Triangular Numbers: The return
(1) How many lines can you draw between the vertices of an equilateral triangle, square, regular

Be sure to cant the edges we already have.
(2) Do these numbers look familiar? Quirk refresher of triangular numbers if no.
(3) Now, ow goal is to find the sum $1+2+3$ hidden, in \boxtimes and $1+2+3+4$ hidden in \otimes

Color the lines in your picture of in a way that represents $1+2+3+4$.

$$
4+3+2+1
$$

(4) Predict the number of edges for a regular hexagon. Check using your coloring method!
(5) What about a regular 50-gon?
for the students the nt are very fast:

adding this line cuts five regions in two.

$$
n=4, p=11
$$ there

ewikipedia
triangular \#s +1

Pigeonhole Principle
(1) I have 6 pigeons that I need to stick in to 5 holes. How do I do it?
(2) In your grans discuss the following:
"I have 7 pigeons and 2 holes. Must there be a hole with at least 4 pigeons?
"I have 7 pigeons and 3 holes. Must, there be a hole with at least 3 pigeons?"
(3) Without actually drawing ale of the pigeons, how can we know there must be a hole with at least 6 pigeons if I have 101 pigeons
(4) A classroom holds 30 people. How do I know at least 3 share a birth month?
(5) A stadium holds 1000 people. How do I know at least 3 people shore a birthday?
(flint: $365 \times 2=730$)
(6) (Can definitely skip. Fan the fast kids) There ane at most 100,000 hairs on a human head.
The city of Buffalo, NY has 250, 000 people. How do I know at least ${ }^{3}$, have exactly the same number of hairs on their head?
(7) Come up with your own scenario that can be solved with this technique!

