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Abstract. We demonstrate the existence of a family of finitely generated

subgroups of Richard Thompson’s group F which is strictly well-ordered by
the embeddability relation in type ε0 + 1. All except the maximum element of

this family (which is F itself) are elementary amenable groups. In fact we also

obtain, for each α < ε0, a finitely generated elementary amenable subgroup of
F whose EA-class is α+ 2. These groups all have simple, explicit descriptions

and can be viewed as a natural continuation of the progression which starts

with Z + Z, Z o Z, and the Brin-Navas group B. We also give an example
of a pair of finitely generated elementary amenable subgroups of F with the

property that neither is embeddable into the other.

1. Introduction

Subgroups of PL+(I), the group of order preserving, piecewise linear self home-
omorphisms of the unit interval, have been a source of groups with interesting
properties in which calculations are practical. There is increasing evidence that all
countable, or at least finitely generated, such subgroups will eventually be under-
tood. Among these groups is Richard Thompson’s group F . It is extremely easy for
a subgroup of PL+(I) to contain an isomorphic copy of F as a subgroup [4]. Thus
not containing a subgroup isomorphic to F (being F -less) is a severe restriction on
subgroups of PL+(I). This has led to the following conjectured dichotomy of Brin
and Sapir.

Conjecture 1. [5] [22] If G is a subgroup of PL+(I), then either G is elementarily
amenable or else G contains a copy of F .

The elementary amenable groups form a class EG and are those groups that can
be built recursively from finite and abelian groups by a (possibly transfinite) process
using extension and directed union. The elementary amenability class (EA-class)
of a group G in EG is an ordinal valued measure of the complexity of the recursive
construction of G. (Details are given in Section 3.) Thompson’s group F is not
elementary amenable; it is finitely generated and every nontrivial normal subgroup
of F contains isomorphic copies of F (see [8]). Thus an elementary amenable group
must be F -less.
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Our basic thesis is that Conjecture 1 will eventually be a corollary of a more
complete understanding of the partial order (F, ↪→) where F is the set of biem-
beddability classes of finitely generated subgroups of F and A ↪→ B asserts that
members of the class A embed into members of the class B. While we do not
settle Conjecture 1, this paper explores the universe of F -less subgroups of PL+(I)
and finds a complex collection S of elementary amenable subgroups of Thompson’s
group F itself. The collection S is likely to play an important role in settling Con-
jecture 1 and more generally in understanding the class of finitely generated F -less
subgroups of F .

There are two main features of this paper. The first is the shift of attention away
from the usual “isomorphism type and containment relation” (the Hasse diagram)
of subgroups, and toward the coarser “biembeddability class and embeddability
relation” where two groups are biembeddable if each embeds in the other. A finer
analysis of the isomorphism types of subgroups of F does not seem feasible at this
time.

The second feature is the discovery of a rich arithmetic that lives on S that
greatly facilitates transfinite induction and recursion. The usual ingredients of
transfinite recursion are base, successor, and limit stage: a base object A0 must be
built, an object Aα+1 must be built from the object Aα, and for a limit α, an object
Aα must be built from the objects Aβ with β < α. We show that S can be equipped
with arithmetic operations that allow us to easily build from Bα ∈ S not only Bα+1,
but also Bα·ω and even Bωα with equal ease. This has two consequences. First, our
groups are remarkably easy to “write down.” This gives a set of groups that are
remarkably simple to describe in spite of having extremely complex constructions
(high EA-class) as elementary amenable groups. Second, the bulk of the work in
the paper is shifted from construction to analysis. In fact, it is still a wonder to the
authors that these groups can be analyzed at all.

1.1. The results. We now state and discuss our results in somewhat more detail.
We give indication of the meaning of terminology in what follows; full definitions
are given in Sections 2 and 3 and as noted.

The complex nature of (F, ↪→) is demonstrated by our main result:

Theorem 1. There is a transfinite sequence (Gξ | ξ < ε0) of finitely generated
elementary amenable subgroups of F such that:

• G0 is the trivial group and Gξ+1
∼= Gξ + Z;

• Gξ embeds into Gη if and only if ξ ≤ η;

• Given 0 ≤ α < ε0 and n < ω, let ξ = ω(ωα)·(2n). If α > 0, then the EA-class
of Gξ is ω · α+ n+ 2. If α = 0, then the EA-class of Gξ is n+ 1.

In particular, for each α < ε0, there is a ξ such that the EA-class of Gξ is α + 2.
(If the EA-class of a finitely generated group is infinite, it is always of the form
α + 2.) Thus Theorem 1 improves previous work of the second author [5], who
demonstrated that there are finitely generated subgroups of F in EG of class ξ+ 2
for each ξ < ω2. With ω the smallest infinite ordinal, the ordinal ε0 is the smallest
ordinal solution to the equation ωx = x. If we define a sequence (τk)k∈ω of ordinals
recursively by τ0 := 2, τ1 := ω and τk+1 := ωτk for k > 1, then ε0 can be described
as

ε0 = sup{τk | k ∈ ω} = ωω
ωω
··
·

.
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Figure 1. Gτ4 := 〈f4, g4〉 and Gτ5 := 〈f5, g5〉. The EA-classes of
these groups are ωω + 2 and ωω

ω

+ 2, respectively.

This countable ordinal is well known to play a central role in proof theory and in
particular in understanding the limitations and consistency of Peano Arithmetic
(see e.g. [12, # 4] [15] [16] [1, §D8]).

The groups in S := {Gξ | ξ < ε0} are built from Z using certain familiar
group-theoretic operations — direct sums and wreath products — as well as a
new operation which is analogous to ordinal exponentiation base ω. Whether this
new operation is meaningful in a broader setting is unclear but even in our rather
restrictive setting, it already yields a wealth of examples. The operations also make
the construction of the groups in S straightforward and highly analogous to the
construction of ordinals below ε0 from 0 using exponentiation base ω and addition.
Specifically, given the Cantor normal form for an ordinal ξ < ε0 there is an efficient
algorithm that lets one write down a finite number of generators (explicitly as words
in the generators of F if desired) for a group with EA-class ω · ξ + 2.

While the results of this paper concern groups, the focus of the analysis is on
generating sets. The groups in S are specified by a family of generating sets S.
This collection has the property that A is in S if and only if each of its two element
subsets is in S. The 2-element sets in S generate precisely the groups Gτk in the
family S = {Gξ | ξ < ε0}; this is the reason for setting τ0 := 2. Theorem 1
implies, in particular, that the Gτk are an infinite family of elementary amenable
2-generated subgroups of F which are not pairwise biembeddable. Two of these
generating pairs are illustrated in Figure 1.

The isomorphism types of the Gτk are parametrized by the nonnegative integer
k which we refer to as the oscillation of the generating pair from S. Figure 1
illustrates pairs with oscillation 4 and 5. The function giving the oscillations of the
pairs from an A ∈ S is the signature of A. Each generating set in S is equipped
with a total order, and the signature serves as a complete invariant for all of S.

Theorem 2. If A,B ∈ S have the same signature, then the order preserving bijec-
tion from A and B extends to an isomorphism from 〈A〉 to 〈B〉.
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Thus one may analyze S by analyzing the set S of all signatures of S. We also
algebraically characterize the relation ≤ on S which comes from the embeddability
relation on S.

The family S is robust at a group-theoretic level: if A ∈ S, then 〈A〉 is an HNN
extension of a group which is itself an increasing union subgroups of the form 〈B〉
for B ∈ S. On the other hand, while the closure properties of S — and thus of S
— are important in the group-theoretic analysis of S, they introduce redundancies
which obscure the structure of the order on these classes. This is resolved by
introducing algebraic operations +, ∗, and exp on S and using them to define a
subclass R of S . The next theorem is at the core of the proof of Theorem 1. It
shows that R provides a notion of “normal form” for S and consequently for S
(here A ≡ B denotes A ≤ B ≤ A).

Theorem 3. For each A is in S there is a unique B in R such that A ≡ B.
Moreover there is a natural isomorphism

(R, <,+, exp) ∼= (ε0,∈,+, ζ 7→ ω−1+ζ)

provided + is restricted to those pairs in R for which the sum remains in R.

Thus each biembeddability class in S has a distinguished representative — unique
up to marked isomorphism — identified by the form of its signature. Moreover,
this representative can be viewed as being built up from Z using simple arithmetic
operations which are analogs of the fundamental operations of ordinal arithmetic.

The well-foundedness and linearity of (S , <) are subtle matters and likely to
be of independent interest. In fact while it can be phrased in the language of
arithmetic, the well-foundedness of (S , <) is not provable in Peano Arithmetic.
This is a consequence of Gentzen’s analysis of the consistency of Peano Arithmetic
[12, #4] and Gödel’s second incompleteness theorem [13] [14]. At a more pragmatic
level, future methods of proof may lend themselves more naturally to induction on
S than to induction on ε0.

Extending the chain S by setting Gε0 = F , we make the following conjectures.
Recall that PL+(I) is the group of all piecewise linear elements of Homeo+(I).

Conjecture 2. If H is a finitely generated subgroup of PL+(I), then either F
embeds into H or else there is an η < ε0 such that H embeds into Gη.

Conjecture 3. The partial order (F, ↪→) is a well-quasi-order — it contains no
infinite decreasing sequences and no infinite antichains.

Observe that Conjecture 2 immediately implies Conjecture 1 since each Gη for
η < ε0 is elementary amenable. It also implies another conjecture of the second
author which complements Conjecture 1: every elementary amenable subgroup of
PL+(I) embeds into F . Moreover, this would imply that ε0 is a strict upper bound
for the EA-class of every finitely generated elementary amenable subgroup of F .

Conjecture 3 is really about understanding those finitely generated subgroups of
F which do not contain F . The second author has shown that not containing an
isomorphic copy of F is a strong restriction on subgroups of F (and more generally
subgroups of PL+(I)) [4]. Motivation for Conjecture 3 stems in part from the
heuristic that forbidding a ubiquitous substructure often portends a well developed
structure theory (see, for instance [17]).

There are limitations, however, as to what one can expect in the direction of
these conjectures. We show that there is a finitely generated subgroup of F which
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is not biembeddable with any Gξ for ξ ≤ ε0. Moreover, we show that (F, ↪→) is not
a linear ordering.

Theorem 4. There are finitely generated subgroups H0 and H1 of F of EA-class
ω + 2 such that H0 does not embed into H1 and vice versa.

Lastly we remark, without proof, that the sequence of groups Gτk with the
generating pairs (fk, gk) converges in the space of 2-marked groups to the free group
on 2 generators. We refer the reader to [6] for definitions and relevant arguments.

1.2. Related results. All solvable groups are necessarily elementary amenable.
The solvable subgroups of F have been thoroughly analyzed by the first author
in [2]. In particular, he proves that Conjecture 2 holds for the finitely generated
solvable subgroups H of PL+(I) [2]: every finitely generated solvable subgroup of
PL+(I) embeds into Gωω , which is the Brin-Navas group B ([5] Fig. 5, [18] Example
6.3).

In [23], A. Taylor finds uncountably many pairwise nonisomorphic elementary
amenable subgroups of F . These examples are not finitely generated, are not
solvable but are locally solvable, and all have EA-class ω + 1.

In [20], Ol’shanskii and Osin show that for every countable ordinal α, there is a
finitely generated group G ∈ EG with EA(G) = α+ 2. The construction in [20] is
recursive and based on HNN extensions. The operations on S in the current paper
accelerate the recursive process and lead to easier descriptions of the elements of
S.

1.3. Organization. Section 2 is essentially a continuation of this introduction and
it gives definitions and examples sufficient to introduce the reader to the groups
that we build and how we build them. It does not give any hints as to their
analysis. Section 3 fixes more notation and terminology which is used in the paper.
It also contains a review of a number of prerequisites for the paper: details from [3];
ordinals and their arithmetic; elementary amenable groups and EA-class; wreath
products of permutation groups. The reader may wish to skim or skip Section 3 and
then refer back to the various subsections as needed. In Section 4, the oscillation
function is developed. This function is further developed in the context of standard
generating sets in Section 5, where we study the signature of an element of S and
prove Theorem 2. In Section 6 we introduce the notion of an inflation of a standard
generating set by one of its elements and show that the result is again a standard
generating set. The interaction of the family S with wreath products is detailed
in Section 7. Section 8 develops analogs of the operations of ordinal arithmetic for
signatures of elements of S. This analysis is then used to show that (S, ↪→) is a
well-order with ordertype ε0 in Section 9, where the proofs of Theorems 1 and 3
are completed. Finally, Section 10 contains a proof of Theorem 4, establishing that
(F, ↪→) is not a linear order.

2. The objects of study

In this section we describe the generating sets in S and the functions that are
elements of such sets. We also describe the signature associated to a generating
set. The class of signatures R of Theorem 3 is described as well as the isomorphism
from R to ε0. An aim of this section is to indicate how, given a suitable EA class
α < ε0, one can write down a set of generators of a group with EA class α.



6 BLEAK, BRIN, AND MOORE

2.1. The anatomy of a homeomorphism. To describe the elements of Homeo+(I)
that we work with, we set some terminology. We write homeomorphisms to the
right of their arguments and compose from left-to-right. The support supt(f) of
f ∈ Homeo+(I) is the set {t ∈ [0, 1] | tf 6= t}, and the extended support of f is the
interior of the closure of supt(f).

For f ∈ Homeo+(I), a component J of supt(f) is an orbital of f , and a function
with exactly one orbital is be called a bump. The transition points of f are the
endpoints of the orbitals of f . A bump f with orbital J is positive if tf > t for one
(equivalently all) t ∈ J , and negative otherwise. If g ∈ Homeo+(I) has multiple
orbitals one of which is J , then the bump f ∈ Homeo+(I) with f |J = g|J is called
a bump of g. If f ∈ Homeo+(I) and X ⊆ I is a union of orbitals and fixed points
of f , then we write f |X to denote the homeomorphism which coincides with f on
X and which is the identity outside of X.

To conserve space in drawing functions, we do not use horizontal and vertical x
and y axes as in Figure 1, but draw as if the x and y axes are at 45 degrees and the
part of the line y = x in the first quadrant stretches horizontally to the right from
the origin. The axes themselves and the line y = x are suppressed, as are intervals
of fixed points. As in the following,

(2.1) f g

positive bumps become arcs above the horizontal, and negative bumps are arcs
below the horizontal. The function f is a positive bump, and the function g has
one negative bump and two positive bumps.

2.2. The attribute fast. To control the isomorphism type of the groups that we
generate, we need some mild controls on the dynamics of our generating sets. We
use some concepts from [3].

Suppose that A ⊂ Homeo+(I) is a set of bumps.

Definition 2.1. A marking of A is an assignment a 7→ sa of an element of the
support of a to each a ∈ A. The feet of a with respect to this marking are the
intervals (u, sa) and [ta, v) where (u, v) is the support of a and ta := saa if a is
positive and ta := saa

−1 if a is negative.

This is illustrated below for positive a.

a

u sa ta v

An f ∈ Homeo+(I) equipped with a marking of its bumps is a marked function.
The expression “a marked function f ∈ Homeo+(I)” always means that f comes
with a fixed marking even if the marking is not specified.

The finiteness assumptions in the next definitions are more restrictive than in
[3], but are sufficient for us and add some conveniences. A collection B of marked
bumps is geometrically fast (or just fast) if for every f 6= g in B the feet of f are
disjoint from the feet of g. If S ⊂ Homeo+(I) is a finite set of marked functions
and each element of S has only finitely many bumps, then we define S to be fast if
the set of bumps of S is fast and no bump occurs in more than one element of S.
Given a fast S, we always view S as being ordered according to the order on the
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maximum transition points of its elements. Note that no two different elements of
such an S are equal under this order.

