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1. INTRODUCTION

This document aims to guide the reader into the world of polytopes, focusing on the
familiar setting of polygons, the two-dimensional polytopes. We will assume the reader is
comfortable with the Cartesian plane and ordered pairs of numbers. Let’s get right into it!

Intuitively, polygons are certain 2-dimensional shapes. You may think of things like:

However, general polygons can look less uniform. The following is a more exotic polygon:
1
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Before, we move, on try formulating your own definition of the word polygon based on your
previous experience in math classes (and use the above confirmed polygons as inspiration!).

Definition 1.1. A polygon is ...

Exercise 1.2. Using your definition, try to guess which of the following should be considered
polygons:
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It turns out there are different answers to this question that lead to completely different
definitions the word polygon. All but one of the above regions may be considered examples of
different kinds of polygons! In this document, we will focus only on one particularly elegant
definition: convex polygons. For this, we turn to the notion of convex sets.

2. CONVEX SETS

Consider a collection of points of the Cartesian coordinate plane, that is a set of tuples
of the form (a,b) where a and b are real numbers. We will call such a collection a subset of
R?2, where R is a fancy shorthand for the set of all real numbers, and the 2 indicates we are
dealing with ordered pairs. You can think of R as the usual number line, and R? as a flat
plane with the usual x and y coordinate axes. We will work with subsets of these two sets.

For example, we may think of the line L connecting the points (0,0) and (3,2). To view
L as a collection of ordered pairs (that is a subset of the plane R?), we note that L is the
subset of all pairs (z,y) such that y = 2/3x. In mathematical set notation, we would write

L:K%wER”yzgﬂ

In case the reader is not familiar, let’s break that notation down:

of all ordered pairs (x,y) of real numbers

L={(z,y) eR?|y= 2z}

]

L is the set such that y = %x
In the Cartesian plane, we usually think of the line L through its graph:
A
—+3
— 2 °
—-1
I [
DR T >
41 2 3
y

As another example, we could think of the set
S={(z,y) eR*|0<zr<2and 0 <y <2}
together with its graph
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Exercise 2.1. Use set notation to describe the following sets:

a) The set S of all points lying on the graph of the function 2.

b) The set T of all points with positive x component.

Definition 2.2. We say a subset P of R? is convez if for any points p,q € P, (read p and ¢
in P), the line segment between p and ¢ is contained entirely in P.

For example, several of the sets we have drawn so far are convex. Try drawing a few line
segments between points inside each of the sets below. Being convex means that your line
segments should never have to leave the shape.

Exercise 2.3. Which of the following sets are convex and which are not?
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3. POLYGONS

Now that we understand what is and is not a convex set, let’s try to create convex sets
from points. As a warmup, what is the smallest convex hull containing the points (0,0) and
(3,3)? Draw it below!



INTRODUCTION TO POLYGONS 7

When we only have two points, the smallest convex set containing them is just the line
segment connecting them. This is the minimum that any convex set containing the points
would have to contain, and it is convex.

Example 3.1. What happens if we have three points not on a line? Let’s call them p, q,
and r.

v

[ ]

r
Denote by S the smallest convex set containing p, ¢, and r. At a glance, it looks like S
should be the triangle with corners p, ¢, and r. Let’s try to see why!

Since S is convex, p,q € S means the line segment pg should lie entirely in S. Draw this!
Since r € S also, the line segment between r and any point on pg should also lie entirely in
S. Draw some of these segments! Based on your drawing, conclude that S must contain the
triangle with corners p, ¢, and r. Since the triangle is convex, it must be the smallest convex
set containing p, ¢, and r.

Definition 3.2. Given points pi,ps,...p, € R? (think of each p; as a pair (z;,y;)) their
convez hull Conv({p1,...,p,}) is the smallest convex set containing py, pa, . . ., Pn.

Based on Example 3.1 Conv({p, g,r}) is the triangle with corners p, g, 7.
We can now give a formal definition of polygons.

