
BASS-SERRE THEORY AND COMPLEXES OF GROUPS

1. Free groups, free products

Just a summary for now. See [Ser03, I.§3] for some of this.

• Three points of view: Universal, Typographical, Topological. (Exercise:
these all describe the same thing.)

• Exercise: Every element of a free group is represented by a unique reduced
word. Every element of a free product as well (though you have to interpret
“reduced word” to allow “letters” which are arbitrary non-trivial elements
of the free factors).

• A group is free if and only if it acts freely on a tree.

2. Amalgams

Given a diagram D : A C Bα β
the colimit lim−→(D) (or pushout)

exists and is usually written A ∗C B (suppressing the maps α and β from the
notation). It comes with canonical maps A → A ∗C B and B → A ∗C B making a
commutative square

(1)

C B

A A ∗C B

β

α

which satisfies a universal property: For any homomorphisms ϕ : A→ G, ψ : B →
G so that ϕα = ψβ, there is a unique homomorphism from A ∗C B to G making
the following diagram commute:

(2)

C B

A A ∗C B

G

β

α
ψ

ϕ

One way to define the group is as follows:

Definition 2.1. The amalgam A ∗C B is the quotient of A ∗ B by the normal
subgroup generated by {α(c)β(c)−1 | c ∈ C}.

There is also a topological interpretation:

Definition 2.2. For F ∈ {A,B,C} let KF be a K(F, 1), and let fA : KC → KA

and fB : KC → KB induce the maps α, β, respectively. Let Y = KA⊔KC× [0, 1]⊔
KB/ ∼ where (x, 0) ∼ fA(x) and (x, 1) ∼ fB(x) for x ∈ KC . We can also define
A ∗C B to be π1(Y ).
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2 BASS-SERRE THEORY AND COMPLEXES OF GROUPS

The equivalence of these follows from van Kampen’s Theorem (see [Hat02, 1.20]).
The space Y defined in the last paragraph is a special case of something called

a graph of spaces, in this case with two vertex spaces (KA and KB) and one edge
space (KC). We will see more graphs of spaces below.

The key result we proved was about normal forms. To define normal form we
first choose right transversals TA for C < A and TB for C < A. This means that
TA is a subset of A containing one element of each right coset Cg in A. We also
require that C ∩ TA = {1}. Similar statements apply to TB . A normal form for
g ∈ A ∗C B is a tuple (c;x1, . . . , xn) so that

(1) c ∈ C;
(2) xi ∈ TA ∪ TB − {1} for each i;
(3) If xi ∈ TA then xi+1 ∈ TB and vice versa; and
(4) cx1 · · ·xn = g.

In class we proved:

Theorem 2.3. Each g ∈ A ∗C B has a unique normal form.

Amore general result (where possibly more than two subgroups are amalgamated
along a common subgroup) is proved in [Ser03, I.§1]. Various corollaries can also
be found there, and we talked about a few of them.

3. HNN extensions

(Here we followed Section I.1.4 of Serre pretty closely, so I won’t reproduce it
here.)

4. Trees and amalgams

(See also [Ser03, I.4].) There is a third important way to think of amalgams;
namely, as groups which act on a tree in a certain way. In the following, we write
A ∗C B for the amalgam to indicate we are thinking of the maps α and β as
inclusions.

Theorem 4.1. The following are equivalent.

(1) G ∼= A ∗C B.
(2) There is an action of G on a (bipartite) tree T with strict fundamental

domain consisting of a single edge e with endpoints v and w, and a com-
mutative diagram

(∗)
A C B

Stab(v) Stab(e) Stab(w)

with each vertical map an isomorphism.

Proof. (2) =⇒ (1): The diagram (∗) together with the universal property of
pushouts gives a unique homomorphism ϕ : A ∗C B → G which extends the given
maps. We first show that ϕ is surjective (using that T is connected) and then show
that ϕ is injective (using that T is simply connected).