The point of these concepts is that the isomorphism type of a subgroup of
Homeo+(I) generated by a fast set S of functions is determined by a very small
amount of information from S. Specifically, if S′ is another fast set and h : S → S′

is a bijection that “preserves enough of the combinatorics” (including the order
given above, the order of the feet, and the signs of the bumps), then h extends to
an isomorphism from 〈S〉 to 〈S′〉. A more detailed statement is given in Section
3.2.

We exploit this in two ways. We can specify groups up to isomorphism by
giving somewhat sloppy descriptions of the generating sets. Further, a result of [3]
says that if S is fast, then 〈S〉 embeds in Thompson’s group F . Thus under the
assumption that the pairs {f4, g4} and {f5, g5} in Figure 1 are fast, we can regard
the groups Gτ4 and Gτ5 as subgroups of F with very specific isomorphism types.

2.3. Standard functions and standard pairs. Thompson’s group F is not ele-
mentary amenable, and to build a subgroup of F that is elementary amenable one
must avoid including an isomorphic copy of F in the subgroup. By the Ubiquity
Theorem [4], this places severe restrictions on the generating sets and the functions
that can be used in the generating sets. The restrictions in the next definition
reflect this.

Definition 2.2. A standard function is a marked function f in Homeo+(I) with
finitely many bumps satisfying all following properties:

(1) The extended support of f is an interval;
(2) every positive bump of f is to the right of every negative bump;
(3) the number of positive and negative bumps of f differ by at most one and

there are at least as many positive bumps as negative bumps.

The functions f and g in (2.1) are both standard.
A set A of standard functions forms an element of S if each pair of elements

of A forms a standard pair, which we will define after making some preliminary
definitions. If f, g ∈ Homeo+(I) are standard, then we write f � g if their extended
supports are disjoint and the extended support of f is to the left in [0, 1] of the
extended support of g. We write f < g if the closure of the extended support
of f is contained in the extended support of g. We write f < g if f � g or
f < g. If S ∈ Homeo+(I) is fast and is totally ordered by < as just defined, then
< is identical to the order on S from Section 2.2 determined by the order of the
rightmost transition points.

The diagram below illustrates two pairs (f, g) of standard functions, where the
left pair satisfies f � g and the right pair satisfies f < g.

(2.2)
f
...
..............

g g
...............

....
...............

f

Standard pairs of functions are defined recursively using a reduction operation
that will be heavily used during our analysis in later sections. Suppose that f is a
standard function. If f has more than two orbitals, then let X be the union of the
orbitals of f except the maximum (rightmost) and minimum (leftmost) orbitals,
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and define f◦ to be f |X . Observe that f◦ is again a standard function — we mark
f◦ with the markers of f on the orbitals which remain in f◦. If f has one or two
orbitals and the left foot of the positive orbital is (r, s), define f◦ to be any positive
bump with support (r, s) and an arbitrary marker. It will not be necessary to be
more specific. It will be important later that in all cases each foot of f◦ is a subset
of a foot of f .

Definition 2.3. A pair (f, g) of standard functions is a standard pair if it satisfies
the following recursive definition:

(1) The set {f, g} is fast, and
(2) either f � g, or else f < g and (g◦, f) a standard pair.

The following diagram illustrates the recursive clause:

g
........

....
......

f
;

g◦

........
....
......

f
;

g◦

.......
f◦

;
g◦◦

.......
f◦

It is easily checked that both pairs (f, g) in (2.2), and the pairs (f4, g4) and (f5, g5)
in Figure 1 are standard and that, up to topological conjugacy, (g5

◦, f5) coincides
with (f4, g4).

Definition 2.4. A standard generating set is a finite set of marked functions in
Homeo+(I) which is pairwise standard. The collection of all standard generating
sets is denoted S.

It is important to note here that any standard generating set is fast.

2.4. Oscillation and signature. In our analysis, we reduce the information in a
standard generating set to a finite matrix of integers.

Definition 2.5. If f < g is a fast pair of marked functions, then we define their os-
cillation o(f, g) to be the number of orbitals of g that contain at least one transition
point of f .

Definition 2.6. If A is in S, then the signature of A is the function A defined
by A(f, g) = o(f, g) whenever f < g are in A. We refer to A as the base of the
signature A.

Figure 2 shows the signature of a standard generating set with four elements.
Since elements of S may have either one or even no elements, we include the base
as part of the data of a signature.

If A and B are signatures with bases A and B, then we say that A and B are
equivalent if |A| = |B| and the order preserving bijection θ : A → B satisfies
A(f, g) = B(θ(f), θ(g)) whenever f < g are in A. We also extend this notion of
equivalence to when A and B are just integer functions defined on pairs from ordered
sets A and B; we use signature to refer to a function which is equivalent in this
way to a signature of an element of S. In particular, every signature is uniquely
equivalent to a signature with base {0, . . . , n − 1} for some n. These canonical
representatives allow us say without guilt that a signature A is the signature of
some S ∈ S when in reality A is only equivalent to the signature of S.

Theorem 2 (proven in Section 5) says that if A,B ∈ S have the same signature,
then the order preserving bijection between A and B extends to an isomorphism
between 〈A〉 and 〈B〉. If A is a signature, we define 〈A〉 := 〈A〉 where A ∈ S has
signature (equivalent to) A.
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Figure 2. Four functions that are pairwise standard with vari-
ous oscillation numbers. Their signature is displayed on the right.
They generate a group of EA-class ω2 + ω · 2 + 2.

2.5. Arithmetic on signatures and normal forms. We now introduce arith-
metic operations on the set of signatures which allow us to readily specify complex
standard generating sets. The following theorem of Cantor is important motivation.
(Ordinal arithmetic is reviewed in Section 3.3.)

Theorem 5. [9, §19 Theorem B] If α is a nonzero ordinal, there is a unique
sequence β0 ≥ β1 ≥ · · · ≥ βn such that

α =
∑
i≤n

ωβi = ωβ0 + ωβ1 + . . .+ ωβn .

If 0 < α < ε0, each positive βi is less than α and may be further expanded in the
form of Theorem 5. Iterating the process, one obtains an expression of α in terms
of 0, + and exponentiation base ω which is known as the Cantor normal form of
α.

We now define analogs of these arithmetic operations on the set of signatures.
We use 0 to denote the signature with empty base and Z to denote the signature
with singleton base; notice that if |Z| = 1, then 〈Z〉 ∼= Z.

If A,B,C is in S then we define A = B + C to mean:

• A = B ∪ C and b < c for all b ∈ B and c ∈ C, and
• o(b, c) = 0 for all b ∈ B and c ∈ C.

Notice that b � c is equivalent to o(b, c) = 0 and b < c. Thus if A = B + C, then
〈A〉 = 〈B〉+〈C〉. Observe that while A = B+C expresses a ternary relation on S, it
induces a well defined binary operation + on the set S of signatures. Additionally,
we will show in Section 5 that if A ∈ S , then the function exp(A)(a, b) = A(a, b)+1
defined for a < b are in A is equivalent to signature of some standard generating
set.

Observe that the ordinals below ε0 can all be generated from {0, 1} via the
operations + and ζ 7→ ω−1+ζ . Moreover a slight modification of the Cantor normal
form specifies, for each ξ < ε0, a unique term in these operations which generates
ξ. Let Rξ ∈ S denote the result of evaluating the same term but in the structure
(S ,0,Z,+, exp) in place of (ε0, 0, 1,+, ζ 7→ ω−1+ζ).

Definition 2.7. The family R of reduced signatures is the collection {Rξ | ξ < ε0}.
The groups Gξ from Theorem 1 are given by Gξ := 〈Rξ〉. To summarize, we will

eventually prove Theorems 1 and 3, showing that:
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• every S-generated group is biembeddable with some Gξ;
• Gξ embeds into Gη if and only if ξ < η < ε0;

• if ξ = ωω
α·2n for 0 < α < ε0 and 0 < n < ω, then the EA-class of Gξ is

ω · α+ n+ 2.

In fact we can take the analogy with ordinal arithmetic further. If A,B,C ∈ S
we define A = B ∗ C to mean:

• C = A ∪B and a < b for all a ∈ A and b ∈ B, and
• o(a, b) = 1 for all a ∈ A and b ∈ B.

The ternary relation A = B∗C on S allows us to define an operation ∗ at the level of
signatures as in the case of +. We show in Section 7 that if A = B∗C for nonempty
B,C and o(f, g) > 0 for all f < g in A, then 〈A〉 ∼= 〈B〉 o 〈C〉. We caution that o is
a permutation wreath product and typically not the standard wreath product — see
Section 3.5 for further details, including a precise definition of which permutation
wreath product is being used here. Also, it can be shown that if 1 < β ≤ α < ε0 are
indecomposable ordinals, then Rα·β ≡ Rα ∗Rβ with equality holding if Rα ∗Rβ ∈ R.

Finally, if A ∈ S , define E(A) = exp(exp((A)). Unlike exp, E also comes from
a natural binary relation on standard generating sets: if A,B ∈ S then A = E(B)
asserts that o(f, g) ≥ 2 for all f < g ∈ A and B = {f◦ | f ∈ A}. The operations +,
∗, and E generate R in the following strong sense.

Proposition 2.8. if A ∈ R, then exactly one of the following hold:

• A = E(B) for some B ∈ R;
• there are B,C 6= 0 in R such that A = B+C, in which case 〈A〉 = 〈B〉+〈C〉;
• there are B,C 6= 0 in R such that A = B ∗ C, in which case 〈A〉 is the

permutation wreath product 〈B〉 o 〈C〉
In particular, each A 6= 0 in R can be uniquely expressed as a term in the operations
+, ∗, and E and the constant Z so that E(Z) does not occur as a subterm.

For instance, the example in Figure 2 is E(Z ∗ Z + Z + Z).

3. Intermission

3.1. Background and conventions. We adopt the convention that the natural
numbers include 0 and in particular all counting starts at 0. We use Z to denote
the set of integers. Unless otherwise stated, i, j, k, l,m, n range over the natural
numbers and p, q, r range over the integers. For instance we write i < n to mean
that i is a natural number less than n.

If G and H are two groups, we use G+H to denote their direct sum. Even though
we work primarily with nonabelian groups, this additive notation and terminology
fits better with the correspondence we develop between S and the ordinals below
ε0.

Given f, g ∈ Homeo+(I), we denote by fg the conjugate g−1fg and remark
that under this notation supt(fg) = supt(f)g. Given X ⊂ I we write Xf for
{xf | x ∈ X} .

In this paper we think of F as being a subgroup of PL+(I), although there
typically is not a need to fix a specific model. Representing F in PL+(I) gives us
access to results about subgroups of PL+(I) (specifically results about centralizers).
This representation also guarantees that any element f of F has only finitely many
components of its support and hence is a product of the bumps of f .
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3.2. Fast generating sets. We now give more details to some of the claims in
Section 2.2 and more information from [3]. If S ⊂ Homeo+(I) is a fast set of
marked functions, then the dynamical diagram of S is the edge labeled, ordered,
directed graph DS defined as follows:

• the vertices of DS are the feet of S with the order induced from I;
• the directed edges of DS are the bumps a which occur in S with the end-

points of a being the feet of a;
• positive bumps are directed to the right and negative bumps are directed

to the left;
• the label of a directed edge a in DS is the unique f ∈ S for which a is a

bump of f .

Note that such ordered directed graphs do not have multiple edges. We sometimes
refer to the constituents of a dynamical diagram — the vertices, the directed edges,
the labels — in terms of the objects they are intended to represent — the feet, the
bumps, the functions in S.

For two fast sets of marked functions S0 and S1, an isomorphism from DS0
to DS1

is an isomorphism θ : DS0 → DS1 of ordered directed graphs such that for bumps
a and b which occur in S0, the labels of a and b are equal if and only if the labels
of θ(a) and θ(b) are equal. Note that the choice of marking affects the dynamical
diagram but not its isomorphism type. Also observe that the isomorphism θ induces
a well defined order preserving bijection from S0 to S1. Lastly, there is at most one
isomorphism between any two dynamical diagrams.

If A is a totally ordered finite subset of a group, then the pair (〈A〉, A) is a
marked group that is marked by A. A marked isomorphism θ : (〈A〉, A)→ (〈B〉, B)
between marked groups is an isomorphism from 〈A〉 to 〈B〉 that restricts to an order
preserving bijection from A to B. The next theorem asserts that the dynamical
diagram determines the marked isomorphism type of 〈S〉 whenever S ⊂ Homeo+(I)
is a fast set of marked functions. (The two uses of “marked” in the previous sentence
are not the same.)

Theorem 6. [3] If S0 and S1 are fast sets of marked functions in Homeo+(I),
and the dynamical diagrams of S0 and S1 are isomorphic, then the order preserving
bijection from S0 to S1 extends to an isomorphism 〈S0〉 ∼= 〈S1〉.

We also need the following proposition which is closely related to the results of
[3].

Proposition 3.1. Suppose that A is a finite geometrically fast set of bumps and
X ⊂ I intersects each orbital of A. If g ∈ 〈A〉 is not the identity, then there is an
x ∈ X〈A〉 such that xg 6= x.

Proof. Observe that the closure of X〈A〉 contains the transition points of A. The
proof of Proposition 4.3 of [3] yields a marking of A which witnesses that it is
geometrically fast and has the property that every marker is in the closure of X〈A〉;
let M denote the set of these markers. From [3], if g ∈ 〈A〉 is not the identity, then

there is a t ∈M〈A〉 ⊂ X〈A〉 such that tg 6= t. Continuity of g implies that there is
an x ∈ X〈A〉 such that xg 6= x. �

It is convenient to develop some conventions for drawing dynamical diagrams.
First, we arrange the vertices horizontally from left to right in increasing order.
We draw right directed edges as over-arcs and left directed edges as underarcs,
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suppressing the arrows. If f is a generator and a right foot J of f is immediately
followed by a left foot J ′ of f , then the pair of vertices {J, J ′} is contracted to
a single vertex when drawing the diagram. This has the effect of simplifying the
dynamical diagram visually. It also has the feature that if f ∈ S has connected
extended support, then the edges with label f form a connected component of
the contracted diagram. Thus it is sufficient to label only one bump of each such
component.

This graphical representation of DS can be derived from the graphs of the ele-
ments of S drawn as in Section 2.1. The drawing

g4 ...............
....
..................

..............
f4

is the graph of {f4, g4} from Figure 1 as drawn in Section 2.1 and it is also a drawing
of the dynamical diagram for {f4, g4}. In general, the dynamical diagram of a fast
set of standard functions S is a sketch of the graphs of the functions in S.

Suppose that S ⊂ Homeo+(I) is a finite fast set of marked functions with con-
nected essential supports. A bump b of S is isolated in S if its support contains no
transition points of S. If E is a set of isolated bumps of S and for each f ∈ S there
is a bump of f which is not in E, then we say that E is an extraneous set of bumps
of S. We need a result of [3] which says that extraneous sets of bumps can be
excised without affecting the marked isomorphism type of S. This is made precise
as follows. For g ∈ Homeo+(I) and E a set of bumps (not necessarily bumps of g),
we define g/E ∈ Homeo+(I) to be the function which agrees with g on

I \
⋃
{supt(b) | b ∈ E and b is a bump of g}

and is the identity elsewhere. We extend the definition above to a set S ⊂
Homeo+(I) by:

S/E := {g/E | g ∈ S}.

The next theorem is a special case of Theorem 9.1 of [3].

