is H\G, and an edge joining Hg
to Hgs whenever g € G, s € S.

Observe that Sch(G, H,S) is equal to the quotient H\F(G,S)7 under the

natural isometric action.

DEFINITION 9.1. If G is finitely generated and H < G, then H is codimension
one in G if Sch(G, H, S) has at least two ends.

Here’s an easy exercise and a harder one.

EXERCISE 11. Whether H < G is codimension one does not depend on the
finite generating set .S.

EXERCISE 12. Let G = my M where M is a compact aspherical n—manifold, and
let ¢: N — M be a m—injective immersion of some connected aspherical (n — 1)—
manifold. Then H = ¢.(m N) is codimension one if and only if the immersion is
2-sided. (A codimension one submanifold is 2—sided if its normal bundle is trivial.)

1. Pocsets

The notion of a “system of half-spaces” studied by Sageev was reformalized by
Roller [Rol98] as a pocset, or poset-with-complementation.

DEFINITION 9.2. A pocset is a poset (P, <) together with an involution A — A*
satisfying:
(1) A and A* are incomparable, and
(2) A< B = B*< A"

EXAMPLE 9.3. Let X be a set, and let P C 2% \ {X,0} be closed under
complementation. Then P is a pocset, with involution A* = X'\ A. A pocset of this
form is also sometimes called a space with walls. The walls are the pairs {4, A*}.
Usually it is also required that, for z,y € X, theset {A € P | x € A,y ¢ A} is
finite. (Note that Hruska—Wise’s notion of a wallspace is different [HW14l Section

2].)
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EXAMPLE 9.4. Let X be a cube complex, and let P be the collection of com-
binatorial halfspaces. Any hyperplane determines two such halfspaces, and the
involution exchanges them. Order by inclusion.

Later, we’ll see how to get a pocset with a G—action from a codimension one
subgroup H < G. For now we continue with the general theory of how to turn a
pocset into a cube complex.

We need a few more definitions:

DEFINITION 9.5. Let (P, <) be a pocset, and let A, B be distinct elements of
P. Say A, B are nested if one of the following holds:

A< B, A< B*, A* < B,or A* < B*.
Otherwise they are transverse.

If (P, <) is a space with walls, then A, B are transverse if and only if all four
intersections AN B, AN B*, A* N B, A* N B* are nonempty.

DEFINITION 9.6. The width of a pocset is the maximum number of pairwise
transverse elements. If there is no such maximum number, the width is co.

For a pocset P coming from a finite dimensional cube complex as in [0.4] the
width of P is equal to the dimension of the cube complex.

For a general pocset, we must reconstruct the cube complex. The vertices of
the cube complex will be ultrafilters: “consistent” choices of A or A* for every pair

{A,A*} C P.
DEFINITION 9.7. An wultrafilter on a pocset P is a subset o C P satisfying:

(1) (Completeness) For every A € P, exactly one of {4, A*} is in a.
(2) (Consistency) If A € a, and A < B, then B € «.

EXAMPLE 9.8. (Principal ultrafilters) Suppose P is the pocset associated to a
space with walls X. Let © € X. Then o, = {A € P |z € A} is an ultrafilter.

In “nicely behaved” spaces with walls, principal ultrafilters also satisfy the
following:

DESCENDING CHAIN CONDITION. Fuvery sequence Ay > As > -+ of elements
of a terminates.

We say an ultrafilter is DCC if it satisfies this condition.

2. The cube complex associated to a pocset

Our cube complex will have O—cells corresponding to DCC ultrafilters, and
edges corresponding to “flips” A +» A*. We use the following notation, when w is
a DCC ultrafilter on the pocset P, and A € w:

(Wi d) = (w~ {4} u{A™}

LEMMA 9.9. If w is a DCC ultrafilter, the following are equivalent:

(1) (w; A) is a DCC ultrafilter;
(2) A is minimal in w (with respect to the order on P).
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Proor. (l) = . Suppose w and w’ = (w; A) are both DCC ultrafilters, and
that B < A is in w. Then A* € ', but B* ¢ w'. Since A* < B*, this contradicts
consistency.
2) = . Let A € w be minimal, and let w’ = (w; A). Tt is clear that ' is
complete and DCC, so we just need to check consistency. Suppose by contradiction
that for some B < C, B € w’ but C' ¢ w’. Since w is consistent, one of B* or C' is
A.

In case B = A* < C ¢ W', we have C* < A and C* € w (C # A since A and
A* are incomparable). But then A is not minimal in w.

In case C' = A, we have B < A in w, and again A is not minimal. |

DEFINITION 9.10. Let P be a pocset. We define a cube complex X = X (P) as
follows:

e Let X be the set of DCC ultrafilters on P.

e Connect w to w’ by an edge if and only if w’ = (w; A) for a minimal A € w.

e Inductively glue in n—cubes for n > 2, wherever the (n — 1)-skeleton
appears.

The following lemma follows from the construction:

LEMMA 9.11. Let w € X, and let k > 1. There is a one-to-one corre-
spondence between k—cubes incident to w and (k — 1)—tuples of pairwise transverse
minimal elements of w.

In particular, the link of a vertex is flag, so we have:

COROLLARY 9.12. For P a pocset, the cube complex X (P) is NPC.
Connectedness is not guaranteed in general, but we do have the following:
LEMMA 9.13. If P is a pocset of finite width, then X (P) is connected.

PROOF. Let w and n be DCC ultrafilters on P. We want to find a path from
w to n. This boils down to two claims:

Cram. If A is a minimal element of w ~n, A is minimal in w.
PRrROOF. Exercise. (]
CLAIM. If P has finite width, then w ~\ 1 is finite.

PROOF. Suppose that 6 = w \ 7 is infinite. Ramsey’s theorem implies there is
either an infinite collection A of pairwise nested or pairwise transverse elements of
0. Since P has finite width, this collection must be pairwise nested. For any two
A, B € A, we claim that either A < B or B < A. Otherwise either (i) A* < B, or
(ii) B < A*. In case (i), A* € n but B ¢ n contradicts consistency of n. In case
(ii), B € w but A* ¢ w contradicts consistency of w.

But since A < B or B < A for every pair of elements of 4, we can construct an
infinitely long chain of elements of §, of one of the two forms:

Al <Ay <A3< - or Ay > Ay > Ag > -
The first kind of chain contradicts DCC of n; the second contradicts DCC of w. [

Given the two claims, we can always choose A € w\ 7 so that (w; A) is a DCC
ultrafilter closer to n than w was. (]
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REMARK 9.14. In some natural situations, we don’t necessarily know finite
width, but have some other way to pick out a “canonical” component of X (P).

LEMMA 9.15. Let P be a pocset. Then any component of X(P) is simply
connected.

PRrROOF. Consider a shortest non-contractible edge loop o. Note that this loop
must have length 2n for some n. Let w and n be O-cells cutting the loop into
two paths p; and py of length n. Extending the notation (w; A, B) := ((w; A); B),
and so on, we have a bijection between combinatorial paths and expressions of
the form o = (8;A41,...,4,). In particular, the path p; from w to n gives an
expression 1 = (w; Ay,...,A,) for some elements A;,..., A, of P, whereas the
path ps from 7 to w gives an expression w = (1; Ap11,. .., A2, ). Note that for each
i€ {n+1,...,2n}, there must be a j € {1,...,n} with A; = A7, since loop o gives
an expression

w=(w;A1,...,Aq).
In particular A,+1 = A} for some k < n. Consider the point p = (w; A1, ..., Ay, A})
on . We cannot have n = k, or there would be a backtrack in o, contradicting the
assumption that it is a shortest non-contractible edge loop.

CLAIM 9.15.1. For all i so that k < i <mn, A, and A; are transverse.

PROOF OF cLAIM. Note that A,11 = A}, and that there is some j € {n +
2,...,2n} so that A; = AY. The points w, (w;A1,...,4;), (w;A1,...,A;), and
(w; Ay, ..., Apt1) all represent consistent ultrafilters, and all possible choices from
{A;, A7} and from {Ay, A} } occur. Thus Ay and A; must be transverse. O

Given the claim, we can homotope the first part of ¢ across a square to one
which expresses p = (w; A1,...,An_1, A}, A,); we can then continue to homotope
across squares until we arrive at a path expressing p = (w; A1, ..., Ak, Af, Ag+1, ..., An);
this path contains a backtrack, again contradicting the assumption that the loop is
shortest. ]

To summarize:

THEOREM 9.16. Let P be a pocset. Then any component of X (P) is a CAT(0)
cube complex. If P has finite width, then X (P) is connected.

We remark that if a group G acts on a pocset, this action naturally induces an
action on the cube complex X (P).
The following is a motivating example:

EXAMPLE 9.17. Let M be a compact hyperbolic manifold, and let F' be an
immersed totally geodesic submanifold of codimension one. Then any elevation F
to the universal cover M — M divides M into two half-spaces. Let P = P(M,F)
be the pocset of such half-spaces, with order given by inclusion, and involution
given by switching half-spaces.

The width of the pocset P is equal to the maximum number of pairwise crossing
elevations of F', and is finite. In particular X (P) is finite dimensional and connected.
The fundamental group of M acts cocompactly on X (P). An example is shown
in Figure [1] of an immersed curve in a surface. The vertices are (in this case) in
bijective correspondence with components of the complement of the preimage in
the universal cover. (This is because at most two lifts pairwise cross.) There’s
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F1GURE 1. An immersed curve and part of the corresponding cube complex.

one orbit of square, and the quotient of the cube complex by the group action is a
sphere with three points identified.

3. Codimension one subgroups

The main source of examples is a “coarsening” of Example codimension
one subgroups as defined in Definition Remember a subgroup H < G is said
to be codimension one if the Schreier coset graph Sch(G, H,S) has at least two
ends. In this subsection we construct a pocset from a collection of codimension one
subgroups, and pick out a canonical component of the associated cube complex.
This component is preserved by the natural G—action.

DEFINITION 9.18. Let H < G. A subset A C G is H—finite if it is a union of
finitely many right cosets of H. It is H —infinite if it is a union of right cosets of H,
but isn’t H-finite.

Recall that for two sets the symmetric difference AAB = (A\ B)U (B \ A).

LEMMA 9.19. Let H < G be codimension one. Then there is an A C G satis-
fying the following:
(1) A and G\ A are both H—infinite; and
(2) for every g € G, AgAA is H-finite.

PRrROOF. Note that the right cosets of H are canonically identified with the
vertices of any Schreier coset graph Sch(G, H, S). Fix S, and let I" = Sch(G, H, S).
Since H is codimension one, it has more than one end. Choose a neighborhood of
some end, and let E C I'©) be the vertices in that neighborhood. The set A is the
union of the right cosets corresponding to vertices of E. Since there is more than
one end, both A and G\ A are H-infinite.

To prove statement , it suffices to consider ¢ = s € S. Then As is the union
of the cosets corresponding to

Es:={v| 3w € E and a directed edge labeled s from w to v}.

The symmetric difference between E and E's consists of vertices which are either
in E and connected by an edge to a vertex in I'\ E, or in I" \ F and connected by
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an edge to a vertex in E. In particular, this set must be finite, since E is the set of
vertices in the neighborhood of an end. It follows that the corresponding union of
cosets AsAA is H-finite. O

DEFINITION 9.20. If A is a subset of G satisfying the conclusions of Lemma
9.19] we will call A an H —halfspace in G and call the pair {A, G\ A} an H-wall in
G.

DEFINITION 9.21. Let Hy,..., H, be a collection of codimension one subgroup
of G. For each i, let A; be an H;-halfspace in G, and let A = {A;,...,A,}.
We suppose all the sets A; are distinct from each other and from each others
complements AS := G\ 4;. We define a pocset (Py, <) to be

Pi={gA|geG,Ac AyU{gA°|ge G,A e A},
with order given by inclusion, and involution given by complementation.

Note that the pocset defined in [0.21] gives G the structure of a space with walls
(see9.3)). In particular, the notion of a principal ultrafilter w, = {B € P | g € B}
(see(9.8) makes sense.

LEMMA 9.22. Let P4 be as in Definition[9-21l Any principal ultrafilter on Py is
DCC, and any two principal ultrafilters lie in the same component of the associated

cube complex X = X (Pu).

PROOF. Let p,q € G, and define #(p, ¢) to be the number of pairs {B, B*} so
that p € B and q € B*.

CLAIM. #(p,q) < oo.

Given the claim, we prove the lemma as follows. Let oy, oy be the principal
ultrafilters associated to p, g, respectively. Let D = {B | p € B,q ¢ B}, and let
n = #(p,q) = #D. We want to flip the elements of D, one at a time. Formally,
let wop = ap. Inductively for ¢ € 1,...n, choose B; minimal in w;—1 N D, and set
w; = (wij—1; B;). Thus w,, = «y, and we just need to check that each w; is a DCC
ultrafilter. By Lemma this is true so long as B; is always minimal in w;_1.

To show B; is minimal in w;_1, we argue as follows. Let B’ € w;_; satisfy
B; C B'. Since B; € D, we have ¢ ¢ B’, so B’ must already have been in «,. In
particular p € B’, so B’ € D\ {By,...,B;_1}. Since B; is minimal in w;_1 N D, we
must have B’ = B;. Thus B; is minimal.

We now establish the claim. It suffices to consider a single set A as in the
conclusion of Lemma [0.19] associated to a single codimension one subgroup H.
We'll show that U = {gA | p € gA,q € gA°} is finite; a similar argument shows
that {gA | p € gA®,q € gA} is finite.

Let g € UW. Since p € gA, we have g~! € Ap~!. Similarly since ¢ € gA°, we
have g~' € A°q~!. In particular, we have g—! contained in Ap~! N A°¢~!, which
is a finite union of right cosets Ht, U --- U Hts. Equivalently, g is contained in the
finite union of left cosets t; ' HU---¢; H. Since HA = A this implies the finiteness
of the set . a

Recall that if a pocset has finite width, the associated cube complex is con-
nected. If the width is infinite, there may be many components. The lemma we just
proved says that in the special case of a pocset coming from a collection of codi-
mension one subgroups, there is nonetheless a distinguished component preserved
by the group action.
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DEFINITION 9.23 (Sageev construction). Let H = {Hy,..., H,} be a collection
of codimension one subgroups of a group G, let A = {A1,...,A,} and Py be as
in Definition [9.21] and let X be the component of the associated cube complex

containing the principal ultrafilters. Then X is said to be obtained from (G, H) via
the Sageev construction.

Next we’ll want to find criteria for properness or cocompactness of the action.
In order to formulate such criteria, we’ll need a bit of hyperbolic geometry.






Part 11

Hyperbolic geometry and cube
complexes






CHAPTER 10

Quasi-Isometries and Hyperbolicity

The technology of cube complexes really starts to shine when applied to hy-
perbolic (or at least relatively hyperbolic) groups. As we’ll see below, these groups
have a robust notion of quasiconvex subgroup, allowing us to get more mileage out
of Theorem B2

We'll just review the basics of Gromov hyperbolicity here. A good source for
more details is [BH99] III.LH and IILT]. One key feature of hyperbolicity (not
shared by NPC-ness) is that it is coarse, in the sense that quasi-isometric groups
are either both hyperbolic or both non-hyperbolic.

