3 week Plan
\rightarrow This week: Permutations \& Triangular numbers
\rightarrow Next week: Choosing \& Returning to lattices
\rightarrow Two weeks from now: Triangulating polygons \& Complete graps Creetuming to triangular numbers)
Permutations
(1)Provide 4 sets of 3 distinct objects. These can be, for example, some of our board game pieces.
(Emily: If this is done before lunch, there is a vested interest in not losing the board game pieces?
(2) Ask them, alongside the board, to count the number of orderings.
(3) Have them repeat for 2 . Do they have prediction for 4?
They shared think of strategies for counting.
For example last time, with the stings, thinking abot if there was a 1 firings first or a zeno first.
(4) Use this moment to teach the meaning of factorial.

ASK THEM TO KEEP THEIR
PERMUTATIONS ON THE BOARD
(5) What if, we had to put the objects in a circle? Draw a picture on tote board as an example.
(6) Maybe introduce a forth object.
(7) What is different about arranging in a
circle?
lan you choose orderings that "go with" each circle? Draw lings to connect them in the 3 case.
How many orderings "belong with" each circle?
Triangular Numbers
(1) How would you draw the sum $1+2+3+4$?

Hint: Think about last time. Partition shapes.
(2) How wowed you compute the number of squares in this triangle?

$$
\approx \frac{n}{n} n^{2} / 2+n / 2=\frac{n(n+1)}{2}
$$

How can you use the fact that these squares make a triangle to come up. with an answer to this question?
(3) Let's do this for 5 !
(4) Make a prediction for 6 .
(5) Can you do this "recipe" for a triangle of squares of ANY SIZE? Test it w/ 6 .
(6) What about the sum $2+4+6+8$, etc? Draw it as a triangle

$$
\frac{n(2 n)}{2}+n=2\left(\frac{n^{2}+n}{2}\right)
$$

(7) Repeat! for $3+6+9+\cdots$ etc.

$$
\frac{n(3 n)}{2}+\frac{3 n}{2}=3\left(\frac{n^{2}+n}{2}\right)
$$

Do this to keep the fast kids busy. At the end, pull the wool from their eyes.

$$
\begin{aligned}
& 2\left(\frac{n^{2}+n}{2}\right)=2(1+2+\ldots+n)=2+4+\ldots+2 n \\
& 3\left(\frac{n^{2}+n}{2}\right)=3(1+2+\ldots+n)=3+6+\ldots+3 n
\end{aligned}
$$