Theorem 7. [3] If S ⊂ Homeo+(I) is a fast set of marked functions and E is an
extraneous set of bumps of S, then the map g 7→ g/E extends to a isomorphism
from 〈S〉 to 〈S/E〉.

3.3. Ordinals and their arithmetic. Recall that an ordinal is the isomorphism
type of a well-ordered set. If α and β are ordinals, then α < β is defined to mean
that there is well-order of type α which is a proper initial part of a well-ordering of
type β. For any two ordinals α and β, precisely one of the following is true: α < β,
β < α, or α = β. We adopt von Neumann’s convention that an ordinal is the set of
its predecessors and that α < β means α ∈ β. The least ordinal is 0 := ∅ and the
least infinite ordinal is ω, which can be thought of as coinciding with the natural
numbers. If A is a set of ordinals, then there is always a least ordinal sup(A) :=

⋃
A

which is an upper bound for A. If α is an ordinal, then α + 1 := α ∪ {α} is the
least ordinal greater than α. Ordinals of the form α + 1 are said to be successor
ordinals; all other nonzero ordinals are said to be limit ordinals.
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It is possible to extend the usual arithmetic operations on the finite ordinals to
all ordinals as follows:

α+ β :=


α if β = 0

(α+ γ) + 1 if β = γ + 1

supγ<β(α+ γ) if β is limit

α · β :=


0 if β = 0

(α · γ) + α if β = γ + 1

supγ<β(α · γ) if β is limit

αβ :=


1 if β = 0

(αβ) · α if β = γ + 1

supγ<β(αγ) if β is limit

The reader is cautioned that while + and · are associative, neither + nor · are
commutative. For instance:

2 · ω = sup
n∈ω

(2 · n) = ω < ω · 2 = sup
n∈ω

(ω + n) = ω + ω.

Further, ordinal addition is not right cancellative, but is left cancellative: α+ β =
α + γ implies β = γ. We adopt the standard binding conventions from ordinary
arithmetic (e.g. α ·β+γ = (α ·β)+γ) and associate exponentiation to the right (as
one does in ordinary arithmetic): αβ

γ

= α(βγ), which typically does not coincide
with (αβ)γ = αβ·γ .

The ordinal ε0 is the least ordinal solution to ωx = x. It also has the property
that if α, β < ε0, then α+ β, α · β, and αβ are all less than ε0. Further details on
ordinal arithmetic can be found in article II of [9].

3.4. Elementary amenable groups. Consider the smallest class EG containing
the finite and abelian groups and closed under the following operations:

(1) taking an extension of one group by another group;
(2) taking a directed union of a set of groups;
(3) taking a subgroup of a group;
(4) taking a quotient of a group by a normal subgroup;

This class of groups was first considered by Day [11, P. 520] under the name ele-
mentary groups; it is more common in the current literature to refer to them as
the elementary amenable groups. This class was later studied by Chou [10] who
worked out much of the basic theory and showed that the operations of extension
and directed union are all that are needed to generate EG. Chou stratified EG by
subclasses EGα with α from the ordinals by setting:

• EG0 to be the class of all abelian and finite groups;
• EGα+1 to be those groups obtainable from groups in EGα by a single

application of operation (1) or (2) above;
• EGα :=

⋃
β<αEGβ if α is a limit ordinal.

It is proven in [10] that each EGα is closed under taking subgroups and quotients
and that every element of EG is in EGα for some ordinal α.

For G ∈ EG, it has become customary to define the elementary amenability class
EA(G) of G as the smallest α for which G ∈ EGα. It follows from the definitions
that for every limit α there is no G ∈ EG with EA(G) = α, and there is no finitely
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A

Y ⊇
supt(G)

X Xg1

Xg2 · · ·

Y h1 Y h2

· · ·

Figure 3. An illustration of the sets in Lemma 3.2

generated G ∈ EG with EA(G) = α + 1. From Chou’s result that the EGα are
closed under taking subgroups and quotients, it follows that for G and H in EG, if
G is either a subgroup or a quotient of H, then EA(G) ≤ EA(H).

3.5. Wreath products. Given a group of permutations G of X and a group of
permutations H of Y , then the 1937 article [21] defines G oH, the wreath product
of G and H, as a group of permutations of X × Y . Since the 1964 paper [19],
the standard wreath product obtained from G and H by regarding H as permuting
itself by (e.g.) right multiplication has become standard and “wreath product”
often means “standard wreath product”; “permutation wreath product” has been
used for the older notion. Our focus is primarily on permutation wreath products
in this article and we proceed with the definition.

Given pairs (G,X) and (H,Y ) where G is a group acting on X and H is a
group acting on Y , then we write G oH, the permutation wreath product of G and
H as shorthand for the pair (G oH,X × Y ) where the group and the action have
to be defined. We regard GY , the set of functions from Y to G, as a group by
multiplying pointwise. With 1 the identity of G and for φ ∈ GY , we use supt(φ) to
denote {y ∈ Y | φ(y) 6= 1}, the support of φ. We use

∑
Y G to denote the direct

sum of copies of G indexed over Y which can be viewed concretely as the group of
finitely supported elements of GY .

The group H also acts on
∑
Y G on the right by φh(y) = φ(yh−1). We use this

action to form the semidirect product
∑
Y G o H on the set (

∑
Y G) × H with

multiplication (φ, h)(θ, j) = (φθh
−1

, hj). This semidirect product is the wreath
product of G and H and is denoted G oH. The action of G oH on X × Y is given
by (x, y)(φ, h) = (xφ(y), yh).

In our setting, wreath products arise as in the next lemma. A proof is given in
the proof of [5, Proposition 2.5]. The following definitions make the lemma easier
to state. Let H be a group acting on a set A, let Y be a subset of A, and let
Y = {Y h | h ∈ H}; note that H also acts on Y. We say that the action of H on Y
is consistent to mean that for all h ∈ H if Y h ∩ Y 6= ∅, then h fixes Y pointwise.
We say that the action of H on Y is faithful to mean that the only element of H
that fixes all elements of Y is the identity of H. The lemma is now stated as follows
(see Figure 3):

Lemma 3.2. Suppose that G and H act on a set A on the right. Assume there are
sets X ⊂ supt(G) ⊂ Y ⊂ A such that the action of G on X = {Xg | g ∈ G} and
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the action of H on Y = {Y h | h ∈ H} are both consistent and faithful. Then the
action of W = 〈G,H〉 on W = {Xw | w ∈ W} is also consistent and faithful and
is isomorphic to the action of the permutation wreath product G oH on X × Y.

We now detail how the EA-classes of groups interact with certain permutation
wreath products. For convenience, we let ΣG denote the direct sum of countably
many copies of the group G. It is clear that EA(ΣG) ≥ EA(G). It is a straight-
forward inductive exercise to show that for all G, we have EA(G + G) = EA(G).
It follows that EA(ΣG) ≤ EA(G) + 1. In the special case that EA(ΣG) = EA(G),
we say that G has property Σ. Notice, for instance, that every abelian group has
Σ and that the groups with Σ are closed under the elementary operations (1)–(2).
The family of groups S which we construct all satisfy Σ.

The next proposition, mostly proven in [5], is very fruitful in calculating and
estimating the EA-classes of the groups we consider later in the article.

Proposition 3.3. For an infinite, finitely generated group G ∈ EG acting faithfully
on an infinite set Y , we have

EA(G) + 1 ≤ EA(G oG) ≤ EA(G) + 2.

Further, if EA(ΣG) = EA(G), then EA(G oG) = EA(G) + 1.

4. The oscillation function

In this section, we establish some further facts about the oscillation function first
introduced in Section 2.4. If A is a fast set of marked functions, then we say that
an orbital is active with respect to A if it contains a transition point of an element
of A. Notice that an orbital J is active with respect to A if and only if it contains
a foot of A other than those of J . Recall that if f < g are marked functions, then
o(f, g) is the number of orbitals of g which are active with respect to {f, g}. By
convention o(f, g) is a symmetric function — o(g, f) := o(f, g).

If f is a standard function with at least one negative bump, we will call the
unique common transition point of a positive bump and negative bump of f the
expansion point of f . The following is a sketch of a standard function where we
have highlighted the expansion point with a bullet:

f
•

The next two lemmas provide a number of useful characterizations of the oscillation
function. We omit the routine proofs.

Lemma 4.1. Let f and g be standard functions so that {f, g} is fast with f < g.
Then the following hold:

(1) The pair (f, g) is standard and o(f, g) = 1 if and only if the support of f is
contained in the rightmost orbital of g.

(2) The pair (f, g) is standard and o(f, g) = 2 if and only if g has an expansion
point, and for the rightmost orbital (a, b) of f , the endpoint a is contained
in the leftmost orbital of g and the endpoint b is contained in the rightmost
orbital of g.

(3) If the pair (f, g) is standard and o(f, g) > 2, then f has an expansion point,
and the leftmost orbital of g and the rightmost orbital of g each contain
exactly one transition point of f and neither contains the expansion point
of f .
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Lemma 4.2. If f < g is a fast pair of standard functions, then the following are
true:

(1) o(f, g) is one greater than the number of active orbitals of f with respect to
{f, g};

(2) if (f, g) is a standard pair, then o(f, g) = o(g◦, f) + 1;
(3) if n is the cardinality of the smallest cover of the feet of {f, g} by disjoint

intervals each of which intersects the feet of at most one of f or g, then
o(f, g) = (n− 1)/2;

Many arguments about S are inductive and take advantage of the recursive
nature of the definition of a standard pair. Note that if (f, g) is standard and
o(f, g) > 1, then f < fg. Also observe that even without an assumption that
f < g, we have o(f, g) = o(fp, gq) for any nonzero p, q ∈ Z and that for every
homeomorphism h, o(fh, gh) = o(f, g). The next lemma is useful in calculating
values of the oscillation function in subsequent sections.

Lemma 4.3. If f < h and g < h are marked functions in Homeo+(I) with {f, g, h}
fast (possibly f = g), then

o(f, gh) ≤ min
(
o(f, h), o(g, h)

)
.

Moreover if (f, h) and (g, h) are standard pairs, then f < gh and

o(f, gh) ≤ min
(
o(f, h), o(g, h)− 1

)
.

Proof. Observe that since the feet of g and h are disjoint, every foot of gh is
contained in a foot of h. By (3) of Lemma 4.2, o(f, gh) ≤ o(f, h). Furthermore, we

have o(f, gh) = o(fh
−1

, g) ≤ o(g, h−1) = o(g, h).
Assume that (f, h) and (g, h) are standard pairs. Since g < h, we have o(g, h) ≥

1. If o(g, h) = 1, then Lemma 4.1 and the assumption that {g, h} is fast implies
that support of gh is contained in the rightmost foot of h which is to the right of
the support of f . Thus f � gh and o(f, gh) = 0 ≤ min

(
o(f, h), o(g, h)− 1

)
.

Now assume that o(g, h) > 1. Let J be the union of the feet of h other than
the leftmost and rightmost feet of h. Notice that since o(g, h) > 1, J is nonempty.

The feet of fh
−1

are contained in J which in turn is contained in the support of g

since o(g, h) > 1. Thus fh
−1

< g and all the feet, and thus all the transition points,

of fh
−1

are contained in the orbitals of g that are active with respect to {h◦, g}.
By (1) of Lemma 4.2, the number of these orbitals is o(h◦, g) = o(g, h)− 1, and so

o(f, gh) = o(fh
−1

, g) ≤ o(g, h)− 1. �

For the following, recall that if A is in S, then A is linearly ordered by <. If
|A| = n, we let a0 < a1 < · · · < an−1 be the elements of A. We also use amax to
denote the greatest element of A.

Recall that if A ∈ S, then we write A = B+C if A = B∪C, and b� c whenever
b ∈ B and c ∈ C.

Definition 4.4. If there are no nonempty B and C where A = B+C, then we say
that A is indecomposable.

Many proofs that follow argue the decomposable and indecomposable cases sep-
arately. The next lemma gives a useful characterization of when an element of S is
decomposable.
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Lemma 4.5. An A ∈ S is decomposable if and only if there is an i < |A| − 1 such
that o(ai, amax) = 0.

Proof. We begin by observing that b� c is equivalent to b < c and o(b, c) = 0. The
forward implication in the lemma follows immediately from this equivalence. To
see the reverse implication, let j < |A| − 1 be maximal such that o(aj , amax) = 0.
Observe that every element of the support of aj is less than every element of the
support of amax. If i < j, then sup supt(ai) < sup supt(aj) and consequently
o(ai, amax) = 0. We claim that if i ≤ j < k < |A| − 1, then o(ai, ak) = 0.
Since o(ak, amax) > 0, it follows that the extended support of ak is contained in
the extended support of amax. Since sup supt(ai) < inf supt(amax), it follows that
sup supt(ai) < inf supt(ak) and hence that o(ai, ak) = 0. By the equivalence noted
at the start of the proof, we therefore have that if i ≤ j < k < |A|, then ai � ak.
If we take B = {ai | i ≤ j} and C = {ak | j < k < |A|}, then we’ve shown that
A = B + C. �

The following operation is useful in analyzing S.

Definition 4.6. If A ∈ S, the rotation of A is defined by A◦ := A∪{amax
◦}\{amax}

if there is an i < |A| − 1 such that o(ai, amax) > 0; otherwise set A◦ := A \ {amax}.

Notice that it follows immediately from the definition of standard pair that A◦

is again in S.

Lemma 4.7. If A ∈ S, then the following are true:

(1) if A = B + C and C 6= ∅, then A◦ = B + (C◦).
(2) If A is indecomposable, then the least element of A◦ is amax

◦.

Proof. To see (1), observe first that amax = cmax. It remains to show that for all
i < |B|, bi < cmax

◦. Because A = B + C, we have that for all i < |B|, bi � cmax.
Since the support of cmax

◦ is contained in the support of cmax, it follows that
bi � cmax

◦ for every i < |B|. To see (2), observe that o(a0, amax) > 0 by Lemma
4.5. Thus (amax

◦, a0) is standard and hence amax
◦ < a0. �

The following lemma gives a useful criteria for membership to S.

Lemma 4.8. If A is a fast set of standard functions which is totally ordered by <,
then A is in S provided that the following conditions are satisfied:

• A◦ is in S;
• for all i < |A| − 1 if ai < amax, then amax

◦ < ai.

Proof. Let A ∈ S be given as in the statement of the lemma. If |A| ≤ 1 there is
nothing to show, so assume that |A| > 1. Observe that A \ {amax} ⊆ A◦ is in S
by assumption and therefore in order to verify A ∈ S, we need only to show that
(ai, amax) is standard whenever i < |A| − 1. Let j < |A| − 1 be minimal such that
o(aj , amax) > 0. Since the support of amax

◦ is contained in the support of amax,
ai � amax whenever i < j. If j ≤ i, then amax

◦ < ai by hypothesis. Furthermore,
(amax

◦, ai) is standard since A◦ is assumed to be in S. Since o(ai, amax) > 0 and
thus ai < amax, it follows that (ai, amax) is standard as desired. �
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5. Signatures

In this section we expand on the notion of signature as defined in Section 2.4 and
prove several properties. We show that the signature A of an A ∈ S completely en-
codes the marked isomorphism type of 〈A〉. Moreover, we give a simple description
of the family of all signatures.

Before proving the main results, it will be helpful to define some terminology
and prove some lemmas.

Definition 5.1. If A ∈ S, the complexity of A is the pair

(|A|,
∑
i<j

o(ai, aj)).

The set of all complexities is ordered lexicographically.