Definition 3.3. A (convex) polygon is a subset P of R? of the form P = Conv({p1,...,pn})
for some points py, ..., p, not lying on a line.E|.

4. VERTICES AND EDGES

Based on the definition, what do polygons look like? They look roughly like flattened cir-
cles. They have a number of corner points connected by straight lines lying on the boundary
of the polygon. The corner points are called vertices, and the boundary line segments are
called edges. Let’s think about this with an example.

Example 4.1. Consider the points v; = (0,0), vy = (1,0), v3 = (0,1), and vy = (1,1). The
convex hull P = Conv({vy, v, v3,v4}) is the unit square.

IWhat we are calling polygons are more generally known as convexr polygons. This distinguishes them
from other definitions of polygon, such as concave polygons or self-intersecting polygons, that we will not
cover in this document. The intrigued reader may enjoy the demonstration on the website https://www.
mathopenref . com/polygonconcave.html


https://www.mathopenref.com/polygonconcave.html
https://www.mathopenref.com/polygonconcave.html
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U3 U4

U1 Vo

The vertices of P are vy, v9,vs3,v4. The edges of P are the boundary of the square, the
line segments U103, U1U3, Uavy, and v3v4. Note that vov3 is not an edge. One property that
characterizes vertices of a polygon is that leaving one out from a convex hull produces a
smaller convex set. For the square,

U3 U4
Conv({v1,va,v3}) = Conv({vy,va,v4}) =

U1 V2 U1 )

v V4 VU3 oz
Conv({v1, vs,v4}) = Conv({v2,vs,v4}) =

U1 V2

which are all strictly smaller than Conv({vy, v2,v3,v4}). The vertices are the smallest set of
points defining a given polygon. For example,

P = Conv({vy, va,v3,v4}) = Conv({vy, ve, v3,v4, (1/2,1/2)}).

Exercise 4.2. Consider the polygon P = Conv({(0, 1), (0,2),(1,0), (1,1),(1,2),(2,0),(2,1)}).
Draw P below. What are the vertices and edges of P?
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Vertices of P:

Edges of P:

5. INTEGER POINTS

Given a polygon P, one can look at the collection of points lying in P that have integer
coordinates, called the integral or integer points of P. The set notation for the integers is
Z, and the set notation for “and” is M. Consider the set of integer points in P. This is the
set of ordered pairs (x,y) such that  and y are both integers AND (z,y) lies in P. In set
notation, this set is denoted

PNZ2

We will be interested in the number of integer points, denoted |P N Z?|, and will connect
this number to the area of P later on.

This is of particular interest when the vertices of P are themselves integer points. In this
case, the polygon P is called an integral polygon.

Exercise 5.1. Let P = Conv({(0,0),(4,0),(0,4)}). Draw P below and identify its integer
points. What is |P N Z?|?
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Ehrhart theory is a field of discrete math that asks about how |P N Z?| changes as P gets
bigger. To make getting bigger precise, consider the following definition.

Definition 5.2. For any integer ¢ > 0 and any polygon P, define the tth dilate of P to be
the polygon tP defined by

tP ={(tx,ty) : (x,y) € P}.

We will be interested in the numbers |t P NZ?| as t increases. Since these numbers depend
on t, we will give them the following function style notation.

Definition 5.3. For a polygon P, denote by Lp(t) the function of ¢ given by Lp(t) = [t PNZ?|
for all integers t > 0.

Example 5.4. Let’s start with our good friend the square P = Conv({(0, 0), (1,0), (0,1), (1, 1)}).
The only integer points in P are the vertices, so Lp(1) = 4.
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We similarly observe that Lp(2) =9 and Lp(3) = 16:
2P 3P
A A
3-e- ° ° o 3 ° °
2 ® o 2-¢ ° ° ®
1o ® ® ) 1o ® ® ®
Py 4 5 Py 4 >
T T T T o
1 2 3 1 2 3

Exercise 5.5. For the square above, show that Lp(t) = (¢t + 1)? for all integers ¢t > 1.