1. Coarse geometry
We first recall the idea of a quasi-isometry.

DEFINITION 10.1. Let X, Y be metric spaces, K > 1, C > 0. A (not necessarily
continuous) function f: X — Y is a (K, C)-quasi-isometric embedding if, for all
a,be X,

1
If in addition, every point y € Y lies within C of f(z) for some xz, then f is a
(K, C)—quasi-isometry.

As usual for this kind of terminology, f is a quasi-isometric embedding if it is
a (K, C)—quasi-isometric embedding for some K, C, and so on.

EXERCISE 13. If this terminology is new, you should convince yourself of the
following:

(1) A composition of quasi-isometries is a quasi-isometry.

(2) Any quasi-isometry f: X — Y has a quasi-inverse; a quasi-isometry
g: Y — X so that fog and g o f are bounded distance from 1y and
1y, respectively.

(3) A metric space is quasi-isometric to a point if and only if it is bounded.

(4) A quasi-isometry of complete locally compact geodesic metric spaces in-
duces a bijection on the set of topological ends. (So R is not quasi-
isometric to R?, for example.)

Note that the first two parts of this exercise imply that quasi-isometry deter-
mines an equivalence relation on the class of all metric spaces.

The Schwarz—Milnor Lemma gives the fundamental connection between group
theory and coarse (qi) geometry. See [BH99 1.8.18] for a proof.

SCHWARZ-MILNOR LEMMA. Let X be a proper geodesic metric space on which
a group G acts properly, cocompactly, by isometries. Then

65
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(1) G is finitely generated by some set S, and
(2) any orbit map g — gx is a quasi-isometry from (G,dg) to X.

(Here dg is the word metric on G given by the generating set S.)
We note some Corollaries/Exercises.

COROLLARY 10.2. Let G be finitely generated.

(1) If A and B are two finite generating sets for G, then the Cayley graphs
T'(G,A) and T(G, B) are quasi-isometric. (So G determines a unique
quasi-isometry type.)

(2) If H<G, then H is quasi-isometric to G.

(3) If N < G is finite, then G/N is quasi-isometric to G.

(4) If G is the fundamental group of a closed hyperbolic n—manifold, then G
18 quasi-isometric to H™.

(5) If G is a finitely generated free group, then G is quasi-isometric to Fy, the
free group on 2 letters.

2. Hyperbolic metric spaces

By a triangle we always mean a geodesic triangle, which is the union of three
geodesics, the sides of the triangle. A triangle T is §d—slim if each side is contained
in the d—neighborhood of the union of the other two sides. Any particular triangle
is 6—slim for § equal to the diameter of the triangle, for example. In the euclidean
plane, for any fixed § there are triangles which fail to be d—slim. Hyperbolic space,
on the other hand, has the property that all triangles are d—slim for some universal
6. It turns out that a great deal of geometry can be done using this fact alone.

DEFINITION 10.3. Let § > 0. A geodesic space X is d—hyperbolic if every
triangle in X is (5fslimE| A space is said to be Gromov hyperbolic (or just hyperbolic)
if it is 0—hyperbolic for some §.

EXERCISE 14. (1) If 61 < b2, then every d;—hyperbolic space is do—hyperbolic.
(2) A tree is 0-hyperbolic.
(3) For any n > 2, hyperbolic space H" is —hyperbolic for some §. Find a ¢
which works. (Hint: think about ideal triangles)
(4) Let n > 4. Any geodesic n—gon in a d—hyperbolic space is (n — 2)d—slim:
any side is contained in the (n — 2)d—neighborhood of the union of the
other sides.

We'll see that being (Gromov) hyperbolic is a quasi-isometry invariant, though
the particular § is not. To prove this we have to understand the images of geodesics
under a quasi-isometry. But this is the same as understanding quasi-isometric
embeddings of intervals.

DEFINITION 10.4. Let X be a metric space. Let I C R be closed and connected.
A (K, C)—quasi-isometric embedding of o: T — X is called a (K, C') —quasi-geodesic.
(Sometimes the image of such a map is referred to as a (K, C)—quasi-geodesic.) If
I = [a, b] we say the quasi-geodesic is from o(a) to o(b).

1But if you are skipping around in these notes be sure to read Remark |10.16]
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Quasigeodesics in general metric spaces can be quite badly behaved. (For
example t +— te!(1H0(1) gives a gi embedding of [0, 00) into C = E? [BH99, Exercise
1.8.23].)

However, we have the following nice statement in hyperbolic spaces (by the
Hausdorff distance between two paths, we mean the Hausdorff distance between
their images).

THEOREM 10.5 (Quasigeodesic Stability). [BH99| IT1.H.1.7] Given any K, C, §,
there is an R so that:

If o is a (K, C)—quasigeodesic from x to y in a d—hyperbolic space X, and v is
a geodesic from x to y, then the Hausdorff distance between o and 7y is at most R.

We refer to Bridson—-Haefliger for the proof. Here are some easy consequences.

COROLLARY 10.6. Let g: Y — X be a quasi-isometric embedding of geodesic
metric spaces, where X 1is hyperbolic. Then'Y is hyperbolic.

PROOF. Fix 6 so that X is d—hyperbolic.

For some K > 1, C' > 0 there is a (K, C)-quasi-isometry ¢g: ¥ — X. Let
T be a geodesic triangle in Y. Then ¢(T) is a (K, C)—quasi-geodesic triangle in
X. By Quasi-geodesic stability, each side is Hausdorff distance at most R from a
geodesic with the same endpoints, where R = R(K,C,§). These geodesics form
a 0-slim triangle. For y on the triangle T', there is therefore some 3’ on another
side of T so d(g(%'),g(y)) < 2R+ §. But then since g is a (K, C')—quasi-isometry,
d(y',y) < K(2R+0) + KC.

Thus Y is §¢’~hyperbolic for 6’ = K(2R + 6) + KC. O

Similar arguments give the following.

COROLLARY 10.7. Let f: Y — X be a quasi-isometric embedding of hyperbolic
spaces, and let Q CY. Then Q is quasi-convez if and only if f(Q) is quasi-conve.

We can therefore make the following definitions:

DEFINITION 10.8. Let G be finitely generated. G is hyperbolic if some (equiv-
alently every) Cayley graph is Gromov hyperbolic.

If G is hyperbolic and H < G, say that H is quasiconvex if it is quasiconvex as
a subset of some (equivalently every) Cayley graph of G.

We also note the following important observation:

LEMMA 10.9. Let X be hyperbolic, and let A, B be subsets of X which are a
finite Hausdorff distance apart. Then A is quasiconvex if and only if B is quasi-
convet.

3. Infinite hyperbolic groups have elements of infinite order

The result in the title of this section is a special application of the theory
of regular languages to studying hyperbolic groups. That these ideas were rele-
vant was realized by Cannon — much more information can be found in the book
[ECHT92|.

DEFINITION 10.10. Suppose G is finitely generated by S, and g € G. The cone
type C(g) is the collection of words w in the free group on S so that

ds(1, gw) = ds(1,9) + |w).



68 10. QUASI-ISOMETRIES AND HYPERBOLICITY

In other words, given any geodesic v from 1 to g in the Cayley graph I'(G, S), the
cone type C(g) is the collection of paths which can be appended to « to produce a
new geodesic.

EXERCISE 15. Notice that C(gs) depends only on C(g) and s. Associated to
(G, S) there is therefore a directed labeled graph with vertices equal to possible
cone types in G, and edges labeled by elements of S U S~!. Draw this graph for G
a free group or a free abelian group of rank 2, with S the standard generators.

THEOREM 10.11 (Cannon’s cone types theorem). Let G be hyperbolic, generated
by the finite set S. There is a finite collection of cone types C = {C1,...,Cr} so
that, for every g € G, C(g) € C.

PROOF. The idea is that the cone type of g is determined by the shape of the
set of nearby elements which are closer to the identity than g.
Let g € G. Define the tail of g to be the set of ¢t € G satisfying both
(1) ds(gt,1) < dg(g,1) and
(2) ds(1,t) < 26 + 3, where 0 is a constant of hyperbolicity for T'(G, S).

CLAIM. If g, h have the same tail, they have the same cone type.

Proor. We'll induct on the length of a word v in C(g), showing it must also
lie in C(h). The base case is that v is the empty word. So we must show that if
v e C(g)NC(h), and s € S, that vs € C(g) implies vs € C(h).

Suppose not. Then vs € C(g) \ C(h). In particular, ds(1, hvs) < dg(1,h) + 1.
Let v be a geodesic from 1 to hvs, and let w be the word labeling . Since v € C(h),
there is a geodesic ¢ from 1 to hv, passing through h, labeled by some word vjv.
Together with an edge labeled s, the geodesics v and ¢ form a geodesic triangle
shown in Figure Write w = wjwsg, where |wy| = dg(1,h) — 1. This implies

a = ht

hvs

gl

FIGURE 1. The difference between h and a lies in the tail of h.

lwa] < |v| + 1. We notice that (hv|hvs); > dg(1,h) + |v] — 1. In particular, if
wy is a length dg(1,h) — 1 prefix of w, w represents a group element a € v with
ds(a,h) <+ 1. Since a is closer to 1 than h is, the group element t = h~'a is in
the tail of h. In G we have the equality t"'vs = ws. The tail of ¢ is equal to the
tail of h, so ds(gt,1) < ds(g,1). We note now that

gus = (gt)t vs = gtws.
Using the inequalities established already, we get
ds(1, gvs) < ds(1, gt) + |we| < ds(g,1) + |v| + 1,
contradicting the assertion that vs € C(g). O
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Now let’s prove the corollary promised in the title of the subsection.

COROLLARY 10.12. If G is an infinite hyperbolic group, G contains an infinite
order element.

PROOF. This is essentially the “Pumping Lemma” from automata theory. Let
k be the number of cone types with respect to some generating set S, and let g € G
satisfy d(1,g9) =n > k.

Choose a geodesic word w = s1 - - - s, representing g. Each prefix w; = s1---s;
of w is also a geodesic representative of some group element g;. There must be some
0 <i<j<nsothat C(g;) = C(g;). Divide up the word w into three subwords
uyuouz so that u; = w;, and ujus = wj. (See Figure ) Now clearly usus € C(g;).

1 9i 9j g

Uy U2 us

FI1GURE 2. The middle word begins and ends with the same cone type.

Since C(g;) = C(g;), we have usus € C(g;). But this means udus € C(g;) = C(g;)-
Inductively we see that ubus € C(g;) for all ¢ > 0. In particular u} is geodesic for
every n > 0. In particular uf is never a loop, for positive n, so the group element
g; 1 g; represented by us must be infinite order. [l

4. Quasiconvexity in cube complexes with hyperbolic m;

THEOREM 10.13. Let X be a compact NPC cube complex, and suppose that
G = mX s hyperbolic. The following are equivalent, for H < G a subgroup:

(1) H is quasiconvez in G.
(2) There is a compact NPC cube complex Y and a locally isometric immer-
sion ¢: Y — X so that ¢p.(mY)=H.

PROOF. Let X be the universal cover of X.

= : Choose z € X and a finite generating set S for G. The Schwarz-
Milnor Lemma implies that the orbit map g — gz is a quasi-isometry from (G, dg)
to X. Corollary implies that Hzx is k—quasiconvex for some k. Haglund’s Hull
theorem [B.2] implies that there is a locally isometric immersion of cube complexes
as specified.

— : Lift ¢ to a map ¢~>: Y — X of universal covers. Proposition
says that this map is one-to-one, with convex image. If z € X, then Hz is finite
Hausdorff distance from gzNS(f/), so Hx is quasiconvex by Lemma m But this
implies that H < G is quasiconvex by Corollary O

REMARK 10.14. In particular hyperplane subgroups (m1—images of hyperplanes)
are quasiconvex. This can be seen either by subdividing the cube complex, or by
using the carrier of a hyperplane.
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5. Gromov products and reformulating hyperbolicity

The property of being (Gromov) hyperbolic has a number of useful reformula-
tions. It’s useful to have at least a few of these at our fingertips. (Lots more can
be found, for example in Bridson—Haefliger.) We’ll start with some terminology.

A tripod is a geodesic space which is the union of three (possibly degenerate
intervals), wedged together at a point:

(3) [z1,y1] U [z2,y2] U [3,y3] /21 ~ 22 ~ T3.

Given three points p1,p2, ps in a metric space M, the triangle inequality implies
that there is always a comparison tripod, i.e. a tripod T' as in so that d(p;,p;) =
(y; — ;) + (ys — y;) for any i # j. If M is a geodesic space, and A is a geodesic
triangle with the points p1,p2,ps as vertices, there is always a comparison map
¢: A — T which restricts to an isometry on each side. (Remember that a geodesic

1 p1

D3 11 P2

F1GURE 3. Comparison tripod and comparison map.

triangle is just a union of three geodesic segments — the triangle is not necessarily
“filled in”.) For each j, we refer to the point y; as p;. We refer to the common
image of the points z; as o (see Figure[3). The points {i1,i2,i3} = ¢~ *(0) are called
the internal points of the triangle A. For each j € {1,2,3}, we have (considering
subscripts mod 3)

(Pj1lpjs2)p, = d(pj,0) =d(pj,ij11) = d(pj,iji2)

1
= 3 (d(pj, pj+1) + d(pj, pj+2) — d(Pjr1,Pi42)) -

This quantity is called the Gromov product of pj+1 and pjo with respect to p;.
With notation as in the previous paragraph, the insize of A is the diame-
ter of ¢c1(0). If § > 0, then A is 6—thin (not to be confused with §-slim) if
sup{diam(c=%(2)) | z € T} < 6.
With this language we can give a number of equivalent formulations of hyper-
bolicity.

ProPOSITION 10.15. Let X be a geodesic space. The following are equivalent:

(1) 361 > 0 so that all triangles in X are §1—thin.
(2) 62 > 0 so that all triangles in X are do—slim.
(3) 393 > 0 so that all triangles in X have insize at most ds.
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The (elementary) proof can be found in [BH99| IIT.H.1.16]. There is some
slight worsening of constants as one moves from one formulation to the next. For
a fixed 0, the strongest statement is (1), that all triangles are é—thin.

REMARK 10.16. (WARNING) We will henceforth mean, by d—hyperbolic, the
statement that all triangles are é—thin, not just §—slim.

Another important interpretation of the Gromov product in hyperbolic spaces
is as the approximate distance from a basepoint to a geodesic. The following is an
exercise.

LEMMA 10.17. Let x,y,z € X where X is §—hyperbolic, and let o be a geodesic
joining « toy. Then d(z,0) — 0 < (x]y), < d(z,0).

6. Stability of paths built from geodesic segments

In this section we prove that local geodesics and “broken geodesics” are close
to geodesics. It is also possible to show such paths are quasi-geodesics (we’ll do this
later for broken geodesics) so one could deduce they are close to geodesics using the
Quasi-geodesic Stability Theorem [10.5] However it is possible to get better bounds
by attacking the question directly.

LEMMA 10.18. Let ¢ be a path in a d—hyperbolic space, and suppose that ¢ C
Nr(7), where v is a geodesic connecting the endpoints of c. Then v C Ngris(c).