Observe that if A ∈ S, then A◦ has strictly smaller complexity than A. In
what follows, it is frequently useful to prove statements about the elements of S by
induction on their complexity. Theorem 7 allows us to remove extraneous bumps
without changing the isomorphism type of the group which is generated. However
if A ∈ S has extraneous bumps, Theorem 7 does not ensure the modified generating
set remains in S. The next two lemmas address this.

Lemma 5.2. If A ∈ S has an extraneous bump, then there is a nonempty set E
of extraneous bumps of A such that A/E has the same dynamical diagram as a
member of S.

Proof. This is proved by induction on the complexity of A. First suppose that
A = {f}. Recall that f has at least 2 bumps, and has either the same number of
positive and negative bumps or one more positive bump. If f has more positive
bumps than negative bumps, then let b be the rightmost bump of f and observe that
f/{b} is still a standard function. Similarly, if f has the same number of positive an
negative bumps and b is the leftmost bump of f , then f/{b} is a standard function.
In both cases A/{b} is in S. If A = B +C for B,C 6= ∅, then either B or C has an
extraneous bump and we are finished by our induction hypothesis.

Suppose that |A| > 1 is indecomposable with an extraneous bump. If o(ai, amax) =
1 for all i < |A| − 1, then the support of every ai < amax is in the rightmost bump
of amax. If the number of bumps of amax is at least 2, we let E consist of all
bumps of amax but the rightmost. If amax has only one bump, then there is a
bump extraneous in A′ = A \ {amax}. By induction there is an E consisting of
extraneous bumps of A′ with such that A′/E has the same dynamical diagram as
an element of S. Notice that that every element of E is also extraneous in A and
A/E = (A′/E) ∪ {amax} has the same dynamical diagram as an element of S.

If there is an i < |A| − 1 with o(ai, amax) > 1, then both of the outer orbitals of
amax are active. Thus A◦ has an extraneous bump and we can apply our induction
hypothesis to find a nonempty set of extraneous bumps E of A◦ such that A◦/E
has the same dynamical diagram as a member of S. Observe that every element of
E is also a bump of A: the only situation in which a bump of A◦ is not a bump
of A occurs when amax has at most two bumps and in this case amax

◦ is isolated
and hence not extraneous. Finally, it is easily checked that A/E has the same
dynamical diagram as a member of S. �

Lemma 5.3. If A is an element of S, then there is an A′ ∈ S such that:
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(1) 〈A′〉 is marked isomorphic to 〈A〉;
(2) A′ and A have the same signature;
(3) A′ has no extraneous bumps.

Proof. Observe that extraneous bumps are not counted by signatures. In particular,
if E is a set of extraneous bumps of A ∈ S, then the signature of A/E coincides
with the signature of A. The proof of the lemma is now by induction on the number
of extraneous bumps of A, using Lemma 5.2 and Theorems 6 and 7. �

Lemma 5.4. If A ∈ S and no bump of A is extraneous, then no bump of A◦ is
extraneous.

Proof. First suppose that amax has at most two orbitals. Notice that since amax
◦

has only one orbital, its only bump is not extraneous. If amax has one orbital,
none of its transition points are in an orbital of another element of A and hence
amax plays no role in witnessing that other elements of A are not extraneous. If
amax has two orbitals, then the only transition point which it has to witness that
another element of A is not extraneous is its middle transition point, which remains
a transition point of amax

◦. This completes the proof under the assumption that
amax has at most two orbitals.

Now suppose that amax more than two orbitals. If b is an orbital of A◦, it is an
orbital of A and is not extraneous in A. So b contains a transition point t of some
ai ∈ A. The only transition points of A that are not transition points of A◦ are
the rightmost and leftmost transition points of amax. But these are in no orbital of
A and so t is neither of these points. So t is a transition point of A◦ and b is not
extraneous in A◦. �

We now are ready to prove Theorem 2 which asserts that if A and B are elements
of S which have the same signature, then the order preserving bijection between A
and B extends to an isomorphism 〈A〉 ∼= 〈B〉.

Proof of Theorem 2. The proof is by induction on the complexity of the common
signature of A and B; let n denote |A| = |B|. By Lemma 5.3, we may assume that
A and B have no extraneous bumps. By Theorem 6 it suffices to show that A and
B have isomorphic dynamical diagrams.

If A = A′ + A′′ for some nonempty A′ and A′′, then B = B′ + B′′ for some B′

and B′′ having the same signatures as A′ and A′′ respectively. Notice that every
orbital of A′ is active (in A′) and similarly for A′′, B′, and B′′. Thus we can apply
our induction hypothesis to conclude that the dynamical diagrams of A′ and B′

are isomorphic and similarly for A′′ and B′′. Since the dynamical diagram of A is
obtained by putting the diagram for A′ to the left of the diagram for A′′ — and
similarly for B — we have that the dynamical diagrams of A and B are isomorphic.

Now suppose that neither A nor B decompose as a sum. By Lemma 4.5, this
means that o(ai, amax) = o(bi, bmax) > 0 for all i < n − 1. If amax has a single
orbital, then amax is a positive bump, and o(bi, bmax) = o(ai, amax) = 1 for all
i < n − 1. Notice that the definition of standard pair implies that if i < n − 1,
then the support of bi is contained in the rightmost orbital of bmax. Since no bump
of bmax is extraneous, this must mean that bmax has only one orbital and must
be a positive bump. By our induction hypothesis, A \ {amax} and B \ {bmax}
have isomorphic dynamical diagrams; let D denote the common isomorphism type.
Notice that the dynamical diagram for A and for B are both obtained by a pair of
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new vertices to D — one to the far left and one to the far right — as well as a right
directed edge between these new vertices. This new edge is given a label distinct
from the other labels. Hence A and B have isomorphic dynamical diagrams.

Finally, we may now assume that both amax and bmax have more than one orbital.
Observe that A◦ and B◦ have the same signature and lower complexity than A and
B: if i < n− 1, then

o(amax
◦, ai) = o(ai, amax)− 1 = o(bi, bmax)− 1 = o(bmax

◦, bi).

By Lemma 5.4, A◦ and B◦ have no extraneous bumps. By our induction hypothesis,
A◦ and B◦ have dynamical diagrams which are isomorphic to some common D.
Notice that since every orbital of amax is active in A, (amax)◦ is an isolated bump
in A◦ if and only if amax has exactly two orbitals. Since the former equivalent
condition is a property of the dynamical diagram of A, it follows that amax has
exactly two orbitals if and only if bmax has exactly two orbitals. It is now easily
checked that in both cases, A and B must have isomorphic dynamical diagrams. �

We now turn to our characterization of the set of signatures. We start with the
following proposition. The function % defined in its proof models the effects on
oscillation numbers when an indecomposable A ∈ S is replaced by A◦.

Proposition 5.5. The following are equivalent for an ordered triple (p, q, r) of
integers:

(1) r ≥ min(p− 1, q), with equality holding unless p = q;
(2) q ≥ min(p, r), with equality holding unless p = r + 1;
(3) p ≥ min(q, r + 1), with equality holding unless q = r;
(4) all of the following three inequalities hold:

p ≥ min(q, r + 1), q ≥ min(p, r), r ≥ min(p− 1, q).

Proof. We first show that (1) implies (2) and then argue that (2) and (3) are
equivalent to (1) by symmetry. Let us assume that p, q, r ∈ Z with r ≥ min(p−1, q)
and with equality holding unless p = q. If p > q then we have r = q so that p > q =
r. Therefore q = min(p, r) and (2) holds. If p < q then we have r = p−1 < p < q so
in particular p = r + 1 and q > min(p, r) = r and again (2) holds. Finally, if p = q
then r ≥ p − 1 = q − 1 by assumption. We therefore have that min(p, r) ≤ p = q
and again (2) holds.

Now consider the transformation % : Z3 → Z3 defined by %(p, q, r) = (r, p−1, q−
1). Observe that (p, q, r) satisfies (1) if and only if (p̄, q̄, r̄) := %(p, q, r) satisfies (3):
the assertion “r ≥ min(p− 1, q), with equality holding unless p = q” is the same as
“p̄ ≥ min(q̄, r̄ + 1), with equality holding unless q̄ = r̄.” Similarly, (p, q, r) satisfies
(2) if and only if %(p, q, r) satisfies (1). Similarly, (p, q, r) satisfies (3) if and only if
%(p, q, r) satisfies (2). It follows that (1), (2), and (3) are equivalent.

Next observe that the equivalence of (1), (2), and (3) immediately yields that
each implies (4). Lastly, we assume (4) and show that (1) holds. If p = q, then
(1) just asserts r ≥ min(p − 1, q) and there is nothing to show. If p < q, then
since p ≥ min(q, r + 1), it must be that q > r + 1 and hence p ≥ r + 1. Since
r ≥ min(p − 1, q) = p − 1 we have r = p − 1 = min(p − 1, q). Similarly if q < p,
then q ≥ min(p, r) implies that q ≥ r. Taken with r ≥ min(p − 1, q), this implies
r = q = min(p− 1, q). �
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Definition 5.6. (p, q, r) ∈ Z3 is an admissible triple if it satisfies any of the equiv-
alent relationships stated in Proposition 5.5.

Proposition 5.5 and the equality min(a − 1, b − 1) = min(a, b) − 1 immediately
yields the following corollary.

Corollary 5.7. For all (p, q, r) ∈ Z3 the following are equivalent:

(1) (p, q, r) is admissible.
(2) (q, r, p− 1) is admissible.
(3) (r, p− 1, q − 1) is admissible.

If A is a function from the pairs a < b of a finite linear order A into ω,
then we say that A is admissible if whenever a < b < c are in A, the triple
(A(b, c),A(a, c),A(a, b)) is admissible. Recall that each A is equivalent, under
the equivalence defined in Section 2.4, to a map on pairs in which the base is
{0, . . . , n− 1}.

Define S to be the collection of all equivalence classes of such maps which
are admissible. (Formally we view S as a set by using the choice of canonical
representatives from each equivalence class noted above.) We often write that a
function on pairs is in S when we really mean that its equivalence class is in S .
Our next task is to prove that that S is exactly the set of signatures of elements of
S, up to the above notion of equivalence. Recall that 0 and Z denote the elements
of S with bases having cardinalities 0 and 1 respectively. Anticipating S ’s relation
to S, we will often confuse the distinction between an A ∈ S and its base, writing
things such as “the cardinality of A” or “the elements of A” when we are really
referring to the cardinality or elements of the base of A.

The operation + defined in Section 2.5 is well defined on S . Unlike with S, +
is a bona fide binary operation on S . Observe that if A = B +C, then A = B + C
— the signature of a sum is the sum of the signatures.

The following property of elements of S will be used often.

Lemma 5.8. Suppose A ∈ S . If i < j < k < |A| and A(j, k) = 0, then A(i, k) = 0.

Proof. If A(i, k) 6= 0, then

A(i, j) = min(A(j, k)− 1,A(i, j)) = −1

which is not possible. �

Definition 5.9. An element A of S is indecomposable if there do not exist B,C 6= 0
such that A = B + C.

We need the following analog of Lemma 4.5.

Lemma 5.10. If A ∈ S is indecomposable and i < n = |A| − 1, then A(i, n) > 0.

Proof. We prove the contrapositive. Let j be maximal such that A(j, n) = 0. By
Lemma 5.8, A(i, n) = 0 for all i < j. If i < j < k ≤ n, we have A(i, n) = 0 < A(k, n)
so

A(i, k) = min(A(j, k)− 1,A(i, n)) = 0.

Thus setting B := {0, . . . , j} and C := {j + 1, . . . , n} we have A = B + C. �

We now define the analog of the rotation operation on S . Just as in the case of
S, we define the complexity of an element A ∈ S to be the pair (|A|,

∑
i<j A(i, j)).

Set 0◦ = 0 and Z◦ = 0. If A = B + C for B,C 6= 0 and C◦ has been defined, then
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we set A◦ := B + (C◦). If A ∈ S is indecomposable and has {0, . . . , n} as its base
for some n > 0, define n◦ := −1 and A◦ := {n◦, 0, . . . , n− 1} = {−1, 0, . . . , n− 1}.
For n◦ < i < n, set A◦(n◦, i) = A(i, n)− 1; if n◦ < i < j < n, set A◦(i, j) = A(i, j).
By Lemma 5.10, the values taken by A◦ are nonnegative. In order to verify that
A◦ is in S , it suffices to show that if n◦ < i < j < n, then

A◦(n◦, i) ≥ min
(
A◦(i, j)− 1,A◦(n◦, j)

)
with equality holding unless A◦(i, j) = A◦(n◦, j). But this is equivalent to A(i, n) ≥
min

(
A(i, j),A(j, n)

)
with equality unless A(i, j) = A(j, n)− 1. Since this is true by

the equivalence of (1) and (2) in Proposition 5.5, we have that A◦ is in S . Observe
that if A 6= 0, then the complexity of A◦ is strictly less than that of A. Also notice
that the map A 7→ A◦ is one-to-one on the indecomposable elements of S .

Theorem 8. S is the set of signatures of elements of S. Moreover, if A ∈ S, then
the signature of the rotation of A is the rotation of the signature of A.

Proof. First we prove that every signature of an element A of S is admissible and
hence is in S . The proof is by induction on the complexity of A. If |A| ≤ 2, there
is nothing to show, so suppose that |A| ≥ 3. Also, if A = B + C for nonempty
B,C ∈ S, then B and C are in S by our induction hypothesis and since A = B+C,
A ∈ S by the closure of S under sums.

Now suppose that A is indecomposable. Then A◦ is in S and by Lemma 4.7,
amax

◦ < ai for all i < |A|. Since it has lower complexity than A, A◦ is subject to
the induction hypothesis and hence its signature is in S . It suffices to show that
if i < j < k = |A| − 1, then (o(aj , ak), o(ai, ak), o(ai, aj)) is admissible. By our
inductive assumption we know that

(o(ai, aj), o(ak
◦, aj), o(ak

◦, ai))

is admissible and thus

(o(ai, aj), o(aj , ak)− 1, o(ai, ak)− 1)

is admissible. By Corollary 5.7, this is equivalent to

(o(aj , ak), o(ai, ak), o(ai, aj))

being admissible. This completes the proof that signatures of elements of S are in
S .

Suppose now that A is in S ; we need to prove that there is an A ∈ S whose
signature is A. This is proved by induction on the complexity of A. We may assume
A has base {0, . . . , n}. If n = 0, there is nothing to show. Also, if A = B + C, then
let B and C be elements of S which have B and C as their respective signatures.
By scaling and translating if necessary, we may assume that the elements of B are
supported on (0, 1/2) and the elements of C are supported on (1/2, 1). It is now
easy to check that every pair from A = B + C = B ∪ C is standard and thus A is
in S and has A = B + C as its signature.

Now suppose that n > 0 and A is indecomposable. By Lemma 5.10, A(i, n) > 0
for all i < n. Since the complexity of A◦ is less than that of A, our induction hy-
pothesis implies that A◦ is the signature of some ordered sequence an◦ , a0, . . . , an−1
comprising an element of S. Without loss of generality, we may assume that the
supports of each of these functions is contained in (1/3, 2/3) and that moreover
the greatest and least transition points of an◦ are not in the closures of the feet
of the ai’s. Let an be a standard function with extended support (0, 1) such that



SUBGROUPS OF THOMPSON’S GROUP 23

an
◦ = an◦ and whose feet are disjoint from those of ai for all i < n. It follows that

(ai, an) is standard for all i < n. Since the signature of A is A, we are finished with
the proof of the first conclusion of the theorem. That the signature and rotation
maps commute follows from their definitions and Lemmas 4.2 and 4.7. �

6. The inflation operation

In this section we introduce a fundamental operation on S and establish how it
influences signatures. This operation plays a central role in subsequent sections.
Let us begin with the observation that if A ∈ S, then

N := 〈(ai)a
p
max | i < |A| − 1 and p ∈ Z〉

is a normal subgroup of 〈A〉, and 〈A〉 is an extension of N by Z. If we define, for
each k,

Ak := {(ai)a
p
max | i < |A| − 1 and |p| ≤ k},

then Ak is fast and N =
⋃
〈Ak〉. Each Ak has the same dynamical diagram as

Bk := {(ai)a
p
max | i < |A| − 1 and 0 ≤ p ≤ 2k}.

