Increasing Trees
(1) Consider a "root picture" like the one below
 at the top

$$
\downarrow \begin{aligned}
& \text { increasing } \\
& \text { order }
\end{aligned}
$$

\longrightarrow increasing order
(2) Here is a game: "I provide a list of numbers from 1 to " n ".

$$
\text { e.g. } 45132
$$

You need to turn this into a "root picture".
Any number in the list goes directly underneath the number that is closest on its left and smaller than it.
(0) 45132
e.g. 2 goes below 1

3 goes below 1

3 does NOT go below 2, because 2 is NOT to the left of 3 .
If it helps, can think of a secret zeno here
PLAY THE GAME: In groups,
\rightarrow one person provide a list of $1,2,3,4$
\rightarrow everyone figure out the "root picture"
\rightarrow take turns giving lists
(3) Refresher on factorials, and ordering objects. As a group, conjecture/guess how $0-7$? mon ny. Using pictures the know about \# of lists.
(4) With your groups, VERIFY the guess for O-3.

Draw the root pictures and mated them with orderings of $1,2,3$.

Dilworth's Theorem
(1) Let's take the words tan, an, at, a. I want to make a picture where the longest word is on top, and a line connects words that ave contained in are a nother.

that red line is not helpfre, and to avoid cluttering ow picture, we do not draw it.

Together, let's all do smart, star, art, at, am, mat.
It is important that we do NOT include both art and tar. They have the same letters. ($*$)
(2) Keeping the rube (*) in mind, come up with a word picture with your group.
(3) A "chain" is a path in your picture (from top to bottom).

(3) An "anti-chain" is a group of words where no top \rightarrow bottom path connects two words.

(4) Ulsing your pictures, find
(1) What is the largest size of an
antichain you can make? antichain you can make?
(2) what is the smallest number of chains needed to use every word?

Egg.

2 chains
largest anti-chain has 2 things. (Both the green and blue antichains have 2 things)
(5) Compare as a big crap.