PROOF. Suppose the paths ¢ and v go from p to ¢. If a,b € v we’ll write [a, ]
for the subsegment of « joining them. Let r € . The image of c¢ is contained in
the union of the R—neighborhoods of [p,r] and [r, g]. Since the image is closed and
connected, there is some = on ¢ which is contained in Ng([p,r]) N Ng([r,q]). Let
p' € [p,r] and ¢’ € [r, q] be points within R of x, and consider the comparison tripod
for the triangle with vertices {z,p’,¢'}. The image of r on this tripod is distance
at most R from the image of z, so d(r,z) < R+ 4. Since r € v was arbitrary, the
Lemma is proved. (I

LEMMA 10.19. Let v, o be geodesic segments in a d—hyperbolic space. Let x be
a point of o so that d(x,~) > d(y,v) for ally € o. Then either

(1) o is contained in a 25—neighborhood of v, or
(2) some endpoint of o is within 2§ of x.

PROOF. Let z be the point on o which is farthest from v, and let 2’ € v be
closest to z. Join the endpoints of o to =’ and consider the comparison tripod T} for
the resulting triangle. Let Z be the image of z in this tripod. Let y be an endpoint
of o whose corresponding leg contains Z. (It might be the central point, in which
case y can be either endpoint.) Let " be the point on [y, 2] in the preimage of Z,
so d(z”,y) = d(z,y).

Let ¢’ be the closest point on «y to y, and consider also the triangle with vertices
{y,y’, 2’} and its comparison tripod Ty. The image 2’ of 2’ in T is either in the leg
corresponding to y or the leg corresponding to x’. If it is in the leg corresponding
to ', then d(z',v) <6, and so d(x,~) < 2§; we are in case .

If 2/ is contained in the leg corresponding to ¥y, then

d(z,y') <20 +d(y,y") — d(z,y).
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(Consider the tripods.)  Since z is farthest from +,
0< d(xvy/) - d(yay/) <26 - d({E,y),
so d(z,y) < 26 and we are in case (2). O

DEFINITION 10.20. Let K > 0. A K -local geodesic is a unit speed path so that
every subpath of length at most K is geodesic.

The next statement is immediate from Lemmas [10.18| and [10.19]

COROLLARY 10.21. Let € > 0 and suppose ¢ is a (46 + €)—local geodesic. If ~
is a geodesic with the same endpoints,

(1) ¢ is contained in a 26-neighborhood of .
(2) «v is contained in a 3§—neighborhood of c.

The above statement is sometimes useful, but it is more common to be given
a broken geodesic than a local geodesic. The following proposition gives a similar
statement about broken geodesics.

PropPOSITION 10.22. Let X be a d—hyperbolic, geodesic space, and let [ > 0.
Let ¢ = ¢y -+ ¢, be a concatenation of geodesics ¢; = [pi—1,pi] so that

o (Gromov products are small) for each i, (pi—1, pit1)p; < ; and
o (segments are long) for each i ¢ {1,n}, |¢;| > 21 + 84.

Then:

(1) ¢ is contained in a (I + 35)-neighborhood of ~v; and
(2) v is contained in a (I + 46)—neighborhood of c.

PrOOF. If n < 2, the Proposition follows easily from slimness of triangles, so
we assume n > 3.

Item follows from item and Lemma so we only need to prove
item . Let x be the farthest point from v on ¢, and let M = d(z,~). Without
loss of generality, we suppose that M > 2§. Then Lemma implies that z is
within 26 of some breakpoint p;. Since M > 26, the breakpoint p; cannot be either
endpoint of the geodesic +; in particular i ¢ {0,n}. There are two cases, depending
on whether or not ¢ € {1,n — 1}.

Suppose first that ¢ ¢ {i,n — 1}. By the assumption that segments are long,
d(x,{pix1}) > 20 + 6. Choose a geodesic o joining p;—1 to p;y1, and note that
d(z,0) <144, by the assumption on Gromov products. Let y be a closest point
to p;—1 in 7, and let z be a closest point to p;4+1 in . Choose geodesics [y, z] C 7,
[pi—1,y], and [pi+1,2]. The point x lies within I + 3§ of some point w on the union
of these three geodesics. We claim that w € [y, z], so we have M <[+ 3.

Indeed, suppose that w € [p;—1,y] (the case w € [p;41, 2] being identical). Now
we have

0 <d(x,y) —d(pi-1,y) < d(z, w) + d(w,y) — (d(pi-1,w) + d(w,y))
(z,w) = d(pi-1,w)
(z,w) — (d(z, pi-1) — d(z, w))
d(z,w) — d(z,pi—1)

a contradiction. We have established item in case i ¢ {1,n —1}.
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Now suppose i € {1,n — 1}. Reversing the indices if necessary, we can assume
that ¢ = 1. Let z be the point on ~ closest to ps. Clearly we have d(pg,z) < M.
Choose a geodesic [po, p2]; the point x is within I + § of a point 2’ on [pg, p2]. The
point &’ is within ¢ of a point w either on [pg,z] C 7, or on a geodesic [pg, z]. If
w € 7y, we have d(x,v) <1+ 26, and we are finished.

Suppose that w € [pe, z]. We have

0 <d(x,v) — d(p2,2) < d(z,z) — d(ps, 2)
<d(z,w)+d(w,z) — (d(p2, w) + d(w, 2))
= d(z,w) — d(p2, w)
< d(z,w) — (d(p2, ¥) — d(z,w))
= 2d(z,w) — d(p2, x)
< 2(1+26) — (20 + 85 — 20) < —26,

a contradiction. O






CHAPTER 11

Characterizing virtually special in terms of
separability

We have already seen that quasiconvex subgroups of virtually special hyperbolic
groups are separable. In this chapter we see how separability can be used to remove
the hyperplane pathologies. This brings us tantalizingly close to proving that if
G = m X is hyperbolic, and X is a compact NPC cube complex, then X is virtually
special if and only if the hyperplane subgroups are separable in G. This statement
is true, but seems to require the Malnormal Quasiconvex Hierarchy Theorem of
Hsu-Wise and Haglund—Wise.

We will be able to show:

THEOREM 11.1. [HWOS8] Let G = mX be hyperbolic, where X is a compact
NPC cube complex. The following are equivalent:

(1) X is virtually special.

(2) Every quasiconvex subgroup of G is separable. (“G is QCERF.”)

A crucially important corollary of this statement is that, for G hyperbolic,
virtual specialness is a property of the group G, and not of any particular cube
complex whose fundamental group is isomorphic to G.

COROLLARY 11.2. Let mX 2 mY = G, where G is hyperbolic, and X, Y are
compact NPC' cube complexes. If X is virtually special, then so is'Y .

1. Resolving the “easy” pathologies

Recall the four hyperplane pathologies: one-sidedness, self-intersection, self-
osculation, and inter-osculation. The first is easiest to resolve (assuming there are
no self-intersections), and doesn’t really have anything to do with separability:

LEMMA 11.3. Let X be a NPC cube complex with finitely many hyperplanes,
all of which are embedded. Then there is a finite-sheeted cover X = X so that no
hyperplane of X is one-sided.

No finite-sheeted cover ofX' contains a one-sided hyperplane.

PROOF. If H is a hyperplane of X, let wy: mX — Z/27Z measure the inter-
section mod 2 with H. Notice that if H is one-sided, then wy can’t be zero, since
there must be a loop in the closed carrier of H (as in Figure [1)) which crosses H an
odd number of times. If H is the set of hyperplanes, we can put all the wgy together
to get a map:

(4) Q: mX — (2)22)".

Since X has finitely many hyperplanes, the kernel of (2 is finite index in m; X, and
so there is a finite-sheeted cover X — X with mX = kerQ. If Q contained a

75
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v

FIGURE 1. The blue loop v witnesses the one-sidedness of H and
shows that wpg is nontrivial.

one-sided hyperplane H, there would be a loop in the carrier of H as in Figure
witnessing that fact. The image of this loop in X would also cross some hyperplane
an odd number of times, contradicting the fact that it lifts to X. O

REMARK 11.4. The “double-dot” cover of a cube complex just described as
corresponding to the kernel of the map in equation has a lot of nice properties,
and will be useful for other things later.

We will remove self-intersection and self-osculation in a fairly straightforward
way, using the topological characterization of separability. In separability gives us
quite a bit more — we can lift hyperplanes to ones with “large embedded neighbor-
hoods.” Let’s make this precise:

DEeFINITION 11.5. Let H be a hyperplane of a NPC cube complex X, and let
H C X be an elevation of H to the universal cover of X. Let N = N(H) be the
(closed) carrier of H in X. The self-interaction radius of H, written selfint(H), is
the smallest length of a combinatorial path joining N to some yN with v ¢ Stab(I:I ).

Notice that if H self-intersects or self-osculates, then selfint(H) = 0. Observe
that self-interaction radius is monotone under covers in the following sense:

LEMMA 11.6. Let H be a hyperplane of an NPC cube complex X, and let
X — X be a cover. If H is any elevation of H to X, then selfint(H) > selfint(H).

The following says essentially that if m1 H is separable, then we can increase
selfint(H) in finite covers as much as we want.

LEMMA 11.7. Let X be a compact NPC cube complex, and let H be a compact
hyperplane so that w1 H is separable in myX. Let n > 0. Then there is a finite-
sheeted regular cover X — X so that any elevation of H to X has selfint(H) > n.

PROOF. Let G = m X, W = 7 H, and fix an elevation H to the universal cover
X of X. Let S be a finite generating set for G, and endow G with the word metric
coming from S. Choose z a vertex of the closed carrier N of H. The Schwarz—
Milnor Lemma tells us that there is a (A, €)—quasi-isometry from G to Gz for some
A €.

Let T = {y | d(N,yN) < n}. We claim that [ is a finite union of double
cosets of the form WgW for ¢ € G. Indeed, W acts cocompactly on N. Let K
be a compact fundamental domain for the action containing z. If v € I, then
d(N,yN) < n. Choose ni,ns € N so that d(ni,yn2) = d(N,yN). For i € {1,2}
there is a w; € W so that n; € w; K. But then we have that d(wl_lfngK, K) <n,
and so d(w] *ywax, ) < n 4 2diam(K). This implies in G, that d(wj 'ywg,1) <
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C(n) := Mn+2diam(K))+ Ae. Ouly finitely many cosets W~W intersect the C'(n)
ball about the identity in G. List these cosets: {W, W~ W, ..., W~,,W}, choosing
representatives v; so that d(z,y;x) is minimal.

Since W is separable, there is a Go<G containing H but not containing any of
the v;s. Let Xg — X be the corresponding finite-sheeted cover. Then H lifts to
a hyperplane Hy with selfint(Hy) > n. There may be other elevations of H which
do not have this property, but after passing to a regular finite-sheeted cover, all
elevations will have selfint > n. (]

Combining the above with Lemma we obtain the following;:

COROLLARY 11.8. Let X be a compact NPC whose hyperplane subgroups are all
separable. Then there is a finite-sheeted X — X with every hyperplane embedded,
2-sided, and non-self-osculating.

We'll see later that Lemma has a lot of other applications besides dealing
with hyperplane pathologies.

In order to deal with interosculation, we’ll need to use separability of some sub-
groups obtained by amalgamating hyperplanes together. To show quasi-convexity
of these subgroups, we’ll need some version of a combination theorem, which we
prove in the next subsection.

2. Quasiconvex combination and resolving interosculations

EXERCISE 16. Let A, B, C' be NPC cube complexes, and suppose there are
combinatorial isometric embeddings ¢4: C — A and ¢p: B — A. Let X be
obtained by gluing A and B together along C"

X =AUB/¢pa(c) ~¢gp(c), Ve e C.

X is a NPC cube complex.
(Hint: Work out the links, and show that gluing two flag complexes along a
full subcomplex yields a flag complex.)

In particular, we consider two hyperplanes Hy, Hy, C X where X is a NPC
cube complex, and suppose selfint(H;) > 0 for each . This implies that the closed
carriers N1 and N, are embedded in X. Fix a component C' of Ny N Ny. Then
Y = N; Ug N is a NPC cube complex with Y immersed (not necessarily locally
1sometr1(:ally) in X. We can choose an elevation C' to the universal cover of X, and
elevations N; of N; so that Ny N Ny = C.

LEMMA 11.9. With the notation in the previous paragraph, if v is a shortest
path between vertices p and q in N1 U Na, then 7y is a geodesic segment in X.

PRrROOF. (Recall that paths and metrics are assumed combinatorial unless oth-
erwise stated.) If p and ¢ are both in N; or N, there is nothing to prove, since
these sets are convex. We can therefore assume p € Ny and ¢ € No.

We'll use the median property of the one-skeleton.

Choose some r € vﬂC and consider the median point m of p, ¢, in X. Choose
particular geodesics [p,m], [m,q], and [r,m]. Since the N; and C are all convex,
[r, m] lies in NN N, = C, [p, m] lies in Nl, and [g,m] lies in Na. If r # m, then
[ ,m] U [m q] is a shorter path than v in Ny U Na, from p to g. Thus = m, and
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The lemma we just proved shows that even if N1UNj is not locally isometrically
embedded, it is isometrically embedded, in the sense that the metric induced from
X agrees with its intrinsic metric.

We now use this lemma to prove a Hyperplane Combination Theorem, which
we'll use (together with quasiconvex separability) to resolve interosculations.

THEOREM 11.10. Let X be a compact NPC cube complex whose universal cover
X is 6—hyperbolic. Let Hy, Hy be hyperplanes of X whose self-interaction radii are
at least 100(8 + 1), and let Ny, Ny be the closed carriers of these hyperplanes. Let
C be a component of the intersection N1 N Ny, and choose a basepoint in C. With
respect to this basepoint, let W1 = w1 N1, Wy = w1 N, and Z = w1 C'.
(1) (W4, Wa) is 30—quasiconvex in G = m X.
(2) <W1,W2> = W1 A Wg.

PRrROOF. Showing that (W, W,) is an amalgam: Let K = N; Ug Ny. Seifert—
van Kampen tells us that m K = Wj %z W5, There is a canonical immersion
¢: K — X. We lift this to a map ¢: K — X of universal covers If ¢,.: m K — G
is not one-to-one, this means that ¢ is not one-to-one. So we may choose any
nontrivial geodesic ¢ in K whose endpoints are identified by ¢. This geodesic
decomposes a concatenation ¢ = oy - - - 0y, of geodesics o; each of which lies in an
elevation of N7 or of N, alternating between elevations of the two carriers.

We claim that n > 3. Indeed, n # 1, since the copies of the N; embed in X.
And n # 2 because the copies of the N; are convex.

Because of the assumption on self-interaction radius, the geodesics o; for 1 <
i < n must each have length at least 100(d 4+ 1). In particular |o| > 100(d + 1).
Lemma implies that q~50 is a 100(d 4 1)-local geodesic. Corollary implies
that éa lies in a 26—neighborhood of any geodesic connecting its endpoints. But QNSO'
is a loop, so it must actually lie in a ball of radius 2§. Since it contains a geodesic
subsegment of length at least 100(d + 1), this is a contradiction.

Showing that (W, W) is quasiconvex: Let p, ¢ be two vertices of K, which
we now identify with its image in X. Let v be an X—geodesic joining p to ¢. They
are also joined by a K —geodesic 0 = o1 -+ - 0, as above, composed of segments o;
each contained in an elevation of N7 or Ny. As before, Lemma shows the
path o is a 100(d + 1)-local geodesic, so Corollary implies that v is contained
in a 30-neighborhood of o. In particular ~ lies in a 3d-neighborhood of K, as
required. (I

We want to rule out inter-osculation. The following lemma can be proved using
hexagon moves:

LEMMA 11.11. Let X be a NPC cube complex, and let Hy, Hy be hyperplanes
of X. Suppose selfint(Hy) and selfint(Hs) are positive, and let N1, Ny be the closed
carriers of the hyperplanes. If N1 N Ny is connected, then Hy and Hy do not inter-
osculate.