Suppose that g is not in the image of ϕ. Then g /∈ Stab(e). Choose g so that
the distance from ge to e in T is minimized. Let e1 be the first edge on a path
from ge to e. Then e1 = ge2 for some e2 adjacent to e. We claim that there is an
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h ∈ Stab(v)∪Stab(w) so that he = e2. Given the claim, we obtain a contradiction:
since ghe = e1 is closer to e than ge is we must have gh in the image of ϕ, implying
that g is in the image of ϕ (since h obviously is).

To prove the claim, note that since the action ofG on the set of edges is transitive,
there must be some h ∈ G so that he = e2. But this h preserves the bipartite
structure on T and so must fix e ∩ e2, which is either v or w.

Now we prove injectivity. Suppose that g ∈ A ∗C B. Then g has a normal form
(c;x1, . . . , xn) as in Theorem 2.3. We build an immersed path in T of length equal
to n + 1 whose first edge is e and whose last edge is ge. This will show (since T
contains no circuits) that ge = e if and only if g ∈ C. So if g ∈ kerϕ, we have
g ∈ C. The map ϕ is injective on C by assumption, so we must have g = 1.

It remains to build the path. If the normal form is (c; ), the path consists
of only the edge e0 = e. So suppose inductively we have found an immersed
path (e0, . . . , en−1) starting with e and ending at en−1 = cx1 · · ·xn−1e. Since
xn ∈ (A∪B)−C, the edge xne is adjacent to but not equal to e. This implies that
en = ge = (cx1 · · ·xn−1)xne is adjacent to but not equal to e. The only worry is
that en = en−2. But this cannot happen: if xn ∈ A, then en ∩ en−1 is in the orbit
Gv, whereas en−1 ∩ en−2 is in the orbit Gw, and if xn ∈ B the reverse is true.

(1) =⇒ (2): There are multiple approaches to this implication. In class Monday
I sketched two. The first was essentially Serre’s approach (see [Ser03, I.4]). The
second was more topological, constructing the tree as a quotient of the universal
cover of the graph of spaces described in Definition 2.2. A third approach is given
as a special case of Theorem ?? below. □

5. Graphs of groups and small categories

Let Γ be a 1–complex. We denote by Γ the opposite poset of cells of Γ. This
is a small category so that each edge object is the source of two outgoing arrows
pointed at vertex objects and one identity arrow. Each vertex object is the source
only of an identity arrow. This is quite a boring category, as any composition ab is
equal either to a or b!

We denote by Grp1−1 the category of groups and monomorphisms.

Definition 5.1 (Graph of Groups). Let Γ be a connected 1–complex. A graph of
groups with underlying graph Γ is a functor G : Γ → Grp1−1.

To each graph of groups we associate a small category:

Definition 5.2 (The category CG). Let G : Γ → Grp1−1 be a graph of groups.
The category CG has objects Obj(Γ) and morphisms of the form (g, a) where a is
an arrow of Γ and g ∈ G(t(a)). For an arrow a, write ψa for G(a). The composition
law is

(g, a) ◦ (h, b) = (gψa(h), ab)

defined whenever t(b) = i(a).

In a category, a composable chain of n arrows is an n–tuple of arrows (a1, . . . , an)
so that the composition a1 · · · an is defined. For any small category C we can
construct a simplicial complex called its realization R(C). This complex has vertex
set equal to Obj(C), an edge for every arrow, and an n–simplex for every composable
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chain of n arrows. More explicitly, we have ∂a = t(a)− i(a) for every arrow a, and

∂(a1, . . . , an) =(a1, . . . , an−1) +

n−1∑
i=1

(−1)n+i(a1, . . . , aiai+1, . . . , an)

+ (−1)n(a2, . . . , an)

Definition 5.3 (Fundamental group). If G is a graph of groups, the fundamental
group of G is the fundamental group of the complex R(CG), and written π1(G) (or
π1(G, v) if we want to specify a base-point).

Example 5.4. If Γ consists of a single vertex v with no edges, then a graph of
groups G on Γ is just a single group A = G(v). The category CG has a single
object, one arrow for each group element, and composition is given by the group
law. One then has π1(R(CG)) ∼= A in a canonical way. In fact (exercise) R(CG) is
a K(A, 1).