The need to understand the relationships between the groups 〈A〉, N , and the
〈Ak〉 motivates a family of primitive transformations which we term inflations.

Definition 6.1. If A is in S and a ∈ A, then the inflation of A by a is the set

A⇁a := A ∪ {a2} ∪ {ba | b ∈ A and b < a} \ {a}.

Observe if a = amax, then by iterating this procedure we obtain supersets of the
Bk. Note that clearly 〈A⇁a〉 ⊆ 〈A〉 and since A is fast, 〈A〉 embeds into 〈A⇁a〉; see
the end of the proof of Lemma 6.2 for details.

For A, B in S, we write A ≤ B if there is a sequence (Bi | i ≤ n) such that
B0 = B, Bn has the same dynamical diagram as A, and such that if i < n, then
Bi+1 is contained in an inflation of Bi. Allowing n = 0 makes ≤ reflexive and ≤ is
clearly transitive. Define an equivalence relation ≡ on S by A ≡ B if and only if
A ≤ B ≤ A. A major aim of the rest of the paper is to show that the relation ≤
coincides with the embeddability relation on S and that moreover (S/≡ ,≤) is a
well-order with order type ε0.

Now we assign a marking to A⇁a. The functions in A⇁a ∩ A = A \ {a} maintain
their markings. The markers of ba are of the form sa where s is a marker of b.
Finally, if s is a marker of a positive bump of a, then s is a marker of a2; if s is a
marker of a negative bump of a, then sa is a marker of a2. This marking has the
property that if t is in the support of a but not in one of its feet, then ta is not in
a foot of a2. In particular, A⇁a is fast. Notice that if A = B+C, then A⇁b = B⇁b +C
for all b ∈ B, and A⇁c = B + C⇁c for all c ∈ C.

Lemma 6.2. If A is in S and a ∈ A, then A⇁a is in S and 〈A⇁a〉 is biembeddable
with 〈A〉.

Proof. The proof of that A⇁a is in S is by induction on the complexity of A. There
is nothing to show if |A| ≤ 1. We have noted that if A ∈ S and a ∈ A, then A⇁a is
fast. Furthermore, if b ∈ A, then {ba, a2} = {ba, (a2)a} is a standard pair. Also, by
the previous observation we may assume that A is indecomposable.

If a < amax, then observe that (A⇁a)◦ ⊂ (A◦)⇁a. By our inductive hypothesis,
(A◦)⇁a is in S and thus (A⇁a)◦ is in S. From the definition of standard pairs and the
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indecomposability of A, we have that (amax
◦, b) is standard for all b ∈ A \ {amax}.

We know j := o(b, amax) > 0. If j = 1, then supt(b) is contained in the rightmost
orbital of amax which implies that supt(ba) is contained in that same orbital. Thus
amax

◦ � ba. If j > 1, then the extreme orbitals of amax are active for both {amax, b}
and {amax, b

a}, so amax
◦ < ba. By Lemma 4.8, A⇁a is in S.

Now suppose that a = amax. Observe that it suffices to assume that A = {a, b, c}
with b < a and c < a. Since A is indecomposable, Lemma 4.3 gives that c < ba and
b < ca. Thus we need only to verify that that (c, ba) and (b, ca) are standard pairs.

Assume first that o(c, a) ≥ 3 and o(b, a) ≥ 3, and consider pairs (c, ba) and (b, ca).
By two applications of Lemma 4.2, we have o(c◦, a◦) ≥ 1 and o(b◦, a◦) ≥ 1. Thus

c◦ < a◦ and b◦ < a◦ from which (b◦)a
◦

= (b◦)a = (ba)◦ and (c◦)a
◦

= (c◦)a = (ca)◦

follows. By inductive assumption, (c◦, (b◦)a
◦
) = (c◦, (ba)◦) is a standard pair. From

the definition, (c, ba) is standard. Similarly, (b, ca) is standard as well.
Next suppose that either o(c, a) ≤ 2 or o(b, a) ≤ 2. By the symmetry of b and

c, we can assume o(b, a) ≤ o(c, a). Since we assume A is indecomposable, we have
1 ≤ o(b, a) ≤ 2.

We first assume o(b, a) = 2. From Lemma 4.1, we have that the extreme orbitals
of a are active in both {a, c} and {a, b}. Further the extreme orbitals of a contain
all the transition points of b with only one transition point of b in the rightmost
orbital of a. This puts the support of c in the rightmost orbital of ba. From Lemma
4.1, this makes (c, ba) standard. If o(c, a) = 2, a similar argument makes (b, ca)
standard. If o(c, a) ≥ 3, then o(a◦, c) ≥ 2 and it follows from Lemma 4.1 that the
extreme orbitals of c each contain exactly one transition point of a. This puts all of

the transition points of ba
−1

into the extreme orbitals of c with only one transition

point of ba
−1

in the rightmost orbital of c. From Lemma 4.1, this implies (ba
−1

, c)
standard, and thus (b, ca) is also standard.

Now assume o(b, a) = 1. From Lemma 4.1, this puts the support of b in the
rightmost orbital of a. If o(c, a) = 1, then c � ba and b � ca making both (c, ba)
and (b, ca) standard. If o(c, a) ≥ 2, then from Lemma 4.1, the only transition point
of c in rightmost orbital of a is the rightmost transition point of c. We still have

c � ba making (c, ba) standard. But now the support of ba
−1

is in the rightmost

orbital of c which makes (ba
−1

, c) standard by Lemma 4.1. This completes the proof
that S is closed under inflation.

To see that 〈A⇁a〉 is embeddable in 〈A〉, first note that 〈A⇁a〉 ⊂ 〈A〉. Also, since
A′ := A\{a}∪{a2} has the same dynamical diagram as A, 〈A′〉 ⊂ 〈A⇁a〉 is isomorphic
to 〈A〉 by Theorem 6. �

We can also define an operation of inflation and a relation ≤ on S that corre-
sponds to inflation and ≤ on S.

Definition 6.3. If A is in S and m ∈ A, then the inflation of A by m, denoted
A⇁m has as its base (where im is a formal symbol)

(6.1) A ∪ {im | (i ∈ A) and (i < m) and (A(i,m) > 0)}

to which the linear order on A is extended by declaring j < im < jm < m ≤ k
whenever i < j < m ≤ k < |A|. The function A⇁m extends that of A by defining for
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each i, j < m ≤ k < |A|:
A⇁m(im, jm) := A(i, j)

A⇁m(i, jm) := min
(
A(j,m)− 1,A(i,m)

)
A⇁m(im, k) := min

(
A(i,m),A(m, k)

)
.

Here we adopt the notational convention that A(m,m) =∞.

From the provision A(i,m) > 0 in (6.1), we get the following fact that parallels
the behavior of inflations in S: if A = B + C, then A⇁b = B⇁b + C for all b ∈ B, and
A⇁c = B + C⇁c for all c ∈ C.

Lemma 6.4. If A is in S and m < |A|, then the signature of the inflation of A by
am is the inflation of A by m.

Proof. The proof is by induction on the complexity of A. Since the lemma is vacuous
if |A| ≤ 1 and by the remarks made just before Lemma 6.2, we may assume that A
is indecomposable.

First suppose that m = |A| − 1. Since A⇁
am is in S, Theorem 8 implies that if

i, j < m then

o(ai, a
am
j ) ≥ min

(
o(aamj , am)− 1, o(ai, am)

)
= min

(
o(aj , am)− 1, o(ai, am)

)
.

On the other hand, Lemma 4.3 implies

o(ai, a
am
j ) ≤ min

(
o(aj , am)− 1, o(ai, am)

)
.

Thus o(ai, a
am
j ) = min

(
o(aj , am)− 1, o(ai, am)

)
= A⇁m(i, jm), as desired.

If m < |A| − 1, then by our induction hypothesis the signature of the inflation
(A◦)⇁m is the corresponding inflation (A◦)⇁m of the signature A◦. Since the signature
and rotation maps commute, it therefore suffices to verify that whenever i < m

o(ami , amax) = min
(
o(ai, am), o(am, amax)

)
.

By our induction hypothesis

o(ami , amax) = o(amax
◦, ami ) + 1

= min
(
o(amax

◦, am), o(ai, am)− 1
)

+ 1

= min
(
o(am, amax)− 1, o(ai, am)− 1

)
+ 1

= min
(
o(ai, am), o(am, amax)

)
.

�

Remark 6.5. Note the complementary role which the inequalities Proposition 5.5
and those in Lemma 4.3 play in this proof.

We now define the relation ≤ on S just as with S: A ≤ B if and only if there
is a sequence B0 = B, B1, ..., Bn = A such that if i < n then Bi+1 is contained in
(i.e., is a restriction of) an inflation of Bi.

Proposition 6.6. If A,B ∈ S then the following are true:

(1) if A ≤ B, then A ≤ B;
(2) if A ≤ B, then there exist A′ ∈ S with signature A such that A′ ≤ B.

In particular, if A ≤ B are in S , then 〈A〉 embeds into 〈B〉.
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Proof. The first assertion is an immediate consequence of Lemma 6.4. The second
assertion in the case A = B⇁m for some m is also an immediate consequence of
Lemma 6.4; the general case follows by induction. The final assertion follows from
the second assertion, Theorem 2 and Proposition 6.2. �

7. Wreath products of S-generated groups

In this section we show that the operation ∗ on S introduced in Section 2.5
corresponds to forming a permutation wreath product of the associated groups.
Recall that if A,B,C ∈ S then A = B ∗ C asserts that A = B ∪ C and both
b < c and o(b, c) = 1 hold whenever b ∈ B and c ∈ C. Observe that if A ∈ S and
A = B ∗ C for nonempty B,C, then there is an open interval J ⊂ I such that:

• J contains the supports of all elements of B;
• J is contained in the rightmost orbital of each element of C and is disjoint

from the feet of C.

If moreover B(i, j) > 0 for all i < j < |B|, then there is a t0 which is in the
rightmost orbital of each bi. Fix such J and t0 and define

X := {t0f | f ∈ 〈B〉} Y := {Jf | f ∈ 〈C〉}.

The goal of this section is to prove the following proposition.

Proposition 7.1. Suppose that A ∈ S and A(i, j) > 0 for all i < j < |A|. If
A = B ∗C for nonempty B,C ⊂ A, then the actions of 〈B〉 on X and 〈C〉 on Y are
faithful and consistent. In particular the action of 〈A〉 on X ×Y is the permutation
wreath product of these actions: 〈B ∗ C〉 ∼= 〈B〉 o 〈C〉.

Proof. Observe that by Theorem 7 of this paper and by Theorem 7.1 of [3], we
may assume that A has no extraneous bumps. The proposition is an immediate
consequence of the next two lemmas using the assignments K = {t0} with S = B,
and K = J with S = C. �

Lemma 7.2. Let S ∈ S and K be a singleton or an open interval disjoint from the
feet of S. If g ∈ 〈S〉 and Kg ∩K 6= ∅, then g|K is the identity.

Proof. In the language of [3], every point in K has trivial history. Lemma 5.6 of
[3] implies that every orbit of 〈S〉 intersects K in at most one point. This gives the
conclusion if K is a singleton. If K is open, observe that if Kg ∩K 6= ∅, then some
t ∈ K has tg ∈ K which implies tg = t. Let x be any fixed point of g in K. By
continuity, there is an open subset U of K about g with Ug ⊂ K implying that g is
the identity on U . Thus the fixed set of g in K is open in K. Again by continuity,
the fixed set of g in K is closed in K and must equal K. �

Lemma 7.3. Let S ∈ S have no extraneous bumps and satisfy that S(i, j) > 0 for
all i < j < |S|. If J is a singleton or an open interval contained in the rightmost
orbital of every f ∈ S and disjoint from the feet of S, then the action of 〈S〉 on
{Jg | g ∈ 〈S〉} is faithful.

Proof. By Proposition 3.1, it suffices to show that
⋃
{Jg | g ∈ 〈S〉} intersects each

orbital of S. We prove this by induction on the complexity of S. Let f be the top
element of S. If |S| ≤ 1, there is nothing to show. By our inductive assumption,

X :=
⋃
{Jg | g ∈ 〈S \ {f}〉}



SUBGROUPS OF THOMPSON’S GROUP 27

intersects every orbital of S \ {f}. Moreover the closure of X contains the set of
all transition points of S \ {f} and hence intersects every active orbital of f . Since
every orbital of f is active and open, X intersects every orbital of f . �

8. The signatures are well-ordered by reduction

Our next task is to analyze the structure of the transitive, reflexive relation
(S ,≤) and prove that it is a pre-well-order (i.e. a well-order on the equivalence
classes obtained by identifying A and B whenever A ≤ B ≤ A). We introduce a
subcollection B ⊂ S of signatures in block form. We show that elements of S
are equivalent to elements of B and that elements of B are equivalent to unique
elements of R modulo permuting summands. Our goal is to analyze the structure
of (R,≤) and prove Theorem 3 from the introduction.

8.1. Signatures in block and reduced form. We use the notation∑
i<k+1

Ai :=
(∑
i<k

Ai
)

+ Ak, and A ·m :=
∑
i<m

A.

Recall that if A is in S , then exp(A) has the same base as A and exp(A)(i, j) =
A(i, j) + 1 for all i < j in A. Note that exp(Z) = Z. Observe that exp maps S
injectively into S and that the range of exp is exactly those elements of S which
take only positive values. As noted earlier A ∗ B is only defined if B = exp(X) for
some X ∈ S . Observe that + and ∗ are associative operations on S and that
exp(A + B) = exp(A) ∗ exp(B).

We now give a more detailed description of the family R from Section 2.5. It is
easiest to define R if we first define a class B (signatures in block form), and an
ordinal function ρ on B.

Definition 8.1. The class B is the smallest class containing {0,Z} so that when-
ever (Xi | i < n) is a sequence of elements of B, then

∑
i<n exp(Xi) is in B.

Observe that if B 6= 0 is in B, then there exists a unique sequence (Ai | i <
n) of nonzero elements of B such that B =

∑
i<n exp(Ai). Define ρ recursively

on B by ρ(0) = 0, ρ(Z) = 1, ρ
(

exp(A)
)

= ω−1+ρ(A), and ρ(
∑
i<n exp

(
Ai)
)

=∑
i<n ρ

(
exp(Ai)

)
. Here −1 + α = β if α = 1 + β (so −1 + α = α if α is infinite).

This technicality exists because Z is a fixed point of exp, but the ordinal 1 is not a
fixed point of α 7→ ωα.

Definition 8.2. R is the smallest subfamily of B which contains 0 and Z so that
if (Xi | i < n) is a sequence of nonzero elements of R and ρ(Xi+1) ≤ ρ(Xi) for all
i < n− 1, then

∑
i<n exp(Xi) is in R.

The reader can verify that if X is the signature in Figure 2, then X ∈ R and

ρ(X) = ωω
(ω+2)

.

Observe that if B ∈ B and A ∈ S is contained in B, then A ∈ B and moreover
ρ(A) ≤ ρ(B) (both facts are established by induction on the complexity of B). The
next lemma has a straightforward inductive proof and is left to the reader.