EXERCISE 17. Assume all the hypotheses of Theorem Let A = (Wy, Wa),
and let X 4 be the cover of X corresponding to A. The complex K = N; Ug No
embeds in this cover, so the hyperplanes H; and Hs lift in a canonical way to this
cover. Show that these lifts do not interosculate. (If they did, there would be an
osculation of lifts of N7 and N in the image of K in X)
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EXERCISE 18. Let X be a NPC cube complex, and let Hy, Hy be two embeddgd
hyperplanes which don’t interosculate. If X — X is a finite-sheeted cover, and H;
is an elevation of H; for each i, then H; and Hs don’t interosculate.

Applying the Scott’s topological characterization of separability to the cover in
Exercise [I7, we can obtain the following:

COROLLARY 11.12. Assuming the hypotheses of Theorem |11.10, if Z is sepa-
rable in m1 X, then there is a finite cover X — X in which no elevations of Hy and
Hs interosculate.

PrROOF. The exercise says that K = N; Ugc Ny embeds in the cover corre-
sponding to m K = (W7, Wa). Scott’s criterion says that we can then embed K in
a finite-sheeted cover Xo — X. Let X — X be the regular cover corresponding to
the normal core of m Xg < m X.

Then K C Xj contains elevations of H; and Ho which cross but do not osculate.
Passing to the regular cover X , we have that any crossing pair of elevations fail to
osculate. (Note that two elevations of Hi, say, cannot cross or osculate because of
the assumption of large self-interaction radius.) O

We’ve now seen how to resolve all the hyperplane pathologies in finite-sheeted

covers, using separability of quasiconvex subgroups. This completes the proof of
Theorem IT.11






CHAPTER 12

Reformulations of hyperbolicity, loxodromic
isometries

In this chapter we return to our general discussion of hyperbolic spaces.

1. Four-point reformulations of hyperbolicity

The hyperbolicity condition can also be formulated entirely in terms of Gromov
products. We remark (see Figure [1)) that if z,y, z,w are any four points in a tree,

X

-

z (@ |Y)w = (2]Y)w

FIGURE 1. the smallest two pairwise Gromov products among
three points must coincide

then the smallest two of the quantities
(@ | Y)w, (@] 2)w, (| 2)w
must be the same. Another way to say this is that in a tree T' we have
(5) Va,y,z,w €T, (x]y)w = min{(z|2)w, (2| y)w} -
EXERCISE 19. Convince yourself that this is really a reformulation.

Since é—hyperbolic spaces are “treelike”, it should come as no surprise that the
above statement is nearly true there. In a é—hyperbolic space, the following holds:

(@ Y)w,
(6) For z,y,z,w € X the two smallest of (@] 2)w, differ by at most 4.

([ 2)w
This is usually formulated in the following way:
(7) (@] Y)w = min{(z|2)w, (2|Y)w} — 0, Vz,y,2z,w € X.
In trees, one also has the following more symmetric “four-point” condition:
(8) Va,y,z,w e T, dlz,w) + d(y, z) < max{d(z,y) + d(z,w),d(z, z) + d(y,w)}.

81
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This corresponds to the fact that, among all the ways of adding up pairs of distances
between four points without repeating any points, the two largest are the same (See

Figure . An equivalent condition to the hyperbolicity condition is the four-

X

-

z
w

FIGURE 2. Here d(z,y) + d(z,w) = d(z,w) + d(z,y) and d(z, z) +
d(y,w) is smaller by 21.

point condition: For z,y,z,w € X,
d(z,y) + d(z, w),

(9) The two largest of < d(z, z) + d(y,w), differ by at most 20.
d(z,w) + d(y, 2)

Again this is usually phrased more obscurely as:

d(z,y) + d(z,w),
d(z, z) + d(y, w)

We won’t need this, but Equation @ can be used as a definition of hyperbolic-
ity, and it makes sense for metric spaces, not just for geodesic metric spaces. Using
this expanded notion of hyperbolic space, any subset of a hyperbolic space, with
the restricted metric, is itself a hyperbolic space. (For example one can consider
the O-skeleton of a graph.)

EXERCISE 20. Show that @,,(@ and hold in any d—hyperbolic space,
and that they are equivalent to each other in general.

(10) d(z,w)+d(y,z) < max{ } + 20, Va,y,z,w € X.

2. Broken geodesics are quasi-geodesics

The “stability” results [[0.21] and suggest that local geodesics and broken
geodesics with small Gromov products are like quasi-geodesics. We next see that
they are in fact quasi-geodesics. For local geodesics it is possible to get a little nicer
quantitative statement, see [BH99 II1.H.1.13].

PrROPOSITION 12.1. Let X be a d—hyperbolic, geodesic space, and letl > 0. Let
c=cy--- ¢, be a concatenation of geodesics ¢; = [pi—1,pi] so that

o (Gromov products are small) for each i, (pi—1,pit1)p; < ; and
o (segments are long) for each i ¢ {1,n}, |c;| > R > 2(I +9).

Then c is a quasi-geodesic whose quality depends only on 1,9, R. More precisely,
for any s,t in the domain of c,

(11) d(c(s), e(t)) > (1 -

2“;‘”) s — t| — 4(1 + 5).
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PROOF. Our proof is based on the following claim which will be proved induc-
tively.
CLAM. For each i, d(pi+1,po) = d(pispo) + (cit1) — 2(1 + 0).

Now assuming the bound, we derive the quasi-geodesic inequality . First
we prove the inequality for ¢t = 0 and s equal to the length of c:

d(p,q) = d(pn,po) = Z (l(ei) =201+ 0))

K2

n—1
=c1ten—41+0)+ > (Uei) —2(1+0))

=2
ZC1+Cn—4(l+5)+T§:(I—Z(ZRT(S)>Z(C¢)
> —4(1+0) + Z (1 - 2(1;5)) I(c;)

_ (1 _ 2“; 5)) I(e) — 4(1 + 5).

Any subsegment of ¢ also satisfies all the hypotheses, so we have the inequality for
arbitrary s, t.

PROOF OF CLAIM. It may be helpful to refer to Figure[3] We argue inductively.
The base cases ¢ = 1,2 are easy, so let ¢ > 2.

Pi—1 Di

.)‘o‘x'

Po
FIGURE 3. A part of the broken geodesic c.

We first assert (po | pi—1)p, > . Indeed, using the inductive hypothesis we have

(Po | Pi—1)p; = = (d(pi,po) + U(ci—1) — d(pi—1,p0))

el

> = (d(pi-1,p0) +l(ci—1) = 2(1 + &) + U(ci—1) — d(pi—1,P0))

=l(c;)—(1+d6) > R—(1+95) > L
Now the two smallest of (pi—1 | p0)p;» (Pi—1 | Pi+1)pss (Po | Pi+1)p, must be within 6 of
one another (see Exercise By hypothesis we have (p;—1 | pi+1)p; <! so we must
have (po | pi+1)p; <1+ 6. This implies

d(po,pi) + d(pit1,pi) — d(pit1,p0) < 2(1 +90),

which can be rearranged (using ¢;+1 = d(pi+1,pi)) to give the inductive statement

d(pi+1,p0) > d(pi,po) + ciyr — 2(1 + 9).

[\]

O
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d

REMARK 12.2. Tt follows that c is a (A, €)—quasi-geodesic for some A, e which
can be worked out from the statement. Plugging these numbers into a generic proof
of quasi-geodesic stability (eg [BH99), ITI.H.1.7]) gives some R so that ¢ is contained
in the R—neighborhood of any geodesic joining its endpoints. Note however that
the R obtained in this way will be much worse than the constant [ + 3§ given by

Proposition [10.22

In the next chapter we will classify isometries of hyperbolic spaces as elliptic,
parabolic, and lozodromic. We defer the definitions of parabolic and elliptic until
later.

DEFINITION 12.3. An isometry g of a hyperbolic space X is called lozodromic if
the map n — g™z is a quasi-isometric embedding of Z into X for some (equivalently
any) point =z € X.

COROLLARY 12.4. Let g be an isometry of the 6—hyperbolic space X, and sup-
pose that there is a point x so that

d(g*z, ) > d(gz, ) + 20.
Then g is loxodromic.

PROOF. We may suppose d(g?z,x) > d(gz,r) + C where C > 26.  Consider
a bi-infinite broken geodesic v made of geodesic segments ¢; = [¢g" "1z, g'x]. Each
segment has length R = d(x, gx). The Gromov products between any two adjacent
segments are

% (d(gz, 2) + d(gz,x) — d(¢*z,x)) <

(In particular the right hand side is non-negative.) If we set [ = % (d(gz,z) — C),
and R = 2] + C, then the path satisﬁes the hypotheses of Proposition (Or

rather any subpath between ¢’z and g7z does, which is enough to show quasi-
geodesicity, since the constants are independent of the subpath.) (I

(d(gz,z) — C).

N |

3. Finding loxodromic isometries

Corollary [12.4] gives a criterion for an element to be loxodromic, but it isn’t
obvious how to apply it. The following gives a way to use enough non-loxodromic
elements to find a loxodromic one.

LEMMA 12.5. [CDP90, Chapitre 9, Lemme 2.3] Suppose X is d—hyperbolic,
with 6 > 0. Let g, h be non-loxodromic isometries satisfying

(%) d(gx,x) > 2(gx | hz), + 60, and d(hx,x) > 2(gz | hx), + 60.
Then gh is a loxodromic isometry of X.

PRrROOF. To simplify notation, we write |y| for d(z,yx) when v is an isometry
of X. We likewise write |y —+/| for d(yz,~v'x). The argument consists in applying
the four-point inequality to three carefully chosen quadrilaterals.

The isometries g, h are assumed not to be loxodromic. Corollary implies

Q) l9°| < |g| + 26, and |h?| < |h| + 26.
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The assumptions can be rewritten (expanding the Gromov product and can-
celling terms):
() |[h] +60 < |g — hl, and |g] + 60 < |g — hl.

Now consider the four points , gz, ghx, g>z. The four-point inequality says that

T \gh| ghz
9] , lg — Al
|h| 9]
¢
gz lg ZQI

the two largest of the sums
B+ 192l lghl+1gl, gl + g — Al
must differ from one another by at most 2§. The inequalities and () imply
k] +19%| < |g — hl + |g| - 49,

so the first of the three is smallest. Since the second and third sums are at most 29
apart, ||gh| — |g — h|| < 2. A symmetric argument gives ||hg| — g — h|| < 24.
Combining these bounds with the inequalities we obtain

(1) max{|g|, [h|} + 46 < min{|hgl, |gh|}

The second quadrilateral to consider has corners x, gx, ghx, ghgx. Again, the

g lghgl ghge
o 9
iy ahl
‘ l

h
go i -

four-point inequality tells us that the two larger of the following three sums must
differ by at most 24:

lg| + |h|, |hgl +|gh|, |h|+ |ghg].

Using (f)), we get |g| + || < |hg| + [gh| — 86, so again the first sum is smallest and
the second and third differ by at most 2§. In particular

lghgl + |h| = [hg| + |gh| — 26.
Since |hg| — |h| > 49 (using (f)) again), we have
(©) lghg| = |gh| + 26.
The third and final quadrilateral has corners x, ghx, ghgx, ghghxz. The four-
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T lghgh| ghghx
lghl |h|
lgh| lghyg|
ghx lg Yhgz

point inequality tells us the two larger of these sums must differ by at most 24:
lghl + |hl, |gh| +|ghgl, lgl + |(gh)?|.
Again we claim the first of the three is smallest; indeed, using , , and @ in
turn we have
|h| +60 < |g — h| < |gh| + 25 < |ghg|.
Since the second and third sums differ by at most 2J, we deduce (using @ and
then (f)):
|(9h)?| = |ghl + |ghg| — 19| — 20
> |gh| + |gh| — g
> |gh| + 44.

We can therefore apply Corollary [[2:4]to conclude that gh is a loxodromic isometry.
O



CHAPTER 13

Boundaries of hyperbolic metric spaces

In this chapter we study the boundary of a hyperbolic group, and use it to
study quasi-convex subgroups. In particular we show that they have the properties
of finite height, finite width, and bounded packing, all of which are useful for proving
things about cube complexes.

1. The boundary at infinity

Let X be a proper, geodesic, —hyperbolic space. Then X can be compactified
by its Gromov boundary 0X. We'll see that any quasiisometry X — Y of such
spaces extends to a continuous map 0X — 9Y. In particular, if X is the Cayley
graph of a group G, then G acts on 0X by homeomorphismsﬂ

1.1. The boundary as equivalence classes of rays. Points of 0X are
equivalence classes of geodesic rays v: [0,00) — X; the equivalence relation is that
~ ~ ~" if the Hausdorfl distance between v and +/ is finite.

We topologize 0X by describing when sequences converge. First we need a
lemma, which is left as an exercise:

LEMMA 13.1. Fiz p € X. Then every point in 0X is represented by a ray
starting at p.

DEFINITION 13.2 (Topology on Gromov boundary). Let [y] be a point in X,
and let {7;}ien be a sequence of rays with the same initial point as v. We have
{lnl}tien = 7] in case:

There is some K > 0 and a sequence of positive numbers {¢;};cny — 00 so that,
for all 4, dHauS<’Yi|[O,t,i]a7|[O,ti]) <K.

The idea of this definition is that [y;] converge to [v] if the rays v; have longer
and longer initial segments which fellow travel v. A sometimes-useful fact is that
one can always take K to be a small multiple of §, independent of the sequence.

REMARK 13.3. Definition[I3.2|can be extended to describe the compactification
X = XUOX if you think of a point in X as an equivalence class of maps : [0,00) —
X which is geodesic on some initial subsegment, and then constant thereafter. Two
such maps are equivalent if the eventually constant values coincide. Convergence
is then defined in exactly the same way.

The following is a consequence of quasi-geodesic stability (Theorem [10.5]).

ProPOSITION 13.4. If ¢: Y — X is a quasi-isometric embedding of hyperbolic
spaces, then ¢ induces a continuous embedding ¢: 0Y — 0X.

1n fact the Gromov boundary makes sense even when X is not proper or geodesic; see
[BH99, III.H] for details.
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PrROOF. (Exercise.) O

DEFINITION 13.5. Let v: R — X be a bi-infinite geodesic (i.e. -y is an isometric
embedding). Define y~7,v": [0,00) = X by v~ (¢t) = y(—t), and v*(¢t) = y(¢). If
[Y~"] =7, and [yT] = £ say v connects n to €. The points 1 and £ are said to be the
endpoints at infinity of ~y.

The next lemma says that such geodesics form slim bigons.

LEMMA 13.6. Let v1, 72 be two bi-infinite geodesics with the same endpoints at
infinity. Then the Hausdorff distance between 1 and o is at most 26.