Example 5.5. If Γ is a single edge e joining vertices v and w, then Γ is the category

v e wa b

(suppressing identity arrows). So a graph of groups is a diagram of monomorphisms

A C Bα β

where A = G(v), B = G(w) and so on. For each c ∈ C there is a commutative
diagram of arrows:

w e v

w e v

(α(c),1w)

(1,a) (1,b)

(c,1e)(α(c),a) (β(c),b) (β(c),1v)

(1,a) (1,b)

(There are a lot of “1”s in this diagram. The convention used here is that an
undecorated 1 is the identity element of some group, whereas an identity arrow
coming from Γ is given a subscript.) In the realization, this gives an annulus
between the loop coming from α(c) ∈ A to the loop coming from β(c) ∈ B. In
fact the realization is an example of the complex Y discussed in Definition 2.2, so
this shows that in this case the fundamental group of the graph of groups is the
amalgam.

6. The graph of groups coming from a tree action

We assume that G acts on the tree T without inversions. This means that for
each edge e of T with endpoints v, w, we have

Stab(e) = Stab(v) ∩ Stab(w).

In this case the quotient Γ = G
∖
T is a graph with vertices (resp., edges) in one

to one correspondence with G–orbits of vertex (resp., edge) of T . This will be the
underlying graph of the graph of groups structure.

We must define a functor from Γ to Grp1−1. To do so we must make some
choices. Namely, for each object o of Γ we choose an orbit representative õ in
T . We set G(o) = Stab(õ). To define the monomorphisms, we note that each

arrow a of Γ lifts to a unique arrow ã with i(ã) = ĩ(a). This arrow may not
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point at t̃(a) but we may choose a group element ha so that ha(t(ã)) = t̃(a). The
monomorphism ψa is given by conjugation: ψa(g) = hagh

−1
a . (We could also write

this as ψa = Ad(ha)|Stab(ĩ(a)).)
We made a number of choices but these don’t matter too much.

Definition 6.1 (Isomorphism of graphs of groups). Let (G,ψa) and (H,ϕa) give
two different graphs of groups with the same underlying graph Γ. An isomorphism
from G(Γ) to H(Γ) is a collection of isomorphisms fo : G(o) → H(o) so that for

any nontrivial arrow e
a→ v, the diagram

G(e) G(v)

H(e) H(v)

fe

ψa

fv

ϕa

commutes up to a conjugacy in H(v).

Note that the conjugating element of H(v) may depend on the arrow.

Lemma 6.2. Different choices in the definition of the graph of groups at the be-
ginning of this section lead to isomorphic graphs of groups.

Proof. Exercise. □

Later in these notes we will see how to reverse this process, and turn a graph of
groups into a tree action.

7. Covers of categories

7.1. Coverings.

Definition 7.1. A covering of categories is a functor f : C̃ → C so that for each
object v of C̃, the restriction of f to the collection of arrows with source or target
v is a bijection. Given such a covering, we may say the label of an arrow a ∈ C̃ is
the arrow f(a).

Remark 7.2. Any arrow in a cover is determined by its source and label.

Any functor induces a simplicial map on realizations. A covering of categories
induces a map in which 2–simplices (compositions) are easily seen to lift. Indeed,
one has the following.

Lemma 7.3. Let f : C̃ → C be a covering of categories. Then the induced map on
realizations is a covering map.

Proof. Exercise. □

7.2. Paths and homotopies. We would like to define the universal cover of a
category in terms of homotopy classes of paths, just as we do in the topological
setting. To do so we need to say what a path in a category is and what a homotopy
is. Essentially, we will define C–paths as combinatorial paths in the 1–skeleton of
R(C), and homotopies of C–paths as (combinatorial) homotopies in the 2–skeleton,
rel endpoints. Each such homotopy can be written as a sequence of elementary
homotopies, which are of three types:

(1) Insert or delete a backtrack.
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(2) Homotop a concatenation of arrows b · a to ab across a triangle.
(3) Insert an identity arrow (going forwards or backwards).