Example 5.6. Let’s try something harder. Consider the triangle P = Conv({(0,0), (1,0), (0,1)}).
What happens to the number of integer points as we grow the triangle to Conv({(0, 0), (8,0), (0,8)})?
That is, what are the values Lp(1), Lp(2),...,Lp(8) and how do they differ?

Below is shown the overlay of all the polygons tP as t goes from 1 to 8. Fill in the chart
with the integer point counts of each.
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tP N Z?| t tP N Z?|

~ 0 | N

o | | O | Ot
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Exercise 5.7. Can you give an explicit formula for |[PNZ?| as a function of ¢? Even harder,
can you express it as a polynomial in ¢? In either case, try to argue (prove) why your answer
1s correct.

The previous two examples are both special cases of a general theorem about polytopes.

Theorem 5.8 (Ehrhart’s Theorem (for polygons)). If P is an integral polygon, then Lp(t)
1 a quadratic polynomial in t, called the Ehrhart polynomial of P.

This theorem is valid for any polytope, not just the squares and triangles.

Example 5.9. For instance, in the case of the “exotic” polytope from earlier:

A P

I

R

[ ]
I O I
12 3 45 6 78 9101112131415

While much less obvious than a square or triangle, P has Ehrhart polynomial

203 19
Lp(t) = 71’2 -+ 7.73 —+ 1,

a quadratic polynomial as expected.

We now turn to a similar question. Given a polygon P, call the interior P° all the points
of P that do not lie on an edge or vertex. Instead of counting integer points in P, we want
to count integer points in P°.

Example 5.10. Let’s return our best pal, the square P = Conv({(0,0), (1,0), (0,1), (1,1)}).
The only integer points in P are the vertices, so Lpo(1) = 0, since we do not want to count
vertices.
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We similarly observe that Lp.(2) =1 and Lp.(3) = 4:
2P 3P
A A
3-e- ° ° o Jeo e e @
2 ® o 2-¢ ° 'Y ®
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Py & 5 o Ps >
T T T T o
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Exercise 5.11. For the square above, show that Lp.(t) = (t — 1)? for all integers ¢ > 1.

Example 5.12. Can we answer the same question for a triangle? Recall the triangle
P = Conv({(0,0),(1,0),(0,1)}). What happens to the number of integer points in the
interior as we grow the triangle to Conv({(0,0), (8,0), (0,8)})? That is, what are the values
Lpo(1),Lpo(2),...,Lpo(8) and how do they differ?

Below is shown the overlay of all the polygons tP as t goes from 1 to 8. Fill in the chart
with the interior integer point counts of each.
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t [tP° N Z2|

=0 W | DN

Exercise 5.13. Can you give an explicit polynomial formula for |P° N Z?| as a function of

t? Try to prove your answer is correct.

t

[tP° N 72|

co | 1| O | Ot
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Compare your answers for the square and triangle interiors with your answers for the
square and triangle. Do you see any relation between Lp(t) and Lpo(t) when P is the square
or triangle?

It turns out that Lp(t) and Lp. are very closely related for any polygon! The proof of the
following theorem is involved, so we refer the interested reader to [1] for the details.

Theorem 5.14 (Ehrhart’s Reciprocity Theorem (for polygons)). If P is an integral polygon,
then Lpo(t) = Lp(—t) for all integers t > 0. In particular, Lp.(t) is a quadratic polynomial
mn t.

Example 5.15. Let P be the unit square P = Conv({(0,0), (1,0), (0,1), (1

ple we found Lp(t) = (t + 1)%. In Example we observed Lpo(t)
easily check that reciprocity holds:

,1)}). In Exam-
(t—1)%. We can

Lp(—t) = (=t + 1) = (—(=t + 1))’ = (t = 1> = Lpa(t).