PROOF. Let x lie on the image of ;. Without loss of generality we may suppose
= (0). Let R > 0 be any number so that duaus(77,75 ), dHaus(V1 ;75 ) < R.
Choose points af € it so that d(z,af) > R+ 25. Choose points ai on v, which
are within R of af, and consider a quadrilateral with cornels a,a;,ad, a5 so the
side containing the points azi is a subsegment of ;. This quadrilateral is 2d—slim,
and the sides [a], a3 ] and [a; a5 ] are further than 2§ from =, so there must be a
point =’ on the side which is a subsegment of «2 which is at most 20 from z. O

They also form slim triangles (called ideal triangles), with coarsely well-defined
centers. Say that a point is a K—center for a triangle if it is contained in the
intersection of the K—neighborhoods of the sides.

LEMMA 13.7. If v1,72,73 are bi-infinite geodesics, each pair of which shares
a single endpoint at infinity, then every point on 71 is within 58 of a point on v,
or vo. For any K > 56, the set of K—centers is nonempty, with diameter bounded
above by a constant which depends only on § and K.

PROOF. The proof of the first assertion is much like the proof of Lemma [T3.6]
but uses a hexagon instead of a quadrilateral. Letting x be on one of the sides,
say 71, we choose three sides of the hexagon to be segments, very far away from
x, joining y; to 2, etc. The other three sides are subsegments of the sides of the
ideal triangle. The point  must be within 5§ of some other side of the hexagon,
but the only sides close enough are subsegments of v, and ~s.

Now let K > 5. The side 7, is contained in the 56—neighborhood of o U 7s.
Since each pair of ; shares only one point at infinity, there must be points of ~;
which are 5d—close to both =2 and 3. The set of 5d—centers is nonempty, and the
set C' of K—centers contains the set of 56—centers.

Let a,b € C. We must bound d(a,b) from above. For 1 < i < j < 3 choose a
point z;; so that d(z;;, Vi), d(zi;,v;) < 56, but d(z;;, %) > 1006+2K for k ¢ {3, j}.
Each pair of these points is within 50 of just one of the ;; call the geodesic segment
joining them o;. Using 2d—slimness of quadrilaterals, there must be points a;, b; € o;
so that d(a,a;),d(b,b;) < K +2§ for each i. Let T be the comparison tripod for the
triangle A made of the segments ;. The set {a;} must project to at least two legs,
and can have diameter at most 2K + 24. It follows that the set {a;} is contained
in the 2K + 3d—neighborhood of the central point. In particular, each a; is within
2K + 49 of any internal point z of the triangle A, so d(a,z) < 3K + 44. The same
argument shows d(b, z) < 3K + 46, so d(a,b) < 6K + 8. O

EXERCISE 21. Let X be proper and hyperbolic. Then any two points at infinity
are connected by a bi-infinite geodesic. (Hint: pick representatives a, 8 whose
distance from one another is always fairly large. Then use thin-ness of quadrilaterals
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to show that geodesic segments [a(n), 5(n)] all pass through some compact set, and
properness to show these sub-converge to a bi-infinite geodesic.)

1.2. Gromov product definition and limit sets. There is another way
to define the boundary at infinity, which works whenever X is d—hyperbolic, even
if X isn’t proper. Namely, fix a basepoint p (which in the end won’t matter).
Say the sequence {a;}ien converges to infinity if lim; ;_oo(a;|a;j), = co. Now
define points in the (sequential) Gromov boundary 9sX to be equivalence classes
of sequences which converge to infinity, under the following equivalence relation:
{ai}tien ~ {bi}ien whenever lim; ; ,o0(a;|b;), = co. If p = [{a;}] we can write
lim; , o a; = p. We are going to topologize X U 0;X so this really is a convergent
sequence.

First we extend the Gromov product to infinity; if 7, € X U 9,X, define

(12) (7]€)p = sup { lim inf(a; | 5;),

1,]—>00

lim a; =n, lim b; = §} .
1—> 00 1—> 00

Ok, this is kind of ugly, but what you want to think about is that if you could
draw geodesic rays from p to the points n and &, then (n]&), measures (up to an
additive constant) the length of maximal initial subsegments of 1 and £ which 6—
fellow travel. Rays which fellow-travel for more time should be considered closer,
so we say that limy_,oo mr = £ in 0,X exactly if limg_,o0 (x| §)p = 00. Points {a;}
in X converge to a point in 9;X exactly when lim; ;_,(a;|a;), = oo, in which
case they converge to [{a;}]. We thus get a topology on all of X Ud;X.

ProPOSITION 13.8. If X is proper and d—hyperbolic, then X U X is homeo-
morphic to X U 05X by a homeomorphism which restricts to the identity on X.

PrOOF. Sketch: Define a map from 90X to dsX by sending the equivalence
class of the ray v to the equivalence class of the sequence {7(i)};en. This map
doesn’t need properness. To define a map in the other direction, fix a basepoint
p. If {z;};en represents a point of 9;X, choose geodesic segments [p, z;]. Arzela-
Ascoli (properness is used here) can be used to show these segments subconverge
to a geodesic ray. For more see [BH99, ITI.H.3]. O

DEFINITION 13.9. If Z C X is any subset of the )—hyperbolic space X, then the
limit set A(Z) is that part of 0,X which can be represented by sequences {z; }icon
of points in Z. If G ~ X is a group of isometries of X, we define the limit set A(G)
to be the limit set of any orbit of G.

One final remark about the Gromov product at infinity: The supremum is
somewhat arbitrary, and could be replaced by an infimum without changing any-
thing essential. This is because of the following.

LEMMA 13.10. Let n,§ € 09X, and suppose {a}}ien, {V}ien be arbitrary se-
quences representing n and &, respectively. Then

lii’gnjgf(ag [0))p > (n]€)p — 46

PROOF. Let e > 0, and let {a;}ien, {b; }ien be sequences so that lim inf, ;_ o (a; | b;)p >
M)y — e

Choose large i, 7,7, j', we have (a; | a},), and (b; | b}, ), much larger than (n[¢),,
and so that (a; | b;), is within € of (7]§),. Let o be a geodesic joining z; to y; and
let o’ be a geodesic joining z, to y.,. It is not too hard to see under these conditions
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that d(p, o) and d(p, o’) differ by at most 26. Thus the Gromov products (z; | ¥;)p
and (z}, | y.,)p differ by at most 49 (See Lemma [10.17)). Since the indices ¢/, j" were
essentially arbitrary, we get

lim inf (] | y}), > liminf(z; | y;), — 49,
7,j—>00 2,j—>00

and the result follows. O

There is an analog of Lemma [I3.7] for triples of points in the sequential bound-
ary. Let p,q,r be distinct points in J;X. Say that x € X is a K—center for the
triple p, g, r if the following holds: For all sequences {p; }ien, {¢i tien, {7i }ien there
is an N so that if 7,75,k > N, then z is in the K-neighborhood of any geodesic
between p;, ¢j, 7. A slightly more complicated version of the argument in Lemma
13.7| gives the statement:

LEMMA 13.11. Let p,q,r be distinct points in 0sX, and let K > 75. The set of
K—centers of p,q,r is nonempty, and has diameter bounded in terms of § and K.

2. Isometries of hyperbolic spaces

There are two main results in this section. Theorem classifies isometries
of hyperbolic spaces into elliptic, parabolic, and loxodromic (see Definitions
13.20). For this result we don’t assume that the space in question is proper. In
particular, when we talk about 0X in this section, we always mean the sequential
boundary defined in the last section.

Theorem [13.25] says that any infinite subgroup of a hyperbolic group contains
a loxodromic element. Before getting to the proofs, we introduce some machinery
which makes them a bit easier to articulate.

2.1. Quasimorphisms. For much more on quasimorphisms, including proofs
of the below statements, see [Cal09l 2.2]. A quasimorphism on a group G is a
function ¢: G — R which is “almost a homomorphism” in the sense that, for some
D(¢) > 0 (the defect), and all g, h € G

[6(gh) — ¢(g) — d(h)| < D(¢).
A quasimorphism is called homogeneous if it is a homomorphism when restricted
to any cyclic subgroup, in other words ¢(¢") = n¢(g) for all g € G,n € Z. Any
quasimorphism can be “homogenized”; given a quasimorphism ¢, the function
. - 9(g")
¢(g) = lim —=—=
n—oo n

is a homogeneous quasimorphism satisfying

(13) D(¢) < 2D(¢), and |¢(g) — ¢(9)| < D(¢), Vg € G.

(See [Cal09, Lemma 2.21 and Corollary 2.59].) Notice that if two quasimorphisms
differ by a bounded amount, their homogenizations are the same.

At first glance you may wonder whether all quasimorphisms are just bounded
perturbations of homomorphisms to R. Here’s an example of something different.

EXAMPLE 13.12. Let G be the free group on {a, b}, and embed the Cayley graph
of G in the plane in the standard way. For g € G, let o, be the unique embedded
edge-path from the identity to g. Let ¢(g) be the number of left turns this edge-
path takes minus the number of right turns it takes. Then ¢((ab)™) = 2n — 1 for
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n > 0, so ¢ is unbounded. On the other hand ¢(a™) = ¢(b™) = 0 for all n, so ¢ is
not boundedly different from a homomorphism.

EXERCISE 22. Show that ¢ defined in the above example is a quasimorphism.
What is its defect?

2.2. A little nonstandard analysis. The book [Gol98]| is a nice readable
introduction to the subject of nonstandard analysis. For the purposes of these notes,
we will only really need a few facts. One can think of nonstandard analysis as a set-
theoretic trick which avoids the cumbersome nature of arguments involving passing
repeatedly to subsequences. We will define a gadget lim,, which can be applied to
any bounded sequence and always consistently pick out an accumulation point of
the sequence. How does this work? Here are the relevant definitions. (Despite the
eerie similarity in terminology, try not to confuse this notion of ultrafilter with the
one defined for pocsets!)

DEFINITION 13.13. An wultrafilter on N is a subset w of 2\ {#} which satisfies:

e (Completeness) For any A C N, exactly one of A, A€ is in w; and
e (Consistency) If A C B and A € w, then B € w.

A principal ultrafilter on N is one of the form w, = {A CN|n € A}.
Here are a couple of exercises about ultrafilters.

EXERCISE 23. Suppose w is an ultrafilter on N.

(1) Let N= A; U---U A, be a finite partition of N. Show A; € w for exactly
one i€ {l,...,n}.
(2) Let A,B € w. Then ANB € w.

EXERCISE 24. Say a subset of 2V \ {(} is a filter on N if it satisfies the Consis-
tency requirement (13.13). Show that the “cofinite sets” F = {A C N | #(N\ 4) <
oo} form a filter. Then use Zorn’s Lemma to show that there is an ultrafilter on N
which isn’t principal.

Conversely, show that every nonprincipal ultrafilter contains F'.

This gadget (a nonprincipal ultrafilter on N) exists, but can’t be described
directly; the use of Zorn’s Lemma is essential. There is something a little unsettling
about this, but we press on anyway, fixing a nonprincipal ultrafilter w for the
rest of the text.

DEFINITION 13.14. Let x = {z; };en be a sequence of points in a metric space
M. Say that lim,, x; = x if for every € > 0 the set {i | d(x;,z) < €} is in w. We say
the point x is the w—ultralimit of the sequence x.

LEMMA 13.15. If M is a compact metric space, then every infinite sequence
has a unique w-ultralimit among its accumulation points.

PRrROOF. (Sketch) This is an application of Exercise [23| above. Since M is a
compact metric space, for any N > 0, it can be partitioned into finitely many
sets Mn1,..., Mn iy of diameter % One can also arrange that each set My ; is
contained in one of the sets My _1 ;.

Fix a sequence {z;};en. The sets Ay ; = {i | ; € My ;} give a finite partition
of N, exactly one of whose elements Ay ;) is in w. The sets My ;) form a
nested sequence of subsets of M whose diameter is going to zero. Each My ;(n)
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contains an infinite subsequence of {z;}ien, and the unique point in ()5 My j(n)
is the ultralimit lim,, x;.

Here is the construction which will be used in the next section.

EXERCISE 25. Let X be a metric space, and suppose {f;}icn is a sequence
of K-lipschitz functions which are uniformly bounded on any bounded set. Then
fuw(z) = limy, f;(x) is a K-lipschitz function on X.

2.3. A quasimorphism on the stabilizer of a point at infinity. In this
subsection, we fix a d—hyperbolic space X, and a point £ € 9X, and a group G
acting by isometries of X. We're not assuming our hyperbolic spaces are proper,
so the point £ should be thought of as an equivalence class of sequences not rays,
as in Section [[.2

We are going to define a quasimorphism ¢ on G¢ = Stabg(€) which measures
the extent to which a group element pushes elements “towards” or “away from”
¢, (We follow [CCMT15] for this definition.) Let x = {z;}ien be a sequence
representing £, and define the Busemann horokernel on X x X to be

hx(x,y) = limd(x, z,) — d(y, Tp).

The functions hi(z,y) = d(z,x;) — d(y,z;) are uniformly lipschitz and uniformly
bounded on compact sets, so Exercise [25] implies that hy is a lipschitz function on
X x X.
EXERCISE 26. Let x € X, and suppose the sequence x tends to £ € 0X.
(1) Suppose that v is a geodesic ray in X tending to £. Show
Tim (1 (8)) = o0,
(2) Suppose that {y;}ien limits to some point in 90X \ {{}. Show
lim hy(z,y;) = —o0.
71— 00

LEMMA 13.16. Let x = {x;}ien and 'y = {y;}ien both represent . Then the
difference |hx — hy| is bounded by 2.

PrOOF. Let z,y € X.For € > 0, consider the sets of indices
A =A{i||hx(z,y) = (d(z,2n) — d(y, zn))| < €},
B ={i||hy(z,y) — (d(@,yn) — d(y, yn))| < €}.
Both sets are elements of w, so their intersection A N B is also in w. In particular
AN B is infinite.

We have lim; j o0 (2i |y;)s = 00, since the sequences x and y represent the
same point at infinity. The quantities (y | 2,). or (¥ |yn ). are bounded by d(z,y),
and for large n we have (z,, |yn)r > d(x,y). Fix some such large n contained in
AN B. The Gromov product inequality implies that |(y | zn)z — (¥ | yn)z| < 6.
A computation shows

=2|(y|2n)z — (Y| Yn)a| + 2¢
< 26 + 2e.

Since €, x, y were arbitrary, we see that hyx and h, differ by at most 26. O
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Now we use the Busemann kernel to define a quasimorphism.
DEFINITION 13.17. Choose a basepoint p € X. Let ax ,(9) = hx(p, gp)-

LeMMA 13.18. The function ax,: Ge — R is a quasimorphism of defect at
most 26. Its homogenization B¢ is independent of the choice of sequence x and
basepoint p.

Proor. We first show that oy, is a quasimorphism. Let g1, g2 € G¢, and let
D(g2,92) = ax,p(9192) — 0x,p(91) — ax p(g2). Then using the fact that ultralimits
commute with addition and that g; is an isometry, we can write

D(g1,92) = ligl[d(p, zn) — d(g1g2p, Tn) — d(p, zn) + d(g1p, T0) — d(p, 1) + d(gap, T0)]
= lim[d(g1p, 2n) — d(g192p, 2n) — (d(p, 2n) — d(g2p, 1))}
= lim[d(p, gy " #n) — d(gp, g1 'wn)] — lim[d(p, x) — d(gap, )]
= g1, (0, 92p) = h(p, g2p)-

Since g; fixes &, the sequence g; 'x also represents ¢. Lemma says the differ-
ence is at most 24.