More formally, we define an oriented edge of C to be a symbol a+ or a− where a is
an arrow of C. We have the following (at first counterintuitive) conventions for the
source i(e) and target t(e) of an oriented edge e.

i(a−) = i(a), t(a−) = t(a), and i(a+) = t(a), t(a+) = i(a).

This choice is made so that the concatenation a+ · b+ is (ab)+ whenever the com-
position ab is defined.

A path in C of length n is a concatenation p = e1 · · · en of oriented edges so that
t(ei) = i(ei+1) for all 1 ≤ i < n, and has i(p) = i(e1), t(p) = t(en). A path p of
length 0 is a choice of object v and has i(p) = t(p) = v.

Definition 7.4. An elementary homotopy of paths is one of the following:

(1) p · q ≃ p · 1±v q when t(p) = v.
(2) p · q ≃ p · a+ · a− · q if t(p) = t(a) and p · q ≃ p · a− · a+ · q if t(p) = i(a).
(3) p · a+ · b+ · q ≃ p · (ab)+ · q or p · b− · a− · q ≃ p · (ab)− · q whenever both

sides are defined.

7.3. The universal cover. We can now define the universal cover of a connected
category.

Definition 7.5. Let C be a connected category (meaning any two objects are

connected by a C–path), and fix and object v in C. We will define a category C̃ and

a covering π : C̃ → C.
The objects of the universal cover C̃ are homotopy classes of C–paths starting at

v. If [p] and [p · a−] are both objects of C̃, where a is an arrow of C, then C̃ will
contain a unique arrow ([p], a) from [p] to [p · a−] so that π([p], a) = a. We define
composition by

([p · b−], a)([p], b) = ([p], ab)

whenever t(p) = i(b) and ab is defined in C.

Lemma 7.6. π is a covering of categories, and the realization of C̃ is simply con-
nected.

Proof. Exercise. □

In the topological category, we have an action of the fundamental group of a
space on its universal cover. The same happens here.

Lemma 7.7. If C is a connected category, and v an object, then π1(C, v) acts on C̃
with quotient C. The action is by pre-concatenation of paths; if σ is a C–loop based
at v, and p a path starting at v, then [σ] · [p] = [σ · p].

Proof. Exercise. □

8. The Bass-Serre Tree as a quotient category

Given any small category C one can attempt to form a quotient with objects
isomorphism classes of objects of C and with the following equivalence on arrows:

a ∼ b iff a = ybx for y, x invertible

Call this set of objects and arrows the bleaching of C, and write it as Bl(C). To
make it a category we should define composition. The obvious thing to do is to
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define composition by [a][b] = [ab] whenever [ab] is defined. Unfortunately the
composition will not be well-defined in general. But sometimes it is. For example
if C is a group, then the quotient will be a category containing a single object and
its identity arrow.

Lemma 8.1. If C = CG(Γ) for some graph of groups G, then Bl(CG(Γ)) is a
category isomorphic to Γ.

Proof. Exercise. □

We next deal with covers. We’ll need the following.

Lemma 8.2. Let π : C̃ → C be a covering of categories, and let a be an arrow of
C̃. Then a is invertible if and only if π(a) is invertible.

Proof. Exercise. □

A key fact about a category CG(Γ) for a graph of groups is that vertex and edge
objects can be distinguished from one another by whether they are the source of
any non-invertible arrows. Arrows (g, a) are invertible if and only if a = 1o for some
o.

Proposition 8.3. Let π : C̃ → CG(Γ) be a covering of categories. Then Bl(C̃) is
equal to Λ for some graph Λ and π descends to a surjective graph morphism Λ → Γ.

Proof. (Sketch) We first note that if D → E is any covering of connected categories,
then there is an induced map Bl(()D) → Bl(()E) which is surjective. (This follows

from Lemma 8.2.) So the main thing we have to show is that Bl(()C̃) is equal to
Λ for some 1–complex Λ. This amounts to showing two things: First, if π(o) is a

vertex object of CG(Γ) then the equivalence class of o in Bl(()C̃) is the source of
no non-trivial arrows; such o will be the vertex objects of Λ. Second, if π(o) is an

edge object, then the equivalence class of o in Bl(()C̃) is the source of exactly two
non-trivial arrows, each of which points to a vertex object.