Lemma 8.3. The restriction of ρ to R is a bijective correspondence between be-
tween the elements of R and the Cantor normal forms for ordinals below ε0. Fur-
ther, the bijection ρ defines an isomorphism

(R,0,Z,+, exp) ∼= (ε0, 0, 1,+, ζ 7→ ω−1+ζ).
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provided + is restricted to those pairs in R whose sum remains in R.

Here we formally define ω−1+0 = 0. Our first task in proving Theorem 3 is to
show ρ preserves the order which R inherits from S . The next lemma gives basic
facts about the algebraic operations and their interaction with the relation ≤ on
S ; the proof is straightforward and left to the reader.

Lemma 8.4. Suppose that A ≤ A′ and B ≤ B′ are in S . The following are true:

(1) exp(A⇁m) ≤ (exp(A))⇁m for m < |A|.
(2) exp(A) ≤ exp(A′).
(3) A + B ≤ A′ + B′.
(4) A ∗ exp(B) ≤ A′ ∗ exp(B′).

For the following, recall that A ≡ B means A ≤ B ≤ A.

Lemma 8.5. The following are true:

(1) If (Ai | i < n) and B 6= 0 are in S and j < n is such that Ai ≤ Aj for all
i < n, then (

∑
i<n Ai) ∗ exp(B) ≡ Aj ∗ exp(B).

(2) If A ∈ S then for all m, exp(A) ·m ≤ exp(A + Z).

Proof. For (1), first observe that either j > 0 and A0 ≤
∑n−1
k=1 Ak or else An−1 ≤

A0 ≤
∑n−2
k=0 Ak. Thus, by induction, it is sufficient to prove the lemma when n = 2.

Furthermore, by Lemma 8.4, it suffices to prove that (A+A)∗ exp(B) ≤ A∗ exp(B).

In fact we show that (A + A) ∗ exp(B) =
(
A ∗ exp(B)

)
⇁
m

where m is the minimum
element of exp(B) regarded as a suborder of A ∗ exp(B). To see this, let i, j be
elements of A and k be an element of exp(B) above m. We have that

(A ∗ exp(B))⇁m(i, jm) = min
(
A ∗ exp(B)(i,m),A ∗ exp(B)(j,m)− 1

)
= min(1, 0) = 0(

A ∗ exp(B)
)
⇁
m

(jm, k) = min
(
A ∗ exp(B)(j,m),A ∗ exp(B)(m, k)

)
= min

(
1, exp(B)(m, k)

)
= 1

which coincides with the definition of (A + A) ∗ exp(B).
To see that (2) is true, let A and m be given. By (1) we have (exp(A) ·m) ∗ Z ≡

exp(A) ∗ Z. The conclusion follow by observing

(exp(A) ·m) ≤ (exp(A) ·m) ∗ Z,

exp(A) ∗ Z = exp(A) ∗ exp(Z) = exp(A + Z).

�

Lemma 8.5 is an early hint that the arithmetic on S imitates the behavior of
arithmetic on the ordinals. For instance, in analogy to (1), using 1+ω = ω we note

(ω + 1) · ω = sup
n∈ω

(ω + 1) · n = sup
n∈ω

ω · n+ 1 = ω2.

Next we begin our analysis of R.

Lemma 8.6. If B is in R and α < ρ(B), then there an A in R such that A ≤ B
and ρ(A) = α.
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Proof. The proof is by induction on ρ(B). If ρ(B) = 0, then the lemma is vacuously
true. Now suppose ρ(B) ≥ 1 and let B =

∑
i<n exp(Xi) where ρ(Xi+1) ≤ ρ(Xi)

for each i < n − 1 (note that possibly n = 1 in which case B = exp(X0)). Let
k < n be minimal such that α < ρ

(∑
i≤k exp(Xi)

)
. If k = 0 and X0 = Z, then

α < exp(X0) = 1 and thus α = 0. In this case we take A = 0.
If k = 0 and X0 = Y + Z for some Y 6= 0, then

α < ρ
(

exp(X0)
)

= ρ
(

exp(Y + 1)
)

= ω−1+ρ(Y)+1 = ρ
(

exp(Y)
)
· ω

and there is an m such that α < ρ
(

exp(Y)
)
·m. From (2) of Lemma 8.5,

B′ := exp(Y) ·m ≤ exp(Y + Z) = exp(X0) ≤ B.

Since B′ is in R, by our induction hypothesis there is an A in R such that A ≤
exp(Y) ·m = B′ ≤ B and such that ρ(A) = α.

If k = 0 but we are not in the previous cases, then ρ(X0) = δ is a limit ordinal.
Let 0 < γ < δ be such that α < ω−1+γ . By our induction hypothesis, there is a
C ≤ X0 in R such that ρ(C) = γ and hence

ρ
(

exp(C)
)

= ω−1+γ < ω−1+δ = ρ(B).

Applying our induction hypothesis again, there is an A ≤ exp(C) ≤ exp(X0) = B
such that A is in R and ρ(A) = α.

Finally, if 0 < k ≤ n, then let 0 < α′ < ρ
(

exp(Xk)
)

be such that

α = ρ(
∑
j<k

exp
(
Xj)
)

+ α′.

Now

α′ < ρ
(

exp(Xk)
)
< ρ
(

exp(X0) + exp(Xk)
)
≤ ρ(B).

By our induction hypothesis there is an A′ ≤ exp(Xk) such that A′ ∈ R and
ρ(A′) = α′. Observe that A′ =

∑
i<m exp(Yi) for some m ≥ 1 where the Yi’s come

from R and ρ
(

exp(Yi+1)
)
≤ ρ
(

exp(Yi)
)

for all i < m. In particular, ρ
(

exp(Y0)
)
≤

α′ < ρ
(

exp(Xk)
)

and therefore

A =
∑
i<k

exp(Xi) +
∑
j<m

exp(Yj)

is in R and satisfies that ρ(A) = α. �

Lemma 8.7. If A and B are in R, then ρ(A) ≤ ρ(B) implies A ≤ B.

Proof. If ρ(A) < ρ(B), then by Lemma 8.6 there is an A′ ≤ B in R such that
ρ(A′) = ρ(A). Since ρ is one-to-one on R, we have that A′ = A. Similarly, if
ρ(A) = ρ(B), then A = B. �

For X ∈ S , recall that E(X) = exp
(

exp(X)
)
.

Lemma 8.8. If A,B ∈ R and A+1 ≤ B, then 〈E(B)〉 does not embed into 〈E(A)〉.

Proof. Let n be the maximum element of E(A + Z) and note that E(A) ∗ E(A) is
obtained from E(A + Z)⇁n by removing its maximum element. Consequently

E(A) ∗ E(A) ≤ E(A + Z) ≤ E(B).

By Propositions 6.6, 7.1, and 8.7

〈E(A) ∗ E(A)〉 ∼= 〈E(A)〉 o 〈E(A)〉



30 BLEAK, BRIN, AND MOORE

embeds into 〈exp(B)〉. By Theorem 3.3, the EA-class of 〈E(A)〉 is less than that
of 〈E(A)〉 o 〈E(A)〉 which is at most that of 〈E(B)〉. Consequently 〈E(B)〉 is not
embeddable into 〈E(A)〉. �

Lemma 8.9. If A and B are in R and ρ(A) < ρ(B), then 〈E(B)〉 does not embed
into 〈E(A)〉.

Proof. If ρ(A) < ρ(B), then ρ(A + Z) ≤ ρ(B). By Lemma 8.7, A + Z ≤ B and
therefore we have the desired conclusion by Lemma 8.8. �

This now leads to the following characterization of the restriction of ≤ to R.

Lemma 8.10. If A and B are elements of R, then the following are equivalent:

(1) A ≤ B.
(2) ρ(A) ≤ ρ(B).

Proof. Lemma 8.7 establishes that (2) implies (1). If A ≤ B, Lemma 8.4 gives
E(A) ≤ E(B) which implies that 〈E(A)〉 embeds in 〈E(B)〉 by Proposition 6.6.
The contrapositive of Lemma 8.9 with the roles of A and B reversed gives ρ(A) ≤
ρ(B). �

Remark 8.11. While Lemma 8.10 does not mention groups or embeddings between
them, it is convenient to use the group theory concept of the EA-class to establish
the implication. This is a matter of economy since we will eventually generalize the
lemma to S and add “〈A〉 embeds into 〈B〉” to the list of equivalents. On the other
hand, it not obvious how to provide a proof of Lemma 8.10 which avoids group
theory.

We now broaden our analysis to B and then to S .

Lemma 8.12. If A, B, and C are in S with B,C 6= 0, then

exp
(
A + B ∗ exp(C)

)
≤ exp

(
(A + B) ∗ exp(C)

)
.

Proof. Let m be the minimal element of B in exp
(
(A + B) ∗ exp(C)

)
. It suffices to

check that the map

π : exp
(
A + B ∗ exp(C)

)
→ exp

(
(A + B) ∗ exp(C)

)
⇁
m

defined by

π(i) =

{
im if i ∈ A

i if i ∈ B ∗ exp(C)

is an embedding.
First observe that the restrictions of π to A and B ∗ exp(C) are embeddings.

Furthermore, if i ∈ A and j ∈ B ∗ exp(C), then im < m ≤ j and hence π is order
preserving. Finally suppose that i ∈ A and j ∈ B ∗ exp(C). By definition,

exp
(
(A + B) ∗ exp(C)

)
⇁
m

(π(i), π(j)) =

min
(

exp
(
(A + B) ∗ exp(C)

)
(i,m), exp

(
(A + B) ∗ exp(C)

)
(m, j)

)
= min

(
1, exp

(
(A + B) ∗ exp(C)

)
(m, j)

)
= 1 = exp

(
A + B ∗ exp(C)

)
(i, j).

�
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Lemma 8.13. If A is in B and β < ρ(A), then there exist B,C ∈ B such that
exp(A) is equivalent to exp(B + C) and β ≤ ρ(B) < ρ(A). Moreover, if A is
indecomposable, then we can take C = A.

Proof. The proof is by induction on ρ(A) and then on the cardinality of A. Toward
this end, let A be given; there are now several cases to consider. If A = 0, then
the lemma is vacuously true and if A = Z then β = 0 and we can take B = 0 and
C = A.

Next suppose that A = B0 + C0 with both B0 and C0 not 0. If β ≤ ρ(B0), then
we are done. Otherwise, let γ be such that β = ρ(B0) + γ, noting that γ < ρ(C0).
Since the cardinality of C0 is smaller than that of A, we can apply our induction
hypothesis to find B1 and C such that exp(B1 + C) is equivalent to exp(C0) and
γ ≤ ρ(B1) < ρ(C0). Observe that B = B0 +B1 and C satisfies the conclusion of the
lemma:

β = ρ(B0) + γ ≤ ρ(B0) + ρ(B1) = ρ(B0 + B1) = ρ(B)

while basic manipulations with the arithmetic in B gives

exp(B + C) = exp(B0) ∗ exp(B1 + C) ≡ exp(B0) ∗ exp(C0) = exp(A).

Next suppose that A = exp(D+Z) for D 6= 0. Let n be such that β ≤ ω−1+ρ(D) ·n.
Set B = exp(D) · n. By our choice of n we have that β ≤ ρ(B) < ρ(A). Also, it is
clear that exp(A) ≤ exp(B + A) and hence it is sufficient in this case to show that
exp(B + A) ≤ exp(A). This follows from Lemmas 8.12 and 8.5 respectively:

exp
(

exp(D) · n+ exp(D + Z)
)

= exp
(

exp(D) · n+ exp(D) ∗ exp(Z)
)

≤ exp
((

exp(D) · (n+ 1)
)
∗ exp(Z)

)
≤ exp

(
exp(D) ∗ exp(Z)

)
= exp

(
exp(D + Z)

)
.

Finally, suppose that A = exp(D) and ρ(D) is a limit ordinal δ. Let γ < δ be
such that β ≤ ω−1+γ . By our induction hypothesis, there exist E,F ∈ B such that
exp(D) ≡ exp(E + F) and γ ≤ ρ(E) < δ. We set B = exp(E). As in the previous
case, it suffices to show that exp(B+A) ≤ exp(A). This again follows from Lemmas
8.12 and 8.5 respectively:

exp
(
B + A

)
≡ exp

(
exp(E) + exp(E + F)

)
= exp

(
exp(E) + exp(E) ∗ exp(F)

)
≤ exp

((
exp(E) + exp(E)

)
∗ exp(F)

)
≤ exp

(
exp(E) ∗ exp(F)

)
≡ exp

(
exp(D)

)
= exp(A).

�

Lemma 8.14. If A is in B and β < ρ(A), then there exist B,C ∈ B such that
exp(A) is equivalent to exp(B+C) and β = ρ(B). Moreover, if A is indecomposable,
then we can take C = A.

Proof. The proof is by induction on ρ(A). As before, the case ρ(A) ≤ 1 is trivial. If
β < ρ(A), then by Lemma 8.13, there exist X,Y ∈ B such that exp(X+Y) ≡ exp(A),
β ≤ ρ(X) < ρ(A), and Y = A if A is indecomposable. If ρ(X) = β, then we are done.
Otherwise, by our inductive assumption, there exist B,R ∈ B such that ρ(B) = β
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and exp(B + R) ≡ exp(X). If we set C := R + Y, we have that

exp(B + C) = exp
(
B + (R + Y)

)
= exp(B + R) ∗ exp(Y)

≡ exp(X) ∗ exp(Y) = exp(X + Y) ≡ exp(A).

If A is indecomposable, then we get exp(B + A) ≡ exp(A) from

exp(A) ≤ exp(B + A) ≤ exp(B + R + A) = exp(B + R) ∗ exp(A)

≡ exp(X) ∗ exp(A) = exp(X + A) ≡ exp(A).

So C = A fits the conclusion of the lemma. �

Lemma 8.15. If A is an indecomposable element of B, then there is a unique
B ∈ R such that A ≡ B.

Proof. First observe that if A ∈ B is indecomposable, then A = exp(X) for some
X. Uniqueness of B follows immediately from Lemma 8.10.

The proof of existence of B is by induction on ρ(A). If ρ(A) = 1, then A = Z and
A ∈ R. If A = exp(X) and X is indecomposable, then by our induction hypothesis,
there is a Y ∈ R such that Y ≡ X. Since B = exp(Y) is also in R, it follows from
Lemma 8.4 that A = exp(X) ≡ exp(Y) = B.

If A = exp
(∑

i<n exp(Xi)
)
, then by our induction hypothesis there are (Yi | i <

n) in R such that Yi ≡ Xi for each i < n. If there is no k < n − 1 such that
ρ(Yk) < ρ(Yk+1), then exp

(∑
i<n exp(Yi)

)
is in R and is equivalent to A.

Suppose now that there is an k < n − 1 such that ρ(Yk) < ρ(Yk+1) and
note that in this case n > 1. We first claim that exp

(
exp(Yk) + exp(Yk+1)

)
≡

exp
(

exp(Yk+1)
)
. To see this, observe that by Lemma 8.14 with A = exp(Yk+1)

and β = ρ(exp(Yk)) there exists a R ∈ B such that ρ(R) = ρ
(

exp(Yk)
)

and

exp
(
R + exp(Yk+1)

)
≡ exp

(
exp(Yk+1)

)
. Since

ρ
(

exp(Yk)
)
< ρ
(

exp(Yk+1)
)
≤ ρ(A),

we can apply our induction hypothesis to conclude that R ≡ exp(Yk) and thus
that exp

(
exp(Yk) + exp(Yk+1)

)
≡ exp

(
exp(Yk+1)

)
. Reindexing the remaining

summands and repeating the process if necessary, we eventually arrive at an element
of R which is equivalent to A. �

8.2. Representing elements of S in R. Next we turn to the general analysis
of elements of S . We need the following characterization of nontrivial products,
analogous to Lemma 4.5.