It is straightforward to see from the definitions and from Lemma that
changing the basepoint p or the sequence x only changes ax , by a bounded amount,
so it doesn’t affect the homogenization 5. O

We will connect this quasimorphism to the detection of loxodromic isometries
in the next subsection.

2.4. Classifying isometries of hyperbolic spaces. We have already de-
fined an isometry g of a hyperbolic space X to be lozodromic if, for some p € X,
the map n — ¢"p gives a quasi-isometric embedding of Z into X. Note that for
a loxodromic isometry the limit set A({g)) contains two points: g7 = [{g*p}ien]
and g~ = [{g *p}ien]. Both of these points are fixed by g. More generally we
have the following.

LEMMA 13.19. Let g be an isometry of a hyperbolic space X. Then g fixes every
point in A({g)).

Proor. Fix a base point p € X.

If ¢ is in A({g)), there is some sequence {k;} with {¢g¥p} tending to &. The
sequence {g¥T1p} therefore tends to g¢. But d(g*+1p, g¥ip) = d(gp,p) is constant,
and so the two sequences must tend to the same point at infinity. Thus g¢ =¢. O

Here are two other types of isometries.

DEFINITION 13.20. Let X be hyperbolic. An isometry g: X — X is elliptic if
some orbit (g)p is bounded.
It is parabolic if it is not elliptic, and #A({g)) = 1.

Notice that g is loxodromic/parabolic/elliptic if and only if all its nonzero
powers are.

We want to classify isometries with unbounded orbits into loxodromic and
parabolic. We will do so according to their fixed point sets in dX. Using Lemma
it is not hard to see the following.
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LEMMA 13.21. Suppose g is an isometry of a hyperbolic space X which fixes
three points in 0X. Then g is elliptic.

We will see that for a non-elliptic isometry g, the fixed point set at infinity is
equal to the limit set of the cyclic group generated by g. First we show this limit set
is always nonempty. (When X is proper this is automatic, since X compactifies
X in that case.)

LEMMA 13.22. Let g be a non-elliptic isometry of a hyperbolic space X. Then
A({g)) is non-empty.

PROOF. We argue by contradiction, assuming A({(g)) is empty. If g were loxo-
dromic A({g)) would contain the points g=>° defined above, so g is not loxodromic.

Fix p € X. Since the limit set is empty, the sequence {g¥ip};en fails to converge
to infinity, no matter what indices k; are chosen. Since ¢ is non-elliptic, we may
choose such a sequence so that the distances d(g* p,p) are monotone increasing.
Since the sequence fails to converge to infinity, there is a constant C so there are
arbitrarily large pairs k;, k; so that (g*p| gk'jp)p < C. In particular, we can fix a
pair k;, k; so that d(g*p,p),d(g*p,p) > C +66. Applying Lemmawe see that
g* % is loxodromic, contradicting the assumption that g was non-loxodromic. O

LEMMA 13.23. Let g be an isometry of the hyperbolic space X, fixing € € 0X.
Then g is lozodromic if and only if Be(g) # 0.

PROOF. Suppose first that g is loxodromic. The limit set of (g) contains the
points g¥>°. The isometry g fixes these points (Lemma , and isn’t elliptic,
so it can fix no others (Lemma . So, possibly replacing ¢ by its inverse,
we can suppose that £ = ¢°°. In particular, fixing some = € X, we can use the
sequence x = {g'z};en to define a horokernel hy and a quasimorphism ox, (k) =
hx(z, kx) whose homogenization is ¢, as in Subsection Exercise implies
that lim;_,oc 0 » (g7%) = —oo. Since the difference between B¢ and ay . is bounded
B¢ cannot vanish on g.

Conversely, suppose that f¢(g) # 0. We may suppose f¢(g) > 0. Let x =
{z;}ien be a sequence representing &, and let z € X be some base point. There is
some constant C' so that |hx(z, g"x) — Be(g™)| < C, independent of n. Fix n € Z
and € > 0 and choose some large k so that, for a,b € {g"z,z},

|hx(a,b) — (d(a, i) — d(b, z1))| < €.

Now we have

d(g"x,x) > d(z,xr) — d(g"x, x))
> hx(z,9"x) — €
> Pe(g") —C —e
>nPe(g) —C —e
Since d(gPx,¢%z) = d(gP~%z,z), this shows that n — ¢"z is a quasi-isometric
embedding, and so g is loxodromic. (I

THEOREM 13.24. FEwvery isometry of a hyperbolic space is either elliptic, para-
bolic, or loxodromic.
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PROOF. Let g be an isometry of a hyperbolic space X, which we assume is not
elliptic, and fix a base point x € X. Since it is not elliptic, Lemma implies
that (g) has non-empty limit set. Let £ be a point of this limit set. We claim it is
the only point. If there is another point 7, there is a sequence of powers k; so that
g% x tends to 1. Exercise 26 implies that lim;_, o, hx (7, g% ) = —oc. In particular,
it must be the case that 8¢(g) # 0, so Lemma [13.23] implies that g is loxodromic.

Otherwise, ¢ is the only limit point, and g is parabolic. (I

2.5. Torsion subgroups of hyperbolic groups are finite. We saw before
that infinite hyperbolic groups always contain infinite order elements. The next
result says this is true even for infinite subgroups of hyperbolic groups. We use an
argument adapted from [GAIH90, pp. 156-157].

THEOREM 13.25. Let G be hyperbolic, and let H < G be infinite. Then H
contains a loxodromic element.

ProOOF. We fix a d—hyperbolic Cayley graph X for G. Since H is infinite,
the limit set of H in 0X is nonempty. If it has two points a,b, choose sequences
a; — a,B; — bin H. The Gromov products (a; |5;)1 are bounded, so there is
some pair o, 8 with min{|a|, |8|} > 2(a|B)1 + 6. By Lemma [12.5] one of o, 8, or
af is loxodromic.

Now we suppose for a contradiction that H has precisely one limit point, a,
so that H < Stab(a). Let 5,: Stab(a) — R be the quasimorphism from Lemma
We will bound the cardinality of the set K = {g € Stab(a) | B.(g9) = 0}.
Since H is infinite there is some h € H with (3,(h) # 0. By Lemma[13.23] this h is
loxodromic. In particular H has at least two limit points, a contradiction.

It remains to bound the size of K. Let v: [0,00) — X be a unit speed geodesic
ray starting at the identity and representing a. Let x be the sequence {7(i)}, let hy
be the corresponding Busemann horokernel, and let o = ax,; be the corresponding
quasimorphism. Since (3, is the homogenization of «, which has defect at most 24,
we have |B,(g) — a(g)] < 26 for all g. In particular, |a(g)| < 26 for every g € K.

Let Ky < K be any finite subset. For each g € Ky, there is some Ny = Ny(g) so
that gv|n,o0) lies in a 26-neighborhood of v and 7|y, lies in a 20-neighborhood
of gy. Choose an integer N so that N > Ny(g) for every g € Ky. For such N,
the quantity hy(1,g) differs by at most ¢ from d(1,~v(N)) — d(g,7(N)), and the
quantity hgx(1,g) differs by at most ¢ from d(1, gy(N)) — d(g, gy(n)). By Lemma
the quantities hx(1,g) and hgx (1, g) differ by at most 26 from each other.

For g € Ky, we define 1(g) to be any integer so that d(y(N +n(g)), gv(N)) <
25 + 1; we claim that «(g) is approximately n(g). Indeed

a(g) = hx(1,9) = d(1,v(N +n(g))) — d(g,7(N +n(g))) — ¢
>N 4nn)— (N+25+1)—5
=n(n) — (36 + 1),
and

a(g) < hgx(1,9) 426
<d(1,9y(N)) — d(g,97(N)) + 35
< N+n(9)+20+1—N+36
=1n(g) + 56+ 1.
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Since |a(g)| is bounded above by 20, we have |n(g)| < 70 + 1 on Ky. It follows
that d(y(N), gy(N)) <96 + 2, for every g € Ky, and so the cardinality of Ky is at
most the cardinality of a (9 + 2)—ball in the Cayley graph of G. Since Ky was an
arbitrary finite subset of K, this shows that K is finite, and that H\ K is nonempty,
as desired. |

COROLLARY 13.26. If G is hyperbolic, it contains no parabolic element.

3. Quasiconvex subgroups of hyperbolic groups

In this section we develop some more nice properties of quasiconvex subgroups
of hyperbolic groups.

LEMMA 13.27. If G is a hyperbolic group, and H < G is quasiconvez, then
H s finitely generated and quasi-isometrically embedded in G. In particular H is
hyperbolic.

Proor. Fix T" a Cayley graph for GG, and suppose that I' is d—hyperbolic,
and H C T' is K—quasiconvex. The reader can verify that a closed (K + 109)—
neighborhood N of H in I is quasi-isometrically embedded. Corollary [10.6] implies
that N is Gromov hyperbolic. Schwarz—Milnor implies H is finitely generated and
H — N is a quasi-isometric embedding. Thus H — G is a composition of quasi-
isometric embeddings. ]

LEMMA 13.28. Any finite intersection of quasiconvex subgroups of a hyperbolic
group s quasiConvex.

PROOF. It suffices to consider two quasiconvex subgroups A, B of a hyperbolic
group G. We argue by contradiction, supposing that C' = AN B is not quasiconvex.
Thus there is a sequence of elements ¢; € C, and geodesics ; joining 1 to ¢;, which
contain points y; satisfying d(y;, C') — oo.

However there is a fixed quasiconvexity constant A and elements a; € A, b; € B,
so that d(y;, a;) and d(y;, b;) are both bounded by A, for all . The distances d(a;, b;)
are all bounded by 2\, and there are only finitely many elements in the ball of radius
2\ around 1. Therefore, we may pass to a subsequence in which a; = b;g for some
fixed g of length < 2X. Now note that

aayt =big-g byt = bby

is in C for all i. Thus d(y;,C) < d(yi,a;) +d(a;,a;a; ) < A+d(1,a;") is bounded
over all i, a contradiction since the y; are supposed to be getting further and further
from C. ([l

4. Height and width of quasiconvex subgroups

A great many arguments involving quasiconvex subgroups are easier in case
the subgroup H involved is almost malnormal, meaning that H N gHg~ "' is finite
whenever g ¢ H E| The height and width of a subgroup are different measurements
of how far a subgroup is from being almost malnormal.

2H is malnormal if HN gHg~' = {1} whenever g ¢ H.
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DEFINITION 13.29. Let G be a group, H < G a subgroup. The height of H
in G is the largest number n so that there are distinct cosets g1 H, ..., g, H with
#(gHgy'N---NgaHg,"') = oo

The width of H is the largest number n so that there are distinct cosets
g1 H, ..., g, H with #(gngi_1 N nggj_l) = oo for all ¢, j.

If H < G is finite its height and width are 0. If H is infinite and almost
malnormal, its height and width are 1.

There’s no real reason to restrict to a single subgroup; the above definitions
generalize to a collection of subgroups H. Here’s another way to think about height
and width, in terms of a certain simplicial complex D = D(H). Define the zero-
skeleton as the disjoint union of coset spaces

DO = U{G/H | H € H,#H = oo}.
Vertices goHo, - . ., gnH, span a simplex in D if

# (90Hgo ' N+ guH g, ") = oo,
Let F be the flag complex with the same one-skeleton as D. The height of H is
dim(D) + 1, and the width is dim(F) 4+ 1. (The empty set has dimension —1.)

In this section we’ll prove that quasiconvex subgroups of hyperbolic groups
have finite height and width. Essentially the same proofs apply to finite collections
of quasiconvex subgroups. These theorems appeared first in [GMRS98].

Here’s a lemma:

LEMMA 13.30. Let Q be a A—quasiconvex subset of the d—hyperbolic space X,
and let v be a bi-infinite geodesic with endpoints in the limit set of Q. Then v C

Nxt25(Q).

PROOF. Let p € 4. Reparametrize v so that v(0) = p. Let {a; }ien and {b; }ien
be representative sequences of points in ¢ which limit to the two endpoints of
at infinity. Choose N so that (any |v(—N)), > R, and (by |v(N)), > R. Draw a
picture and convince yourself that p is within 26 of a geodesic from ay to by . Since

both ay and by are in @, which is A-quasiconvex, p is within 2§ + A of some point
in Q. ([

We use the above lemma to prove quasiconvex subgroups have finite height:

ProOPOSITION 13.31. Let G be hyperbolic, and H quasiconvez. Then the height
of H in G 1is finite.

PROOF. Fix a generating set S for G, and let § be a constant of hyperbolicity
for T' = T'(G,S). Let A be the quasiconvexity constant for H C T'. Note that
every coset gH is also a A-quasiconvex set. Suppose that I = g1 Hg; 'n..g,H gt
is infinite. By Lemma [I3:28 I is also a quasiconvex subgroup. In particular it
is infinite hyperbolic (Lemma , so it contains an element of infinite order
(Corollary. Let « be a bi-infinite geodesic joining distinct points in the limit
set of I.  The endpoints of v are also in A(g;H) = A(g;Hg; ") for each i. Since
each g;H is A—quasiconvex, Lemma implies that v C (i, Nosta(9:H). In
particular, for any vertex g on -y, every coset g; H intersects the 264+ A—neighborhood
about g. These cosets are all disjoint, so there are at most #(Bas+x(g)) of them.
But this ball is isomorphic to the same radius ball around the identity, so we get
that the height of H is at most #(Basya(1)) < (2#45)20+A 1, O
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4.1. Bounded packing and finite width. Next we turn to finite width.
Finiteness of width for quasi-convex subgroups will be a consequence of a slightly
more useful notion, bounded packing.

DEFINITION 13.32. Let G be finitely generated, and let H < G. Let S be
a finite generating set for G, with respect to which we measure distance. The
subgroup H has bounded packing if for any D > 0, there exists N > 2 so that
among any tuple of distinct cosets {g1H, ..., gy H}, there must be two of distance
at least D.

EXERCISE 27. Show that if H has bounded packing with respect to the gener-
ating set S, then it has bounded packing with respect to any other finite generating
set for G.

EXERCISE 28. Finite subgroups and normal subgroups always have bounded
packing.

Proposition below shows that bounded packing of a codimension one
subgroup forces finite dimensionality of the dual cube complex (via the Sageev
construction). Part of the argument will be used again later, so we break it out as
a lemma:

LEMMA 13.33. Let G be a finitely generated group with Cayley graph X. For
i € {1,2}, let H; be a finitely generated codimension one subgroup, with associated
H;—wall W;. Then there is a D > 0 so that whenever g1 W1 and goWs are transverse,
then the D—neighborhoods of Hy and Hs in X intersect.

Proor. Each of the walls W; is really a pair of H;-halfspaces {4;, AS}, and
there are finitely many H;—orbits of edges joining A; to AS. Thus for some D > 0,
no edge in the complement of N; = Np(H;) connects A; to AS. Since each H; is
finitely generated, we can suppose D is large enough that the V; are connected.

