Apples to Oranges
(1) Imagine you have 6 apples in a line.

You have a magic wand and can turn 2 of them into oranges.

$$
050 B 88
$$

How many, different ways can you turn 2 apples to oranges?
(2)How many different ways can 6 be broken into 3 numbers, where order matters, and (*) we include zero? Consider doing together
(3)Remember when we paired things? find a pairing between apple/orange diag trams and the sums youve written
(4) Try again, turning for apples into oranges.
(5) Predict a pairing of these with sums where (*) you break 2 into 4 pieces.
(6) How, I give you a magic wand that tums all apples to oranges and oranges to apples.
Discuss with your graps why this magic wand is the key to $g(\neq p)$ and $(*)$ being the same?

Sums of Odd Numbers
(1) What is $1+3$? $1+3+5$? $1+3+5+7$?
(2) Do you notice something? What is it?

Try a few move if you need move evidence.
(3) Predict what $1+3+5+\ldots+99$ is. So th odd number
(4) How would you draw the number 4^{2} ? or 5^{2} ?
(5) How wald you fit $1+3+5+7$ into your
drawing of 4^{2} ? you
(6) Write a formula, using n and your pictures for the sum of the first n odd numbers.
"You had an idea for 50 odd numbers, all we are doing, really, is replacing 'so' with a letter to say in very few words that." this process can be done for ANY number."
(7) (for the fast kids) Last week, we used a shape to visuculize sums like

$$
\begin{aligned}
& 1+2+3 \\
& 1+2+3+4 \\
& \text { etc... }
\end{aligned}
$$

We used its area to compute the sum. This made calculations like $1+2+3+\ldots+50$ actually doable.
In the spirit of step $p_{s 0}$, (5), can with wi, write

