Young Diagrams
Question (1): How many ways can you use 6 squares to make a shape that fits into a NW corner and the \# of squares

Ex: \square
Clarification: This works \square

Question (2): How many ways can you add whole numbers to get G', if we doit care about ordering. conley the numbers used.

Question (3): Do this again for 5,4 .
Question (4): Can you pair the your sums and these "triangle-like" shapes pertedtly?
As in for every? shape, can you provide
exactly one sum? exactly one sum?

Lattice Paths
\rightarrow Let them draw the lattice paths on their own in groups.
\rightarrow Count the strings together
Question (1): How many ways can you go from the SW corner to the NE comer of a 2×3 grid, only traveling in N and E "steps!"

Ex:

Non-Ex:

When we get to " n choose m," return to this exercise. Ask them to count the number of such paths.

Question (2): How long is each of these paths, in number of steps?

Csecret followup question. Let them think about this first be one divulging: How many of those steps were i's? O's?)
Question (3): How many "Strings" of O 's and I's are there, if we require 3 O's and 2 I's?

Clanfication: A "string" is a list of O 's and and i's, such as 01001 or 00110
To make this task sorechet faster, do like 3 examples together, so they orly here to come up with 7 .

Also consider doing this task as a larger group
Question (4): How long are these strings?
Question (5): Can you think of a paining between Question and strings? Check your answer wing with a
paths arden
2×2 grid. $P_{2 \times 2}$ grid.
Question 6: Make a prediction for 3×4. What would that paining preork like? (DO NOT
COUNT)