Now suppose that g1 Ny Nga N is empty. We want to show that gy W7 and goWo
are nested. It suffices to take g1 = 1,92 = g. By exchanging A; with A{, we may
suppose that gNéo) C A;. If Wy and gW, are transverse, then in particular the sets
gAs N A and gAs N A must be nonempty. So let x € gASN Af, and y € gAs N AS.
Now every edge connecting a point of A§ to a point of A; is contained in Ny, and
N7 is connected, so there is a path ¢ connecting = to y using only vertices in A§
or Ni. The path o connects a vertex of gA§ to one of gAs, so it must contain a
vertex z of gN5. Since gNQ(O) C Ay, this vertex z must like in N7. So z € gNo N Ny,
contradicting the assumption that it is empty. [

PROPOSITION 13.34. Let G be finitely generated. Let H < G be a finitely
generated codimension one subgroup which has bounded packing, and suppose that
X is a cube complex obtained from (G,{H?}) via the Sageev construction. Then C
is finite dimensional.

PRrROOF. Fix a finite generating set S for G, and let X be the Cayley graph of
G with respect to S. Let A be the H-halfspace on which the Sageev construction is
based (See Lemma for its properties), and let W be the corresponding H—wall.
By Lemma there is some D so that if N = Np(H), and g1 NNgaN = (), then
the walls g1 W, goW are nested.

The subgroup H is assumed to have bounded packing, so let M be some number
so that if {g1 H,...,gnmH} are distinct cosets, then two must be at distance at least
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2D + 1. Thus there are at most M — 1 pairwise transverse walls, and the dimension
of the dual cube complex is at most M — 1. ([

THEOREM 13.35. Let G be hyperbolic and H < G quasiconvex. Then H has
bounded packing.

Before we prove the theorem, let’s look at a couple of consequences. The first
follows directly from Proposition [13.34] above.

COROLLARY 13.36. Let G be hyperbolic and let H < G be quasiconvex and
codimension one. If A is an H—almost invariant subset, and C the corresponding
cube complex, then C is finite dimensional.

The second requires a little geometry.

COROLLARY 13.37. Let G be hyperbolic and H < G quasiconvex. Then H has
finite width.

PRrROOF. Let I' be a d—hyperbolic Cayley graph for G, and suppose H is A—
quasiconvex in I'. Let D = A + 26. By Theorem [I3:35] H has bounded packing in
G. Let N = N(D) be the constant from the definition of bounded packing.

Suppose that g1 H, . .., g H are distinct cosets so that all intersections ¢; Hg; ' N
g; H gj_1 are infinite. Then we may argue exactly as in the proof of Proposition
that d(g;H, g;H) < A+ 26 = D for each i, j. By the definition of bounded packing,
k (and hence the width of H) is at most N. O

The proof of Theorem [13.35| follows Hruska and Wise’s proof in [HW09] and
is likewise based on the following “magic trick” [HWQ9], Lemma 4.5]

LEMMA 13.38. Let G be a discrete group with a proper left-invariant metric
dg. Let A,B < G, and let vA,yB be cosets, and let L > 0. Then there is an L’ so
that

Np(zA)N Ny (yB) C N (zAz" ' nyBy ™).

PRrROOF. Suppose the lemma is false. Then there is a sequence of group elements
z; € Np(xA) N Ni(yB) so that dg(z;, Az~ NyBy~!) tends to infinity.

For each i, there are elements p;, ¢; in the L-ball about 1 and a; € A, b; € B so
that z; = za;p; = yb;q;. The metric on G is proper, so by passing to a subsequence
we may assume that p; and ¢; are constant, i.e. p; = p and ¢; = ¢ for all i.

But then ziz;' = za;a;'z™' = ybiby 'y~ so da(z,xAz~' NyBy™') is
bounded above by di(1, 21) for all 7. This contradicts our initial choice of sequence
{Zi}. U

Why do I call this a magic trick? As the reader can see, there are essentially
no hypotheses, but the conclusion is weaker than it might at first appear. The
constant L’ depends on all the data given.

Proor oF THEOREM [13.35l Let H, G constitute a counterexample, chosen to
minimize height(H) among all possible counterexamples. Since finite subgroups
have bounded packing, this height must be positive. We will show that we can find
another counterexample with smaller height, contradicting our initial choice.

We fix a word metric dg on G. Since H does not have bounded packing in G,
there is some L so that for every N there is a collection

HN = {H>gN,1H>~~'7gN,NH}
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so that dg(A, A’) < L for each A, A’ € Hy. Note that if dg(gH, H) < L, then
HgH meets By(1) in G, and there are finitely many such double cosets.

Refining our sequence of collections H, we may therefore assume that they
all consist of H together with a collection of cosets of H lying in some fized double
coset HgH # H.

Let K = HNgHg~!. Since K is an intersection of quasiconvex subgroups it is
quasiconvex as well, and moreover is quasiconvex in the hyperbolic group H. We
will show first that K has lower height in H than H has in G, and then that K
also fails to have bounded packing in H, completing the contradiction.

Cramm 13.38.1. The height of K in H is strictly less than the height of H in
G.

Proor oF CramM 1338771 Whenever b1 K, ..., h, K are distinct in H/K then
the reader may verify that H, higH, ..., h,gH are distinct in G/H, and also

P P
(VhKhi' € Hn () higH(hig)™".

=1 i=1

If the left-hand side is infinite, so is the right, and so the height of H in G is at
least one more than the height of K in H. O

In order to show K fails to have bounded packing we first show:
CLAIM 13.38.2. There is an R > 0 so that if
max{dg(agH,bgH),d(H,agH),dc(H,bgH)} < D,
then dg(aK,bK) < R.

PRrROOF OF CLAIM [13.38.2] Let z be a point of distance at most D/2 from
both agH and H, let y be within D/2 of both bgH and H, and let z be within
D/2 of both agH and bgH. Choosing geodesics [x,y], [y, 2], and [z, z], there is a
number D’ (depending on d, D, and the quasi-convexity constant of H) so that

[,y] C Np/(H),ly,2] C Np:(bgH), [2,x] C Np/(agH).

There is a point w which is at distance at most § from all three sides of this triangle,
and thus for D; = D’ + 6,

Np, (agH) N Np, (bgH) O Np, (H) # 0.

The magic trick Lemma [13.38| gives us D2 so that Np, (H) N\ Np,(¢gH) C Np,(K).
Translating by a and b gives:

NDI(H)ONDl(agH) C NDQ(GK)
NDI(H)HNDI(bgH) CNDz(bK)

The point w is in both of these, so we have d(aK,bK) < 2D,, and we can take
R =2D,. O

The following uses no geometry, and we leave it as an exercise:

Cramm 13.38.3. The assignment ¥(hgH) = hK gives a well-defined bijection
from HgH/H to H/K.
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Now let Ky = ¢(Hn \ {H}). This is a sequence of larger and larger collections
of cosets of K in H. By Claim [13.38.2] these cosets are uniformly pairwise close in
G. Since H is quasi-convex, Lemma [13.27 shows it is quasi-isometrically embedded
in GG, and so these cosets are uniformly close in H as well. In other words, K does
not have bounded packing in H. This completes our argument. O

It seems worth remarking that whereas our bound on the height of a quasi-
convex subgroup of a hyperbolic group is constructive, the proof of bounded packing
just given is highly non-constructive.

QUESTION 13.39. Is there a constructive proof of bounded packing? Such a
proof might be expected to give N as a function of D, the quasiconvexity constant
of H, the number of generators of G, and the hyperbolicity constant of G.

EXERCISE 29. What is the right notion of bounded packing for collections of

subgroups? Show that versions of Proposition [13.34] and Theorem [13.35| hold for
finite collections of subgroups.






CHAPTER 14

Hyperbolic groups acting on cube complexes:
finiteness

In this section we give some tools to show finiteness properties of a cube complex
coming from applying the Sageev construction to a hyperbolic group.

1. A cocompactness criterion

Our goal in this section is to prove that whenever the Sageev construction is
applied to a finite collection of quasi-convex subgroups of a hyperbolic group G,
the G—action on the resulting cube complex is cocompact.

We will to show that if a finite collection of quasi-convex sets in a hyperbolic
space are pairwise close, there is a point which is close to all of them. There are
a couple of ways to prove this. A slick proof based on asymptotic cones and the
topology of R-trees is given by Calegari. We will instead base the proof on
approximation of weak hulls by trees.

DEFINITION 14.1. Let X be a d—hyperbolic space, and let S C X. Let WH(SS)
be the union of all the geodesics of X joining points of S. The set WH(S) is called
the weak hull of S.

EXERCISE 30. Show the weak hull of any set is A-quasi-convex, where A depends
only on 4.

TREE APPROXIMATION LEMMA. For every n,d, there is an € satisfying the
following: For any n—point set Y in a §—hyperbolic space, there is a metric tree Ty
and a (1, €)—quasi-isometry from WH(S) to Ty so that every leaf of Ty is the image
of a point of Y.

PrOOF. For now we refer to Chapter 8 of [CDP90], but we’ll insert at least a
sketch into these notes later. (]

LEMMA 14.2. Let n € N, and let §,\,D > 0. Then there is a D' > 0 so
that: For any collection S, ...,S, of pairwise D—close A—quasi-convez sets in a
d—hyperbolic space X, there is a point p so that

max{dx(p,S;) |i=1,...,n} < D'

PROOF. Since the subsets S; are pairwise D—close there are (g) points p; j,
so that d(p; ;,S;) and d(p; ;,S;) are at most D. Since S; is A-quasi-convex, any
geodesic [p; j,, pi,j,] lies in a 20 + D + A-neighborhood of S;.

Let C be the coarse hull of the points p; ;, i.e. the union of all the geodesics
of the form [p; ;,pi j/]. By the Tree Approximation Lemma, there is an R-tree
T and a (1,€)—quasi-isometry ¢: C — T, where the constant ¢ depends only on
the numbers n and 0. Possibly increasing e by a small amount (still depending
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only on § and n), we can suppose that ¢ has an e-quasi-inverse ¢, which is also a
(1, €)—quasi-isometry.

For each fixed 4 let T; be the convex hull in T of the points {p; ; | j # i}. For
each i, j, the intersection 7;NTj contains the point p; ;, so it is nonempty. It follows
that the intersection (), 7; is nonempty. Let z be a point in that intersection, and
let Z = ¢(z). Fix 4, and note that since z is in T;, it lies on a geodesic +; joining
two points p, ; and p, ;. Thus the point Z is on the (1, €)-quasi-geodesic 7; = ¥(v;)
joining p; ; and p; j. Let R be the constant of quasi-geodesic stability from Theorem
applied to (1, €)—quasi-geodesics in d—hyperbolic spaces.

Then Z lies in a 26 + D + XA + R-neighborhood of S;, and we can take D' =
20+ D+ A+ R. O

From this lemma we easily obtain the cocompactness criterion.

THEOREM 14.3. [Sag97, Theorem 3.1] Let G be hyperbolic, let H be a finite
collection of quasi-convex subgroups, and suppose that X is a cube complex obtained
from (G, H) via the Sageev construction. Then the action of G on X is cocompact.

PROOF. To each element H; of H is associated an H;—halfspace A; C G, and the
collection of translates of these forms the space with walls P4. Let ¢ be a maximal
cube of X, corresponding to a collection of transverse walls g1 W1, ..., g, W,,. (Each
Wi = {4;,, A5, }.) We want to show there are finitely many such cubes, up to the
G-action. So we can assume that g; = 1, and fix H = Hj,.

Since the walls are transverse, Lemma[I3.33] implies that the D-neighborhoods
of the cosets {H} U {g;Hj, }I-, must intersect pairwise, where D depends only on
the collection ‘H. By Lemma there is a D’ depending only on n, D, and H
so that some fixed point p lies within D’ of all these cosets. Up to the H—action,
there are only finitely many choices for such a p. All the other cosets must intersect
the D’-neighborhood of p, so there are only finitely many choices of n—tuple, once
p has been fixed. Since n is bounded (See Proposition Theorem and
Exercise , there are only finitely many cubes o up to the action of G. (]

2. A properness criterion
We start with a general observation.

LEMMA 14.4. Suppose G contains no infinite torsion subgroup. Suppose G acts
on the pocset (P, <) in such a way that, for every infinite order g, there is an A € P
and an n > 0 so that A D g™ A. Then the action of G on the cube complex X (P)
has finite vertex stabilizers.

PROOF. Let w be a vertex of X(P), i.e., a DCC ultrafilter on P. We suppose
that Stab(w) is infinite. Since G has no infinite torsion element, there is some
infinite order g with gw = w. There is some A € P and n > 0 so that A 2 ¢g"A.
Either A € w or A* € w. In case A € w, we must also have ¢g*" A € w for all positive
k; if A* € w, we have g~*"A* € w for all positive k. In either case we obtain an
infinite descending sequence in w, contradicting the assumption that w is DCC. O

We will see that this lemma in particular applies to hyperbolic groups. We first
need to understand a little better how an H—wall shows up at the boundary.

LEMMA 14.5. Let G be hyperbolic, H < G quasi-convex and codimension-one,
and let {A, A°} be an H-wall. Then the following hold:
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(1) A(A)UA(A°) = 0G.
(2) A(A)NA(A°) = A(H).
(3) A(A)\ A(H) is open in 0G.

PROOF. Let N = Ng(H) be a neighborhood of H in a Cayley graph for G so
that every edge joining a point of A to a point of A€ is in N. There is a constant
D so that N C Np(A) N Np(A°).

Let x = {x;};en represent a point p of dG. Passing to a subsequence, we can
assume either x C A or x C A°. So either p € A(A) or p € A(A°).

Suppose that p € A(A) N A(A°), and consider representative sequences x =
{z;}ien in A and y = {y; }sen in A°. For each i, any geodesic [z;, y;] passes through
N. Let z; be any vertex of N on [z;,y;], and note z = {z; };en also represents p.
The limit set of N is equal to the limit set of H, so p € A(H).

Since limit sets are closed, the last item follows from the first two. ([

DEFINITION 14.6. Let W = {A, A°} be a partition of a hyperbolic group G

into two subsets, and let a,b € 9G. Then W separates a from b if (possibly after
exchanging A with A°) a € A(A) \ A(A°) and b € A(A°) \ A(4).

The following then shows us how to apply Lemma to hyperbolic groups.

LEMMA 14.7. Suppose G is hyperbolic, g € G is infinite order, and that H is
a quasi-conver codimension-one subgroup of G so that the fized points of g in OG
are separated by an H-wall {A, A°}. Then for some n > 0 either g"A C A or
grAc C A°.

PROOF. Let N = Ng(H) be chosen so that every edge joining an element of
A to an element of A€ is contained in N. If there were arbitrarily large n so that
g"N NN # (), then the limit sets of (g) and H would intersect. Since this isn’t
the case, we can choose n so that ¢g" N NN = (). Since N contains all the edges
connecting A to A°, the walls {A, A°} and {g" A, g" A°} must be nested. Thus one
of the four sets

gtAN A, grASNAS, gtANAS, grANA
must be empty.
The sets g" AN A and g"A° N A are not empty, as they contain all sufficiently

large positive and negative powers of g, respectively. If g"A N A¢ = (), then
g"A C A, and if g"A°N A =0, then g"A° C A°. O

3. Hyperbolic groups as convergence groups

Isometric group actions on hyperbolic spaces induce topological actions on their
Gromov boundaries. Somewhat surprisingly, basically all the relevant information
is preserved. The proper actions, for example, are exactly those for which the action
on the boundary has the following “convergence” property.

DEFINITION 14.8. Let G act on a perfect metrizable compact space M, and let
T = T (M) be the space of distinct triples of points in M. The action G ~ M is a
convergence action if the induced action on T is properly discontinuous.

