Euler Characteristic of Poly topes
(1) A polytope is any shape that contains any line between two points inside of it, and has corners and edges.

(2) Look at the paper in front of you. Do you recognize any of the shapes? What are they
(3) CRATT TIME! Make the polytopes. Are the polytopes you made predictions aboty propend up to be what you thought they were? (tetrahedron us. square pyramid)
(4) Now, we are going to count \#faces-\#edges+\# vertices. BEFORE YOU START, do you expect this number to be the same for all the shapes you made? Why ar why not?
(5) BEGIN! What do you get?

Planning:
\rightarrow Will provide EACH group with a tetrahedron and a cube template. Will also have MANY other templates, distributed among the graps, so they can compare.

- Scissors
- Tape
- Printats. LOTS of them!

Planar Graphs
(1) Let's imagine our tetrahedron is a baboon. We "pop" the bolos and stretch it flat.

We will think of the popped face as the "outside" of the following picture.

and we count \# regions - \# lines + \# vertices
(2) Do this for another one of you polytopes (preferably one that's easier to "puncture"). What do you get? Is this what you expect, given our finding from before lunch?
(3) Consider a picture with dots and lines, where the lines do not cross!

Cant again.
(4) Make your own picture. Try this. Compare with other graps. Int this weird?
(5) Why do you think this works?