6. AREA

For any polygon P, one can ask how much space is covered by P. This quantity is called
the area of P. For some special polygons, you should already know how to find the area.

Example 6.1. Let P, , and R be the polygons

Find the areas of P, ), and R using your prior knowledge of geometry.

In general though, how on earth would you do this? Not all polygons have nice geometric
formulas in some variables for their areas. In this section, we discuss two ways of computing
the area of any polygon using integer point counts.

6.1. Pick’s Theorem. We first give a method for calculating areas by counting boundary
and interior integer points of a polygon. Given a polygon P, let i(P) denote the number
of integer points of P lying in the interior of P, and let b(P) denote the number of integer
points of P lying on the boundary of P.

Theorem 6.2 (Pick’s Theorem). If P is an integral polygon, then

b(P)

Area(P) = i(P) + 5

— 1.

Example 6.3. In the polygon P below, we have i(P) = 93 (the red points) and b(P) = 19
(the blue points).
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A P

<

| =1L

[ | |

T T
12345 6 7 8 910 111213141516
By Pick’s Theorem,

19 203
A P)=934+—-1=—.
rea(P) + 5 5
Exercise 6.4. What is the area of the polytope P below?

P

— N W R Ol O~ 00

123456789

6.2. Ehrhart Polynomials. Let’s return to Example[6.1] Let P, @, and R be the polygons
P = Conv({(0,3),(2,0),(0,0)})
Q = Conv({(=1,0),(3,0),(=1,1),(3,1)})
R = Conv({(—2,0),(2,0),(0,-2),(0,2)})
Let’s look at their Ehrhart polynomials:
Lp(t) =32 +3t+1
Lo(t) =4t* +5t + 1
Lp(t) = 8% + 4t + 1.
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What do you notice about these polynomials versus the areas that you calculated in Example
Using your observation, complete the following theorem statement:

Theorem 6.5. If P is an integral polygon, then the

of Lp(t) equals the of P.

Proof. Let’s talk a little about the reason why this theorem would be true. If you haven'’t
taken calculus, you may wish to skip this explanation. What we’re doing when we compute
Lp(t) is growing P by a factor of ¢t and counting the integer points ¢P contains. What if
instead, we did the opposite. Let’s shrink the all the integer points by a factor of ¢, and count
how many land inside P (without changing P). Consider for example P the unit square:

o PR P
1 ° ° °
.|

N}

...O...CN

1 2 1 2

e How do the numbers of contracted integer points inside of P compare to the number
of integer points in the dilates of P in Example [5.10]/

e What does the picture look like as we contract the Z? more and more?

For example, here is the tenth dilation:
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Imagine we associate to each dot a tiny % X % box with bottom left corner at the dot. How
does the area of all these boxes compare to the area of P? We demonstrate on the polygon
from earlier:

A A
10— 10—
9 | el 9 v(/lkﬁo1:1:::1:::1
i: i: D R R R R R R R R
O 0 000000000 0000000000000 QO OV
6 \ 6 .121:1:1:IL:ZL:ILLL:::‘\K
5 5 ® ° e o o e o o e o o e o o ° ° e o o
® 0 0 0000000000000 00O ONOEONOSEOSNOSIOPIID
477 477 ® 0 0 0000000000000 00O ONOEONOSEOSNOSIOPIID
3 377 \.\1’1.1.1.1.1.1.1.1.1.1.1.
?77 fii @0 0000000000000 00
1 . R e s R
1 23 45 6 7 8 91011121314 1516 1 23 45 6 7 8 910 111213141516

As we contract Z? more, the % X % boxes get smaller and we cover P with more of them.
For large enough ¢, the area of P should be roughly the same as the number of tiny boxes
times the area of each box.

e The number of tiny boxes is Lp(t), one for each dot in P N 172,

e The area of each tiny box is t%

Say Lp(t) = at® + bt + c. Then for large t,

1 b ¢
Area(P) ~ t—QLp(t) =a-+ " + e
But for large enough ¢, both b/t and ¢/t? are very small, so Area(P) = a. If you know limits,
then you should recognize that we are taking one here as ¢ — oo and can conclude that
Area(P) = a. O

Example 6.6. Compare the area found in Example[6.3] to the Ehrhart polynomial found in
Example [5.9) Both methods for finding area give the same answer!