Lemma 8.16. Suppose A is in S and has cardinality at least 2 and maximum
element n. If A satisfies the following conditions:

• for all i < n, A(i, n) ≥ 1 and
• there exist m < n such that A(i, n) = 1 if and only if i ≤ m,

then A = B ∗ exp(C) for some nonzero B,C ∈ S .

Proof. If i ≤ m < j < n, then A(i, n) = 1 < A(j, n) and hence A(i, j) =
min

(
A(j, n)−1, 1

)
= 1. Furthermore, if m < i < j < n then A(i, j) ≥ min(A(j, n)−

1,A(i, n)) > 0. Thus A = B ∗ exp(C), where exp(C) consists of the elements of A
above m and B consists of the remaining elements. This holds even if m = n − 1.
In this case A = B ∗ Z = B ∗ exp(Z). �
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Lemma 8.17. If A 6= 0,Z is in S , then one of the following is true for some
nonzero B,C ∈ S :

(1) A = exp(B),
(2) A = B + C, or
(3) A is equivalent to B ∗ exp(C) and B ∗ exp(C) has the same cardinality as A.

Proof. Let A be given with maximum element n. We are done if there are no
i < j ≤ n such that A(i, j) = 0 since then A = exp(B) for some B. If A(i, n) = 0
for some i < n, then A is decomposable by Lemma 5.10 and we are finished.

Now suppose the first two conclusions of the lemma do not occur. In this case,
there is an i < j < n such that A(i, j) = 0 but there is no i′ < n such that
A(i′, n) = 0. Since A is in S , it must be that A(j, n) = 1 and in particular there is
a j < n such that A(j, n) = 1. Define D to be the restriction of A⇁n such that

D = {in | i < n and A(i, n) > 1} ∪ {i | A(i, n) = 1} ∪ {n}.
Clearly D ≤ A. Observe that D satisfies the hypothesis of Lemma 8.16 and thus
has the desired form B ∗ exp(C) for some nontrivial B and C.

Thus it is sufficient to show that A ≤ D. For each i < n with A(i, n) = 1, let ui
be the unique least element of A with i < ui ≤ n and A(ui, n) > 1. This always
exists since A(n, n) = ∞. We now perform a sequence of inflations of D by the
members of

J := {uni | i < n and A(i, n) = 1}
in increasing order and then remove some of the resulting conjugates so that the
base of the resulting X ∈ S consists of:

• all in such that i ≤ n and A(i, n) > 1 (where nn := n);
• all i(u

n
i ) such that A(i, n) = 1.

We claim that A isomorphic to X. Define π : A→ X by

π(i) =

{
in, i ≤ n, A(i, n) > 1,

i(u
n
i ), i < n, A(i, n) = 1.

The proof is completed by Claims 8.18 and 8.20 below. �

Claim 8.18. π is order preserving.

Proof. Let i < j < n. If A(i, n) and A(j, n) are both greater than 1, then π(i) =
in < jn = π(j). If A(i, n) = 1 and A(j, n) > 1, then i < ui ≤ j and π(i) = i(u

n
i ) <

uni ≤ jn = π(j). If A(i, n) > 1 and A(j, n) = 1, then i < j < uj , i
n < unj , and in

the inflation by unj , we have π(i) = in < j(u
n
j ) = π(j).

Finally if A(i, n) = A(j, n) = 1, then either ui = uj or ui < uj . In the first

case, π(i) = i(u
n
j ) < j(u

n
j ) = π(j). In the second case, i(u

n
i ) < uni < unj , so

π(i) = i(u
n
i ) < uni < j(u

n
j ) = π(j). �

Claim 8.19. If i < ui < j < uj, then D(i, uni ) = 1, and A(i, j) = 0.

Proof. The definition of inflation gives

D(i, uni ) = min
(
(A(ui, n)− 1,A(i, n)

)
= 1.

For the second conclusion, we have A(j, n) = 1 < A(ui, n), so

A(ui, j) = min
(
A(j, n)− 1,A(ui, n)

)
= 0.

Now i < ui and Lemma 5.8 gives A(i, j) = 0. �
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Claim 8.20. If i < j ≤ n, then X
(
π(i), π(j)

)
= A(i, j).

Proof. We first consider j = n. If either A(i, n) > 1 or both A(i, n) = 1 and ui = n,
then X(π(i), π(n)) = D(in, n) = A(i, n). If A(i, n) = 1 and ui < n, then by Claim
8.19 we have

X(i(u
n
i ), n) = min(D(i, uni ),D(uni , n)) = min(1,D(uni , n)) = 1.

For i < j < n, we first assume A(i, n) 6= A(j, n). Since X is in S , the previous
case implies

X(π(i), π(j)) = min
(
X(π(j), n)− 1,X(π(i), n)

)
= min

(
A(j, n)− 1,A(i, n)

)
= A(i, j).

If A(i, n) = A(j, n) > 1, then π(i) = in and π(j) = jn. In this case we have that
X(in, jn) = D(in, jn) = A(i, j).

Finally we have the case A(i, n) = 1 = A(j, n). If ui = uj , then X(i(u
n
j ), j(u

n
j )) =

D(i, j) = A(i, j). So we assume i < ui < j < uj . From the beginning of the proof

X(j(u
n
j ), n) = A(j, n) = 1. Since X(uni , n) = D(uni , n) = A(ui, n) > 1, we have

X(uni , j
(unj )) = min(X(j(u

n
j ), n)− 1,X(uni , n)) = 0.

Now i(u
n
i ) < uni , so by Lemma 5.8, we have X(i(u

n
i ), j(u

n
j )) = 0. By Claim 8.19,

A(i, j) = 0 = X(π(i), π(j)). �

Lemma 8.21. If A is in S , then there is a B ∈ B such that A ≡ B. Moreover, if
A is indecomposable, then B can be taken to be indecomposable.

Proof. The proof is by induction on the complexity of A. If A = Z or A = 0, then A
is already in B. If A = exp(B) for some B, then by our induction hypothesis, there
is a B′ ∈ B such that B′ ≡ B. Since exp(B′) ∈ B, by Lemma 8.4, A ≡ exp(B′). If
A = B+C, then by our induction hypothesis, there are B′,C′ ∈ B such that B′ ≡ B
and C′ ≡ C. Again, B′ + C′ ∈ B and A = B + C ≡ B′ + C′.

If A is not of these three forms, then Lemma 8.17 implies that there exist B,C ∈
S such that A ≡ B ∗ exp(C) and the cardinality of B ∗ exp(C) is the same as
that of A. As above, by induction hypothesis, we may assume that B and C are
both in B. If B = exp(X) for some X (which would necessarily be in B), then
B ∗ exp(C) = exp(X) ∗ exp(C) = exp(X + C), which is in B. Thus we may assume
that B =

∑n
i=1 exp(Xi) where each Xi is in B. Let i ≤ n be such that ρ(Xi) is

maximized. By Lemmas 8.10 and 8.15, we have that Xj ≤ Xi for all j 6= n. By
Lemma 8.5,( n∑

i=1

exp(Xi)
)
∗ exp(C) ≡ exp(Xj) ∗ exp(C) = exp(Xj + C) ∈ B.

�

We are now in a position to extend the definition of ρ to S : if A ∈ S set
ρ(A) := ρ(B) where B ∈ R and A ≡ B. Such a B exists by Lemmas 8.21 and 8.15
and is unique by Lemma 8.10. Lemma 8.10 now immediately extends to all of S .

Lemma 8.22. If A and B are indecomposable elements of S , then the following
are equivalent:

(1) A ≤ B.
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(2) ρ(A) ≤ ρ(B).

If A 6= 0 is in S , let A− be the result of removing the top element of A.

Lemma 8.23. If A 6= 0 is in S , then ρ(A−) < ρ(A).

Proof. We first show that A−+Z ≤ A. This is proved by induction on the complexity
of A. If A = A−+Z, there is nothing to show. Let n = |A|−1 and fix an i < n such
that A(i, n) > 0. Define B to be the restriction of A⇁n to {0, . . . , n − 1, in}, noting
that B− = A−. We now have that B(i, in) = A(i, n)− 1 and for all j < n,

B(j, in) = min
(
A(i, n)− 1,A(j, n)

)
≤ A(j, n).

Thus B ≤ A and B has smaller complexity than A. By our induction hypothesis
A− = B− ≤ A− + Z = B− + Z ≤ B ≤ A.

Now suppose that ρ(A−) ≥ ρ(A). Since A− + Z ≤ A,

ρ(A−) ≤ ρ(A− + Z) ≤ ρ(A) ≤ ρ(A−)

and it must be that ρ(A−) = ρ(A− + Z) = ρ(A). It follows from Lemma 8.22
that E(A−) ≡ E(A− + Z) and that 〈E(A−)〉 and 〈E(A− + Z)〉 are in the same
biembeddability class. This contradicts Lemma 8.8. �

8.3. EA-class calculations. If ξ < ε0, then Rξ ∈ R is the unique element with
ρ(Rξ) = ξ and Gξ := 〈Rξ〉; these are just restatements of the definitions of Rξ
and Gξ given in Section 2.5 which made only implicit reference to ρ. With these
definitions, it is immediate that Gξ+1

∼= Gξ +Z and by Proposition 9.3, Gξ embeds
into Gη if and only if ξ ≤ η.

We now verify the EA-class calculations asserted in Theorem 1. Observe that if
ξ < η < ε0, then EA(Gξ) ≤ EA(Gη). We first note the following lemma.

Lemma 8.24. If A ∈ S and |A| > 1, then

sup
B<A

EA(〈B〉) ≤ EA(〈A〉) ≤
(

sup
B<A

EA(〈B〉)
)

+ 2

and 〈A〉 has property Σ. In particular, if supB<A EA(〈B〉) is a limit ordinal, then
EA(〈A〉) =

(
supB<A EA(〈A〉)

)
+ 2.

Proof. Since B < A implies 〈B〉 embeds into 〈A〉, the first inequality follows from
the monotonicity of EA-class. To see the second inequality, define for each k ∈ ω

Bk := {aamax
p

i | i < |A| − 1 and 0 ≤ p ≤ 2k}.
As noted in the beginning of Section 6, if Ak is obtained from A by iteratively
inflating by amax, then Bk ≤ A−k . In particular by Lemma 8.23, ρ(Bk) < ρ(A). By
Lemma 8.22, Bk < A. Setting

N :=

∞⋃
k=0

〈aa
p
max
i | i < |A| − 1 and − k ≤ p ≤ k〉

we have that 〈A〉 is an extension of N by Z and N is an increasing union of groups
isomorphic to ones of the form 〈Bk〉. Thus

EA(〈A〉) ≤ EA(N) + 1 ≤
(

sup
k

EA(〈Bk〉)
)

+ 2 ≤
(

sup
B<A

EA(〈B〉)
)

+ 2

as desired.
The above argument in particular shows that every S-generated group is in the

smallest class that contains the abelian groups and is closed under the elementary
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operations of extensions and directed unions. Since the class of groups which has
property Σ includes this class, it follows that every S-generated group has Σ. �

Lemma 8.25. If ξ = ω(ωα)·(2n) for 0 ≤ α < ε0 and n < ω, then EA(Gξ) =
ω · α+ n+ 2 if α > 0 and EA(Gξ) = n+ 1 if α = 0.

Proof. Define

Ξ := {ω(ωα)·(2n) | 0 < α < ε0 and n < ω}

and set θ(ω(ωα)·(2n)) = ω·α+n+2. We verify by induction on ξ that EA(Gξ) = θ(ξ),
which is what is asserted in the first conclusion.

The least element of Ξ is ωω. In this case, Rωω = E(Z + Z) is the signature
of a standard pair with oscillation 2 and Gωω is the Brin-Navas group, which has
EA-class ω + 2 = θ(ωω). Next observe that if ω(ωα)·(2n) is in Ξ, then the next

element of Ξ is ω(ωα)·(2n+1). In particular, ξ ∈ Ξ is a limit point of Ξ precisely

when ξ = ωω
α

for some α > 1. If ξ ∈ Ξ is of the form ω(ωα)·(2n+1), then setting
ξ′ = ω(ωα)·(2n) we have Rξ = Rξ′ ∗ Rξ′ . By Proposition 7.1, Gξ = Gξ′ o Gξ′ . By
Proposition 3.3 and our induction hypothesis,

EA(Gξ) = EA(Gξ′) + 1 = θ(ξ′) + 1 = θ(ξ).

Now assume that ξ ∈ Ξ is a limit point of Ξ. In what follows ξ′ always represents
an element of Ξ. We first claim that

(8.1) θ(ξ) =
(

sup
ξ′<ξ

θ(ξ′)
)

+ 2.

If ξ = ωω
α+1

, then (8.1) follows from the fact that ξ = supn ω
(ωα)·(2n) and conse-

quently that

θ(ξ) =ω · (α+ 1) + 2 = ω · α+ ω + 2

=
(

sup
n
ω · α+ n

)
+ 2 =

(
sup
n
θ(ω(ωα)·(2n))

)
+ 2.

If ξ = ωω
α

for a limit ordinal α, then (8.1) follows from the continuity of the maps
α 7→ ωω

α

and α 7→ ω · α. Observe that in both cases supξ′<ξ θ(ξ
′) = ω · α is a limit

ordinal. Now observe that by Lemma 8.24 and our induction hypothesis

EA(Gλ) =
(

sup
ξ′<ξ

EA(Gξ′)
)

+ 2 =
(

sup
ξ′<ξ

θ(ξ′)
)

+ 2 = θ(ξ).

The first equality holds since supξ′<ξ EA(Gξ′) = supξ′<ξ θ(ξ
′) is a limit ordinal.

If α = n = 0, then ξ = ω, Rω = exp(Z + Z) = Z ∗ Z, Gω = Z o Z, and
EA(Gω) = 1. The last conclusion follows from Lemma 8.24 and arguments similar
to those above. �

We have established the following proposition.

Proposition 8.26. For each ξ < ε0, Gξ is elementary amenable and in particular
does not contain a copy of Thompson’s group F .
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9. The embeddability relation on S-generated groups

We now complete the proof of Theorem 1. We have seen that that if A and B are
indecomposable elements of R, then 〈A〉 embeds into 〈B〉 if and only if ρ(A) ≤ ρ(B).
Moreover, we have seen that if A is an indecomposable element of S , then there is
a unique B in R such that 〈A〉 is biembeddable with 〈B〉. To prove Theorem 1, we
must extend our analysis to groups generated by decomposable elements of R and
S . The following lemma is used in this section and the next.

Lemma 9.1. Let H be generated by a finite geometrically fast system S of functions
with |S| > 1 and a <-maximum element h in that g < h for every g ∈ S \ {h}. Let
N be the normal closure of S \ {h}. Then the following hold:

(1) There there is an embedding of H into PL+(I) so that the image of S has
a <-maximum element and so that every element of H \ N has extended
support identical to that of the image of h.

(2) For each f ∈ N \ {1} and each g /∈ N , we have [f, g] 6= 1. Thus the center
of H is trivial.

(3) The centralizer of every element of H \N is cyclic.