Let ṽ satisfy π(ṽ) = v for a vertex object v. Every arrow with i(a) = ṽ is

invertible, by Lemma 8.2. So [ṽ] only has an identity arrow in Bl(C̃).
If ẽ satisfies π(ẽ) = e for an edge object e, then there are non-invertible arrows

with label (g, a) where i(a) = ẽ and a is one of the two non-invertible arrows of Γ
with source e. Fixing a with t(a) = v and the equivalence class of ẽ, these arrows
are all equivalent. Indeed, and arrow labeled (g, a) is equivalent to one labeled
(1, a), as the following commutative diagram with labels from CG(Γ) shows:

ṽ′

ẽ ṽ

(g−1,1v)
(g,a)

(1,a)

And any two arrows labeled (1, a) with equivalent sources are equivalent by the
following diagram (the objects ṽ′ may be different for these two diagrams).

ẽ ṽ

ẽ′ ṽ′

(1,a)

(ψa(h),a)(h,1e) (ψa(h),1v)

(1,a)



8 BASS-SERRE THEORY AND COMPLEXES OF GROUPS

On the other hand, if a and b are the two outgoing arrows from e in Γ, then
they are not equivalent to one another, since they are distinguished in the quotient
Bl(C̃) → Γ (see Lemma 8.1). □

Proposition 8.4 (The Bass-Serre Tree). If π : C̃ → CG(Γ) is the universal cover

of the category associated to a graph of groups, then Bl(C̃) is a tree.

Proof. Proposition 8.3 implies that Bl(C̃) = Λ for a 1–complex Λ. We must show
that Λ has no circuit. Consider a shortest circuit c in Λ

a+1 · b−1 · · · a+n · b−n
connecting edge objects ei = i(ai) = i(bi) and vertex objects vi = t(bi) = i(ai+1)
(understanding indices mod n). This circuit can be lifted to a circuit

c̃ = ã+1 · b̃−1 · · · ã+n · b̃−n
in C̃. (Note that Bl : C̃ → Λ is not a covering so by “lifting” we just mean finding a

section of Bl over the cycle.) By Lemma 7.6, C̃ is simply connected. Using simplicial
approximation, we can represent a null-homotopy by a cellulated disk D (like a van
Kampen diagram), where each cell gives some elementary homotopy. In terms of
the description in Definition 7.4, a 2–cell representing an elementary homotopy of
type (n) is an n–gon. (In fact 2–gons are unnecessary – can you see why?) The
faces of the cell are oriented and labeled with arrows of CG(Γ). Notice that if any
side of a 2–cell is labeled by an arrow (g, a) for a non-invertible, there is exactly
one other side of that 2–cell labeled (g′, a) for some g′ ∈ G(t(a)); if there is a third
side it is labeled by an invertible arrow. In particular, the sides with a label (g, a)
for some g fit together into “a–corridors”. Supposing that (g0, a) is the label of ã1,
we see that there must be a subdiagram of D which is such a corridor, and which
can only end at another arrow on the boundary of D. See Figure 8.

ẽ2 ṽ2 ẽ3

ṽ1 ṽ3

ẽ1 · · · · ẽ4

ṽ0 · · · · ṽ4

ẽ6 ṽ5 ẽ5

(g0,a) (g1,a) (gn,a)

Figure 1. An example of an “a–corridor”; the arrows on the
boundary of the corridor are invertible arrows so could point either
left or right. The rest of the disk is filled in with triangles (and
1–gons and 2–gons) which don’t interact with the corridor.

But this corridor furnishes a proof that the beginning and ending arrows are
equivalent in Bl(C), contradicting the assumption that c is embedded.

□
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9. The fundamental theorem of Bass-Serre Theory

Our goal in this section is to prove what could be called the Fundamental Theo-
rem of Bass-Serre Theory (FTBS for short). Informally, this says that the processes
of turning a tree action into a graph of groups and vice versa are inverses of one
another. We’ll state this as two separate theorems: Theorem 9.1 and 9.5.

