Pepth-First search Game
(1) Consider the "root diagram"

We will describe a recipe for filling the circles with numbers.
\qquad Note: start by drawing 4 copies of this to keep of record the kids can refer to

Label the top circle with a 1. Add numbers in increasing order, $\frac{\text { left as much as creasing order possible intel going }}{\text { you }}$

When you reach the bottom, backtrack (draw arrows for cavity)

(2) Try the following (notice the root pictures have two "children" at every node)

(3) Come back! We can turn these diagrams with numbers into lists of +1 's and -1 's. $G 0$ in numerical order. $L \rightarrow+1, R \rightarrow-1$

(4) What do the numbers in these lists sum to? If we "cut" the lists short, what is true about those sums? (Hint: Are these "cut" sums ever negative?
(5) Try going backwards! Turn $+1+1+1-1-1-1$ and $+1-1+1-1+1-1$ into root pictures

they may be tempted to go S but remind them this is not a "root diagram". Every dot needs two lisa. we "pick up where left off." 0 , then must nature to top ob, then go firm or

Back to Lattice Paths
(1) Brief refresher on lattice paths.

sW comer to NE corner. only N \& E steps.
(2) How can I torn the lists of +I's and - 1's into lattice paths?
(Elena \& Praine: Maybe discs connection to binary strings with n 1's and m O's to make lattice poth in $n \times m$ grid)
(3) What do you notice about the dimensions of the grid the path is in?
(4) Draw in the "diagonal" of the square
 what do you notice about the lattice paths.
(5) What can we say about the number of lattice paths that do do not the go (below /above) the diagonal compared to the number of root diagrams from before lunch?
(Consider breaking into ${ }^{2}$ steps, with intermediate (6) (extra bonus, if time) Tip your lattice paths sideways (may need adjusting, depending on the convention the kids close, as in paths above or below diagonal).

"cut" sum never goes below zero \Rightarrow "sideways" lattice path height never
dips below zero. dips belau zero.