Proof. In this proof, 〈2〉 is the multiplicative subgroup of R generated by 2, and
3〈2〉 is the coset containing 3. We first adjust the elements of S slightly so that
after the adjustment it still satisfies the hypotheses, the isomorphism class of 〈S〉
has not changed, and each element of S is piecewise linear with all slopes used by
h coming from 3〈2〉 and all slopes used by elements of S \ {h} coming from 〈2〉.
We can do this by keeping all transition points the same and changing each bump
so that its graph is two affine pieces. If the pieces have slopes sufficiently close to
0 or +∞, as appropriate, then the feet of each new bump are small enough to be
contained in the feet of the bump it replaces. The dynamical diagram is unchanged
and the group generated isomorphic to the original.

All elements of H are of the form f = uhi with u ∈ N a product of elements of

C = {ghj | g ∈ S \ {h}, j ∈ Z}. It follows from the chain rule and the fact that h
is the identity on no open interval that every element of C has slopes restricted to
〈2〉. The element f = uhi is outside N if and only if i 6= 0. Thus every element
f of H \ N has slope in 3i〈2〉 everywhere the slope of f is defined. Hence every
f ∈ H \N has extended support equal to that of h, proving (1).

With f ∈ N \ {1} and g ∈ H \ N , the only way to have [f, g] = 1 is for the
orbitals of f to be among the orbitals of g. It then follows from Theorem 4.18 of [7]
that on each orbital J of g, there would be a piecewise linear bump b with support
J with f |J and g|J each a power of b|J . This is not possible because 3 to a nonzero,
rational power is never equal to such a power of 2, proving the first part of (2). The
center of H is trivial because there is no room for a nontrivial central element.

To prove (3), we add to the information in the paragraph above. For g ∈ H \N
and [f, g] = 1, we now know f /∈ N , and the extended supports of f and g equal
that of h. Thus the orbitals of f and g are identical. Again, Theorem 4.18 of [7]
makes each of f and g powers of a common root on each orbital. By Theorem 4.15
of [7], for each orbital J of g there is a unique minimum root rJ so that all roots of
f and g on J are integral powers of rJ . For each orbital J of g, let mJ and nJ be
the integers so that f |J = rmJJ and g|J = rnJJ .
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Assume by way of contradiction that there are orbitals J 6= K of f for which
mJ/nJ 6= mK/nK . Now

(f |J)
nJ = r

(mJnJ )
J = (g|J)

mJ , while

(f |K)
nJ = r

(mKnJ )
K 6= r

(mJnK)
K = (g|K)

mJ .

Thus a = fnJ g−mJ is the identity on J and not on K. From (1) we have a ∈ N .
But this contradicts the fact that a commutes with g /∈ N which by (2) means that
a /∈ N . Thus mJ/nJ = mK/nK for all orbitals J and K of g. Thus f is determined
by g and by the restriction of f to one particular orbital of g. By Theorem 5.5 of
[7], if J is an orbital of g, then the restriction of the centralizer of g to J is cyclic.
Thus the centralizer of g in H is cyclic. �

Lemma 9.2. If A,B ∈ R and ρ(A) < ρ(B), then 〈B〉 does not embed into 〈A〉.

Proof. Assume the lemma is false, and let (β, α) be the lexicographically minimal
pair for which there are A and B in R so that ρ(A) = α < β = ρ(B) and 〈B〉 embeds
in 〈A〉. Since we know that 〈C〉 embeds in 〈B〉 whenever C ∈ R has ρ(C) < ρ(B),
our choice of α and β must have β = α+ 1 and 〈A〉 embeds in no 〈D〉 with D ∈ R
and ρ(D) < ρ(A).

The result holds if α is finite since then 〈A〉 = Zα and 〈B〉 = Zα+1 and an
embedding of 〈B〉 in 〈A〉 is not possible. We thus assume that α is infinite with
Cantor normal form

(9.1) α = ωα0 + ωα1 + · · ·+ ωαk + n

with α0 ≥ α1 ≥ · · · ≥ αk > 0 and n ≥ 0.
We thus have

A = A0 + A1 + · · ·+ Ak + Z · n, and

B = A0 + A1 + · · ·+ Ak + Z · (n+ 1),

where, for 0 ≤ i ≤ k, each Ai is in R and indecomposable with |Ai| > 1 and
ρ(Ai) = ωαi .

With Gi = 〈Ai〉, we have 〈A〉 representable as G0+G1+ · · ·+Gk+Zn and 〈B〉 as
G0 +G1 + · · ·+Gk + Zn+1. We assume a homomorphic embedding φ : 〈B〉 → 〈A〉.
For 0 ≤ i ≤ k, we let πi : 〈A〉 → Gi be the projection homomorphism, and let
φi = πi ◦ φ : 〈B〉 → Gi.

If for all i with 0 ≤ i ≤ k, we have φi(Z
n+1) trivial, then φ embeds Zn+1 into Zn

which is not possible. Thus for some i with 0 ≤ i ≤ k and some element x ∈ Zn+1,
we have that y = φi(x) is a nonidentity element of Gi. Let Ai ∈ S have signature
Ai, let hi be the maximum element of Ai, and let Ni be the normal closure in
Gi = 〈Ai〉 of Ai \ {hi}.

We note that for all g ∈ B, we have [g, x] = 1. Thus [φi(g), y] = 1 in Gi. If
y /∈ Ni, then by Lemma 9.1(3) the centralizer Ci of y in Gi is cyclic. From this, we
have φi(g) ∈ Ci. This puts the image of φ in

〈A0〉+ · · · 〈Ai−1〉+ Ci + 〈Ai+1〉+ · · · 〈Ak〉+ Zn

which is isomorphic to the group generated by

E = A0 + · · ·+ Ai−1 + Ai+1 + · · ·+ Ak + Z · (n+ 1)

which is in R. Since (9.1) is in normal form and since ρ(Ai) > ω, we have ρ(E) <
ρ(A) = α. This contradicts our initial choice of α.
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If y ∈ Ni, then by Lemma 9.1(2) the centralizer Ci of y in Gi is contained in Ni,
and φi(g) is in Ni. This puts the image of φ in

〈A0〉+ · · · 〈Ai−1〉+Ni + 〈Ai+1〉+ · · · 〈Ak〉+ Zn.

Since 〈B〉 is finitely generated, we can replace Ni in the above by a suitable
finitely generated subgroup. There is an l so that φi(〈B〉) is contained in 〈Kl〉
where

Kl := {hmi
j

| h ∈ Ai, h < mi, and − l ≤ j ≤ l}.
If K ′l is similarly defined with −l ≤ j ≤ l replaced by 0 ≤ j ≤ 2k, then 〈Kl〉 is
isomorphic to 〈K ′l〉. But K ′l ≤ K ′′l where K ′′l is an appropriately chosen iterated
inflation of Ai. By Lemma 6.2, K ′′l and thus also K ′l are in S and ρ(K ′′l ) = ρ(Ai).
By Lemma 8.23, ρ(K ′l) < ρ(K ′′l ) = ρ(Ai).

We now have that 〈B〉 embeds in

〈A0〉+ · · · 〈Ai−1〉+ 〈K ′l〉+ 〈Ai+1〉+ · · · 〈Ak〉+ Zn.

Once again, since (9.1) is in normal form, we get that ρ(F) < ρ(A) = α. Again, this
contradicts our choice of α. This completes the proof. �

We are finally in a position to complete the proof of Theorem 1. Observe that if
A and B are in S , then

〈A + B〉 = 〈A〉+ 〈B〉 ∼= 〈B〉+ 〈A〉 = 〈A + B〉.

On the other hand, the symbolic manipulations which define ≤ on S do not typi-
cally yield A + B ≤ B + A. We deal with this as follows. Define S ′ to be all A in
S such that A =

∑
i<n Ai where Ai is indecomposable and if ρ(Ai+1) ≤ ρ(Ai) for

all i < n. Clearly, if A is in S , then 〈A〉 is isomorphic to 〈B〉 for some B ∈ S ′.
Putting this together with Lemma 9.2 gives the following proposition.

Proposition 9.3. If A and B are in S ′, then the following are equivalent:

(1) A ≤ B
(2) 〈A〉 embeds into 〈B〉
(3) ρ(A) ≤ ρ(B).

Moreover, for each A in S ′, there is a unique element B of R such that 〈A〉 is
biembeddable with B.

10. (F, ↪→) is not linear

We conclude this paper by showing that the class of those subgroups of F ad-
mitting a finite geometrically fast generating set is not linearly ordered by the
embeddability relation. Consider the groups B + Z and G with geometrically fast
generating sets specified by the dynamical diagrams in Figures 4 and 5 below. We
apply Lemma 9.1 embedding B + Z and G in PL+(I) so that {a, b} and {f, g, h}
satisfy (1) of the Lemma. Notice that 〈a, b〉 is the Brin-Navas group B; c generates
a copy of Z which commutes with the elements of B.

Theorem 9. With G and B + Z as above, the following are true:

(1) EA(G) = EA(B + Z) = ω + 2.
(2) There is no embedding of B + Z into G.
(3) There is no embedding of G into B + Z.
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Proof. We begin by verifying (1). Define NG to be the normal closure of {g, h}
in G and NB to be the normal closure of b in B. The group NG is generated by

C = {hfi , gfi | i ∈ Z}. If Cn = {gfi , hfi | −n ≤ i ≤ n}, then Theorem 3.3
implies supn EA(〈Cn〉) = ω and hence that EA(NG) = ω + 1. Since G is finitely
generated and G/NG ∼= Z, we have EA(G) = ω + 2. Similarly, the group NB + Z

is generated by D = {bai | i ∈ Z} ∪ {c}. An analogous computation shows that
EA(NB + Z) = ω + 1 and that EA(B + Z) = ω + 2.

Next we turn to (2). Assume there is an embedding B+Z into G. The centralizer
of c in B + Z includes B and is not abelian. By (3) of Lemma 9.1 the image of
c must be in NG. By (2) of Lemma 9.1 the image of every element of B must be
in NG since otherwise that image would not commute with the image of c. Thus
an embedding of B + Z into G has its image in NG. But EA(NG) = ω + 1 and
EA(B + Z) = ω + 2 so this is not possible.

We will verify (3) through a series of claims.

Claim 10.1. If G embeds in B + Z, then G embeds in B.

Proof. If an embedding exists it can be composed with the projection to B. The
kernel of this projection consists of all (1, ck) in B + Z. These are all in the center
of B+ Z and if the image of the embedding intersected this kernel, then the image
would have nontrivial center. But by (2) of Lemma 9.1, G has trivial center. Thus
the composition of the embedding with the projection is one-to-one. �

Next we introduce some tools used in [23]. Define the following predicates where
the variables are intended to range over elements of B + Z and G:

C(x, y) := p[x, y] = 1q,

D(x, y) := p(¬C(x, y)) ∧ C(x, xy)q,

T (x, y, z) := pD(x, y) ∧D(x, z) ∧D(y, z) ∧ C(x, yz)q.

We think of D(x, y) as saying that y “dominates” x in that a typical pair that
satisfies this is a fast pair of nested one bump functions with the orbital of y as the
larger of the two. We think of T (x, y, z) as saying that (x, y, z) forms a “tower” in
that a typical triple that satisfies T is a fast triple of nested one bump functions

a

b c

Figure 4. A diagram for B + Z

f

hg

Figure 5. The group G = 〈f, g, h〉
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with z the largest and x the smallest. While these are typical, they are not the
only examples and we need to know a little more about the functions that satisfy
these predicates.

Claim 10.2. If x, y ∈ F and D(x, y) holds, then:

(1) For each orbital J of x one of the following holds:
(a) J is disjoint from all orbitals of y,
(b) J equals an orbital of y with [x|J , y|J ] = 1, or
(c) Jy is disjoint from J .

(2) There is an orbital J of x such that Jy is disjoint from J .

Proof. Toward proving (1), fix an orbital J of x. Observe that Jy is an orbital of
xy. If Jy intersects J but differs from J , then x and xy can’t commute. If Jy is
disjoint from J , then (1c) holds.

Now suppose Jy = J . The chain rule implies that x and xy agree at the endpoints
of J . If x|J 6= xy|J , then Theorem 4.18 of [7] implies xy|J cannot commute with
x|J , contradicting D(x, y). It follows that x|J commutes with y|J . Moreover either
y|J is the identity or else J is an orbital of y. Thus if Jy = J then either (1a) or
(1b) hold.

Finally observe that if Conclusion (2) fails, then [x, y] = 1 by Conclusion (1).
This would contradict D(x, y). �

Claim 10.3. If x, y, z ∈ F and T (x, y, z) holds, then if J is an orbital of x properly
contained in an orbital K of y, then there is an orbital L of z that properly contains
K.

Proof. By Claim 10.2 applied to x and y, we have that Jy is disjoint from J . In
particular, x|K does not commute with y|K . By Claim 10.2 applied to y, z, and
the orbital K, we have that either K is an orbital of z and yz|K = y|K or else Kz
is disjoint from K. The former is impossible since it implies ¬C(x|K , yz|K) which
is contrary to C(x, yz). It follows that Kz is disjoint from K. Thus any orbital L
of z which intersects K contains all of K ∪Kz and hence properly contains K. �

Claim 10.4. Let x and y be in B \NB. Then D(x, y) is false.

Proof. Since {a, b} were chosen using (1) of Lemma 9.1, we know that the extended
supports of x and y are connected and identical. If D(x, y) held, then [x, y] 6= 1
implying that xy 6= x. Thus xy has connected extended support equal to that of x.

If [xy, x] = 1, then xy and x have identical orbitals. Thus y fixes all the transition
points of x. This implies that the derivatives of x and xy agree near the ends of
each orbital of y. But commuting bumps on the same orbital on which the slopes
agree near the ends of the orbital must be identical bumps by Theorem 4.18 of [7].
Thus xy = x and D(x, y) cannot hold. �

We return to the task of proving (3) of Theorem 9. By Claim 10.1 it suffices
to show that G does not embed in B. Suppose for contradiction that there is an
embedding φ : G → B. Recall that G is generated by f < g < h as illustrated in
Figure 5.

Claim 10.5. The φ-image of NG is contained in NB.

Proof. Observe that if x is in B \NB , then for all z ∈ B, D(x, xz) is false by Claim
10.4: since NB is normal xz /∈ NB . Since both D(h, hf ) and D(g, gf ) are true, we
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have φ(g) ∈ NB and φ(h) ∈ NB . The conclusion of the claim now follows from the
fact that NG is the normal closure of {f, g} in G and NB is normal in B. �

For each i, define fi := fh
−i

. Observe that

supt(f0) ( supt(f1) ( supt(f2) ( · · · ( supt(g).

Define A := {fi | i ≥ 0} ∪ {g} and note that all elements of A are in NG and must
have φ-images in NB .

For any triple x < y < z from A, we have T (x, y, z) and hence T (φ(x), φ(y), φ(z)).
It follows from (2) of Claim 10.2 and Claim 10.3 that there are intervals I0 ( I1 (
I2 ( · · · ( J where each Ii is an orbital of φ(fi) and J is an orbital of φ(g).

However the orbitals used in NB come in families Jn indexed over Z with each
orbital in family Jn contained in an orbital in family Jn+1. Since orbital I0 of
φ(f0) must come from some Jm and orbital J of φ(g) must come from some Jn

with m < n, there are only finitely many different orbitals available in NB between
I0 and J . This contradicts the assumption that there is an embedding of NG into
NB . Since this was shown to follow from the existence of an embedding of G into
B + Z, we have completed our proof of (3). �

Remark 10.6. Theorem 9 does not provide a counterexample to Conjecture 2. If we
let a = g4 and b = f4 be the generators of Gτ4 as shown in Figure 1, then the reader

can check that A = {a2, ba−1b−1

, bab} is fast and that after extraneous bumps are
excised from A, the dynamical diagram for A is identical to that of {f, g, h}, the
generating set for G. Thus G embeds in Gτ4 .
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