9.1. From a graph of groups to a tree and back again. This subsection is
devoted to proving the following.

Theorem 9.1 (FTBS, Part 1). Let H(Γ) be a graph of groups, and let v be a vertex
of Γ. Then there is an action of π1(H(Γ), v) on a tree T so that the graph of groups
associated to the action is isomorphic to H(Γ).

If a is an arrow of Γ, we will use ϕa to denote the monomorphism H(a).
The tree T has been defined in the last section; it is the 1–complex whose asso-

ciated category T is the bleaching of the universal cover of CH(Γ). The action of

π1(H, v) on the universal cover C̃ of CH(Γ) preserves the equivalences defining the
bleaching, so the action descends to T , and hence to T .

Lemma 9.2. The quotient π1(H(Γ))

∖
T can be canonically identified with Γ.

Proof. Exercise. □

We proceed to define a graph of groups G(Γ) from the action of π1(H(Γ), v) on
T . We will use ψa to denote the monomorphism G(a).

Following the recipe in Section 6, we should choose arbitrary lifts õ in T of all the
objects o of Γ. But different choices will give isomorphic graphs of groups, and if
we choose them in a slightly more systematic way things will work out more nicely.
Namely, for each object o in Γ, we choose a path p(o) in Γ from v to o. By abuse
of notation this can also be regarded as a path in CH(Γ), replacing any arrow a±

with the corresponding arrow (1, a)±. The path p(o) thus gives a point [p(o)] ∈ C̃,

and we set õ equal to the equivalence class of [p(o)] in T = Bl(C̃).
We define G(o) = Stab(õ).

Definition 9.3. If p = aϵ11 · · · aϵnn is a path in a category, then p = a−ϵnn · · · a−ϵ11 .
Note that p · p is always homotopic to a constant path at i(p).

Lemma 9.4. G(o) = {[p(o) · (g, 1o)+ · p(o)]}

Proof. Exercise. □

Next we choose the elements ha carefully. If a is an arrow from e to w then we
claim we can choose

ha = [p(w) · (1, a)+ · p(e)].
Indeed, the arrow ã in T is the equivalence class of the arrow ([p(e)], (1, a)); the
target of ([p(e)], (1, a)) is [p(e) · (1, a)−]. (See Definition 7.5 for this notation.) We
see ha[p(e)] = [p(w) · (1, a)+] so the target of ha([p(e)], (1, a)) is [p(w)]. Passing to
T , we have verified that the target of haã is w̃.

The inclusion map ψa : G(e) → G(w) given by ha can thus be written:

ψa([p(e) · (g, 1e)+ · p(e)]) = [p(w) · (1, a)+ · (g, 1e)+ · (1, a)− · p(w)]

= [p(w) · (ϕa(g), 1w)+ · p(w)]
(3)
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This completes the description of G(Γ). We now need to show that G(Γ) is isomor-
phic to H(Γ). To do so, we need to define maps fo : H(o) → G(o) and conjugating
elements ga ∈ G(t(a)) for each object o and each arrow a of Γ. We will take all the
ga to be identity elements, and define, for g ∈ H(o),

fo(g) = [p(o) · (g, 1o)+ · p(o)].
By Lemma 9.4, each fo is an isomorphism. It remains to check that squares of the
form

H(e) H(w)

G(e) G(w)

ϕa

fe fw

ψa

commute. For each g ∈ H(e) we have, using equation (3)

fwϕa(g) = [p(w) · (ϕa(g), 1w)+ · p(w)]

= ψa([p(e)) · (g, 1e)+ · p(e)])
= ψafe(g).

This concludes the proof of Theorem 9.1.

9.2. From a tree action to a graph of groups and back again. We now prove
the other direction, namely:

Theorem 9.5 (FTBS, Part 2). Suppose that G acts on a tree T without inversions,
and with quotient Γ. Let H(Γ) be the associated graph of groups. Then for any
vertex v in Γ, there is an isomorphism f : π1(H(Γ), v) → G and an f–equivariant
isomorphism from the Bass-Serre tree of H(Γ) to T .
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