REMARK 14.9. It is not obvious why the word “convergence” is used here.
This is because of an alternative (and older) formulation: A convergence sequence in
G ~ M is a sequence of distinct elements g,, € G so that there exists a pair of points
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a, b so that g,z — a uniformly in the complement of b. An equivalent definition to
is that every sequence of distinct elements of G contains a subsequence which
is a convergence sequence. See [Bow99]| for details and generalizations.

LEMMA 14.10. Let X be proper and Gromov hyperbolic. If G acts properly by
isometries on X, then the induced action of G on 0X is a convergence action.

PRroOF. Sketch: Define a map ¢: T(0X) — X, taking a triple (z,y, 2) to any
point which is a 7d—center for the triple. There is a uniform bound over triples for
the diameter of the set of 7d—centers, using either Lemma or Lemma [T3.
An argument along the same lines as those shows that the image of any compact
set in 7T is also a bounded set. Only finitely many elements of G fail to take a
given bounded set off of itself, so the same must be true of a compact set in T'. In
particular, the action G ~ T is properly discontinuous. (I

REMARK 14.11. In this proof we used a coarsely defined map from triples of
points in X to X. If X is nice enough we can be more explicit and even get a
continuous map. For example if X = OH?, and (a,b,c) € T, one can construct
¢ as follows: Let v be the bi-infinite geodesic joining a to b, and let ¢(a,b,c) be
the beginning of a perpendicular geodesic ray terminating at c¢. In other words the
triple space can be identified with the unit tangent bundle of H?2.

EXERCISE 31. What is T(0X) when X is H?*? How about a tree?

DEFINITION 14.12. A convergence action G ~ M is uniform if the induced
action on T'(M) is cocompact.

PROPOSITION 14.13. If G is a hyperbolic group, it acts as a uniform convergence
group on 0G.

PROOF. (Sketch) Lemma [14.10]implies that G acts as a convergence group on
OG. Choose an arbitrary basepoint (a,b,¢) € T = T(M). The identity 1 € G is
an R-center for this triple, for some R > 74. Let C' C T be the set of triples for
which 1 is an (R + 1)—center. This is relatively compact, and since every triple has
a 7d—center, the translates of C' cover all of T O

REMARK 14.14. There is a remarkable converse to Proposition due to
Bowditch [Bow98]: If M is any compact metrizable space without isolated points,
and G acts as a uniform convergence group on M, then G is hyperbolic and M is
equivariantly homeomorphic to 0G.

4. Bergeron—Wise’s properness criterion

In this section we explain the Bergeron—-Wise criterion for a hyperbolic group
to be cubulated.

There is also a version of this criterion for relatively hyperbolic groups, see
[BW12| Theorem 5.1]. The idea here is to combine a compactness argument with
the results of Section 21

DEFINITION 14.15. Say a hyperbolic group G has enough codimension-one
quasi-convex subgroups if, for every pair of distinct points a,b € OG, there is a
quasi-convex subgroup H and an H-wall which separates a from b (in the sense of

Definition [14.6]).
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THEOREM 14.16. Let G be a hyperbolic group with enough codimension-one
quasi-convex subgroups. Then G is cubulated, in the sense that G acts properly
cocompactly on a CAT(0) cube complex.

PROOF. We use the assumption of enough codimension-one quasi-convex sub-
groups to find a particular open cover U of T. Let u,v,w be distinct. There is
some quasiconvex subgroup H, , and an H, ,~wall {A, A°} separating u from v.
We may suppose u € A(A) \ A(A%) = A(A) \ A(Hyo). Choose open neighbor-
hoods U C A(A)\ (A(Hyw) U{w}) of wand V C A(A°)\ (A(Hy) U {w}) of v, and
an open neighborhood W of w disjoint fom UUV'. The product My, ,, ., = UxV xW
gives an open neighborhood of (u,v,w) in T.

Since G acts cocompactly on T' (Proposition [14.13)), we only need finitely many
My, v; 0, = Uy X Vi x W; so that their G—translates cover all of T'. For each ¢ let H;
be the associated quasi-convex codimension one subgroup, and let W; = {A;, AS}
be the associated H;—wall. We claim that the wall-space consisting of these finitely
many walls and their G—translates gives a cube complex X with a proper cocompact
G-action. We do this by verifying the hypotheses of Lemma

First, since G is hyperbolic it contains no infinite torsion subgroup (Theorem
Now let g be an infinite order element. By Corollary the element ¢ is
loxodromic, so it has two fixed points ¥ in 0X. Let w be any third point of 0.X.
Then there is some 4, and some h so that (¢°°, g~ >, w) € hM;). Let K = hH;h ™1
and W = {4, A°} = {hA;,hAS}. Note that W is a K—wall which separates g>
from ¢g~*°. Applying Lemma there is an n > 0 so that either A 2 ¢g"A or
AC D g A“.

But this implies that g cannot preserve any DCC ultrafilter on the pocset P.

O
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CHAPTER 15

(Counter)-examples

1. Non-RF groups

Not every group is residually finite. Here is an easy example:
BS(2,3) = (a,t |t *a’t = a®).

DEFINITION 15.1. G is Hopfian if every epimorphism ¢: G — G is an isomor-
phism. (G is co-Hopfian if every monomorphism ¢: G — G is an isomorphism.)

LEMMA 15.2. If G is RF, then G is Hopfian.

PROOF. Suppose ¢: G — G is a surjection, and let k # 1 be an element of
the kernel. We will show that, for any n, k is contained in every subgroup of index
n. Indeed, let S, = {H1,..., H} be the set of subgroups of index n. For each 4,
¢~ 1(H;) is also a subgroup of index n, so ¢ determines a bijection S, — S, via
H; — ¢~ 1(H;). But each ¢~1(H;) contains k, so k is contained in every subgroup
of index n. ([l

EXERCISE 32. The assignments ¢ — ¢, a — a? determine an epimorphism from
BS(2,3) to itself which is not an isomorphism.

In fact, there are fundamental groups of NPC square complexes which fail to be
RF [Wis07]. Even stranger, they can fail to have any nontrivial normal subgroups
at all [BMOQ]!

2. Non-LERF RAAGs

The fundamental example of Burns—Karrass—Solitar is the presentation complex

of the group:
K = {a,b,t | aba b~ =1,t " at = b).

This is just a torus T" with a cylinder attached, one end to the meridian, and one
end to the longitude of T. It’s not hard to see this is NPC by drawing the link
of the vertex. But Burns—Karrass—Solitar show (using a slightly different presen-
tation) that the element [a,t!bt] can’t be separated from the subgroup (¢, ab™!)
in any finite quotient [BKS87]. Later, Niblo and Wise note that K is abstractly
commensurable to A(T") where T is a segment of length 3 [NWO1].






[BH99)

[BKS87)
[BMO00]
[Bow98]
[Bow99)]
[BRHP15]

[Bri02]

[BW12]
[Cal09]
[CCMT15]

[CDP90)

[Dav08]

[DJOO]

[Dro87]

[ECHT92]

[GdIH90]

[GMRS98]
[Gol98]
[HWO08]

[HWO09)]

Bibliography

Martin R. Bridson and André Haefliger. Metric Spaces of Non—Positive Curvature,
volume 319 of Grundlehren der mathematischen Wissenschaften. Springer—Verlag,
Berlin, 1999.

R. G. Burns, A. Karrass, and D. Solitar. A note on groups with separable finitely
generated subgroups. Bull. Austral. Math. Soc., 36(1):153-160, 1987.

Marc Burger and Shahar Mozes. Lattices in product of trees. Inst. Hautes Etudes Sci.
Publ. Math., (92):151-194 (2001), 2000.

Brian H. Bowditch. A topological characterisation of hyperbolic groups. J. Amer.
Math. Soc., 11(3):643-667, 1998.

B. H. Bowditch. Convergence groups and configuration spaces. In Geometric group
theory down under (Canberra, 1996), pages 23-54. de Gruyter, Berlin, 1999.

Khalid Bou-Rabee, Mark F. Hagen, and Priyam Patel. Residual finiteness growths of
virtually special groups. Mathematische Zeitschrift, 279(1-2):297-310, 2015.

Martin R. Bridson. The geometry of the word problem. In Invitations to geometry
and topology, volume 7 of Ozf. Grad. Texts Math., pages 29-91. Oxford Univ. Press,
Oxford, 2002.

Nicolas Bergeron and Daniel T. Wise. A boundary criterion for cubulation. Amer. J.
Maith., 134(3):843-859, 2012.

Danny Calegari. scl, volume 20 of MSJ Memoirs. Mathematical Society of Japan,
Tokyo, 2009.

Pierre-Emmanuel Caprace, Yves Cornulier, Nicolas Monod, and Romain Tessera.
Amenable hyperbolic groups. J. Eur. Math. Soc. (JEMS), 17(11):2903-2947, 2015.
M. Coornaert, T. Delzant, and A. Papadopoulos. Géométrie et théorie des groupes:
Les groupes hyperboliques de Gromov, volume 1441 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1990.

Michael W. Davis. The geometry and topology of Cozeter groups, volume 32 of London
Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ,
2008.

Michael W. Davis and Tadeusz Januszkiewicz. Right-angled Artin groups are com-
mensurable with right-angled Coxeter groups. J. Pure Appl. Algebra, 153(3):229-235,
2000.

Carl Droms. Graph groups, coherence, and three-manifolds. J. Algebra, 106(2):484—
489, 1987.

David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S.
Paterson, and William P. Thurston. Word Processing in Groups. Jones and Bartlett
Publishers, Boston, 1992.

E. Ghys and P. de la Harpe, editors. Sur les groupes hyperboliques d’aprés Mikhael
Gromowv, volume 83 of Progress in Mathematics. Birkhauser Boston, Inc., Boston, MA,
1990. Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988.

Rita Gitik, Mahan Mitra, Eliyahu Rips, and Michah Sageev. Widths of subgroups.
Trans. Amer. Math. Soc., 350(1):321-329, 1998.

Robert Goldblatt. Lectures on the hyperreals, volume 188 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1998. An introduction to nonstandard analysis.
Frédéric Haglund and Daniel T. Wise. Special cube complexes. Geom. Funct. Anal.,
17(5):1551-1620, 2008.

G. Christopher Hruska and Daniel T. Wise. Packing subgroups in relatively hyperbolic
groups. Geom. Topol., 13(4):1945-1988, 2009.

113



114

[HW14]
[NWO1]

[Rol98)

[Sag95]
[Sag97]

[Sagl4]

[Sco78]
[Sco85]
[Sta83]
[Wis07]

[Wis12]

BIBLIOGRAPHY

G. C. Hruska and Daniel T. Wise. Finiteness properties of cubulated groups. Compos.
Maith., 150(3):453-506, 2014.

Graham A. Niblo and Daniel T. Wise. Subgroup separability, knot groups and graph
manifolds. Proc. Amer. Math. Soc., 129(3):685-693, 2001.

Martin Roller. Poc sets, median algebras and group actions. An extended study of
Dunwoodys construction and Sageevs theorem. habilitation, Universitat Regensburg,
1998.

Michah Sageev. Ends of group pairs and non-positively curved cube complexes. Proc.
London Math. Soc. (3), 71(3):585-617, 1995.

Michah Sageev. Codimension-1 subgroups and splittings of groups. J. Algebra,
189(2):377-389, 1997.

Michah Sageev. CAT(0) cube complexes and groups. In Geometric group theory, vol-
ume 21 of IAS/Park City Math. Ser., pages 7-54. Amer. Math. Soc., Providence, RI,
2014.

Peter Scott. Subgroups of surface groups are almost geometric. J. London Math. Soc.
(2), 17(3):555-565, 1978.

Peter Scott. Correction to: “Subgroups of surface groups are almost geometric” [J.
London Math. Soc. (2) 17 (1978), no. 3, 555-565; MR0494062 (58 #12996)]. J. London
Math. Soc. (2), 32(2):217-220, 1985.

John R. Stallings. Topology of finite graphs. Invent. Math., 71(3):551-565, 1983.
Daniel T. Wise. Complete square complexes. Comment. Math. Helv., 82(4):683-724,
2007.

Daniel T. Wise. From riches to raags: 3-manifolds, right-angled Artin groups, and
cubical geometry, volume 117 of CBMS Regional Conference Series in Mathematics.
Published for the Conference Board of the Mathematical Sciences, Washington, DC;
by the American Mathematical Society, Providence, RI, 2012.



	Preface
	Introduction: Subgroup separability
	Chapter 1. Outline and conventions
	1. Dependence of chapters written so far
	2. Things this text covers or should eventually cover
	3. Conventions

	Chapter 2. Subgroup separability in free and surface groups
	1. Residual finiteness
	2. Subgroup separability
	3. Stallings folds and covers of the rose
	4. Surface groups are LERF


	Part I.  Non-positively curved cube complexes
	Chapter 3. Introduction to cube complexes
	1. Nonpositive curvature
	2. The cube complex associated to a right angled Artin group

	Chapter 4. Special cube complexes
	1. Special via hyperplanes
	2. Parallelism of edges

	Chapter 5. Special cube complexes and RAAGs
	1. Kinds of maps between cube complexes
	2. Special cube complexes embed in RAAGs

	Chapter 6. Canonical completion and retraction, take 1
	1. Definition of the completion
	2. Geometric separability
	3. What's canonical about it?

	Chapter 7. Geometry of CAT(0) cube complexes
	1. Finding disk diagrams for null-homotopic loops
	2. Features of disk diagrams
	3. Geodesics and hyperplanes in CAT(0) cube complexes
	4. 1–injectivity of locally isometrically immersed subcomplexes

	Chapter 8. Quasiconvex subcomplexes
	1. Median spaces
	2. Combinatorial hulls

	Chapter 9. Finding cubes: codimension one subgroups and pocsets
	1. Pocsets
	2. The cube complex associated to a pocset
	3. Codimension one subgroups


	Part II.  Hyperbolic geometry and cube complexes
	Chapter 10. Quasi-Isometries and Hyperbolicity
	1. Coarse geometry
	2. Hyperbolic metric spaces
	3. Infinite hyperbolic groups have elements of infinite order
	4. Quasiconvexity in cube complexes with hyperbolic 1
	5. Gromov products and reformulating hyperbolicity
	6. Stability of paths built from geodesic segments

	Chapter 11. Characterizing virtually special in terms of separability
	1. Resolving the ``easy'' pathologies
	2. Quasiconvex combination and resolving interosculations

	Chapter 12. Reformulations of hyperbolicity, loxodromic isometries
	1. Four-point reformulations of hyperbolicity
	2. Broken geodesics are quasi-geodesics
	3. Finding loxodromic isometries

	Chapter 13. Boundaries of hyperbolic metric spaces
	1. The boundary at infinity
	2. Isometries of hyperbolic spaces
	3. Quasiconvex subgroups of hyperbolic groups
	4. Height and width of quasiconvex subgroups

	Chapter 14. Hyperbolic groups acting on cube complexes: finiteness
	1. A cocompactness criterion
	2. A properness criterion
	3. Hyperbolic groups as convergence groups
	4. Bergeron–Wise's properness criterion


	Part III.  Miscellany
	Chapter 15. (Counter)-examples
	1. Non-RF groups
	2. Non-LERF RAAGs

	Bibliography