The following exercise guides the reader through a proof of Pick’s Theorem. We recall
Pick’s Theorem below for convenience.
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Theorem 6.7 (Pick’s Theorem). If P is an integral polygon then
b(P)
2

where i(P) is the number of integer points in the interior of P and b(P) is the number of
integer points on the boundary of P.

Area(P) = i(P) + -1,

Exercise 6.8. Follow the steps below to give a proof of Pick’s Theorem.
By Theorem 5.8 we can we write

Lp(t) = a1t2 + (th + as
for some numbers ay, as, as.
(i) What is ag?
(ii) By Theorem what is a;?
(iii) Use Theorem to write a formula for i(P).
iv)
(v)

(iv) Derive a formula for b(P) your formula for i(P).

v) Deduce Pick’s Theorem.

7. TRIANGULATIONS

In this section, we discuss triangulations, subdivisions of a polygon into triangles. The
intuition of a triangulation of a polygon P is very simple: it is a collection of triangles that
exactly cover P and do not overlap. We now give a formal definition.

Definition 7.1. A collection T of triangles is a triangulation of a polygon P if

e Every point of P is in at least one triangle,
e Each triangle T' € T is contained within P,
e Any two triangles intersect in exactly a vertex of both or an edge of both.

Example 7.2. Consider the polytope P shown below.

The image below shows two arrangements of triangles of P. The set 7 = {1}, T, 13,1y, T5}
is not a triangulation. For example, T} and T} do not intersect in exactly a vertex or edge of
both. Nor do T3 and Ty. The set 7' = {17, T3, T;} on the right is a legitimate triangulation.

T T
T 4 T
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Triangulations are further differentiated by the property of having no new vertices.

Definition 7.3. A triangulation 7 of a polygon P has no new vertices if the vertices of each
T € T are contained in the vertices of P.

Example 7.4. Both sets of triangles below are triangulations of the polytope P from Ex-
ample [7.2] The one on the left uses no new vertices, while the one on the right has two new
vertices, indicated in red.

~ X

Example 7.5. For the polygon shown below, draw two different triangulations with no new

vertices.

Triangulations with no new vertices have an interesting relation to each other: any two
are connected by a sequence of moves!

Definition 7.6. Let 7 be a triangulation of a polygon P (with no new vertices). A bistellar
flip is preformed on T to produce a new triangulation (also no new vertices) as follows:

e Pick 71,75 € T that share an edge, let’s call it e.

e The other four edges of T} and T5 form a 4-sided polygon inside P, say @)

e The edge e is a diagonal of (). Call the other f.

e Form a new triangulation from 7 by replacing the edge e by the edge f and taking
the resulting two new triangles 7] and 77 instead of T and T5.

Example 7.7. The following is an example of a bistellar flip between 7 and 7’ along the
edge e indicated.
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Exercise 7.8. If T is a triangulation of P with no new vertices, and 7’ is obtained from 7T
by a bistellar flip, show that 7" is also a triangulation of P with no new vertices.

A cool fact is that all triangulations (with no new vertices) of a polygon are connected by
bistellar flips!

Theorem 7.9 ([2]). If T and T’ are triangulations of a polygon P with no new vertices,
then there is a sequence of bistellar flips transforming T into T".

Exercise 7.10. On the following page, draw all the triangulations of the polytope shown
below with no new vertices. Draw a line between any two triangulations when they differ by
a bistellar flip. How does the set of triangulations and the lines connecting them look?
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