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The Matrix of a Linear Transformation

We begin by discussing examples of linear transformations given by multiplication by
matrices. Let F be an arbitrary field and let m , n , and p be positive integers.
Let B ∈ F m×n be a matrix and define the function LB : F n×1 −→ F m×1 by
LB(C) = BC . Then LB (“left multiplication by B ”) is a linear transformation by
the properties of matrix multiplication:

LB(C1 + C2) = B(C1 + C2)

= BC1 +BC2

= LB(C1) + LB(C2)

for any C,C1, C2 ∈ F n×1 and

LB(αC) = B(αC)

= α(BC)

= αLB(C)

for α ∈ F .

Similarly, it is easy to check that if also B1, B2 ∈ F m×n we have LB1+B2
= LB1

+LB2

and LαB = αLB . It then follows that the map

L : F m×n −→ HomF (F n×1, F m×1) (1)

given by L(B) = LB is itself a linear transformation. In fact, this map is an isomor-
phism of vector spaces:

Note that if we compute LB(ej) where ej is the j -th element in the standard basis

for F n×1 we get the j -th column of B . Hence if B ∈ kerL , then LB is the 0
transformation and the columns of B must all be 0 . Thus B is the 0 matrix and
so L is one-to-one.

Now dimF F
m×n = dimF HomF (F n×1, F m×1) as both are mn . Thus L being one-

to-one is also onto and hence an isomorphism.

Next let A ∈ F p×m and LA : F m×1 −→ F p×1 . Then we may compose LA ◦ LB :
F n×1 −→ F p×1 . For C ∈ F n×1 we have

(LA ◦ LB)(C) = LA(LB(C))

= A(BC)

= (AB)C

= LAB(C)

and hence

LA ◦ LB = LAB (2)
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We can rephrase this by saying that the following diagram commutes:

F p×m × F m×n L ⊕ L
- HomF (F m×1, F p×1)× HomF (F n×1, F m×1)

F p×n

�

? L
- HomF (F n×1, F p×1)

◦

?

where (L ⊕ L)(A,B) = (L(A),L(B)) and the vertical maps are multiplication and
composition, respectively. Here, L is to be interpreted as meaning the appropriate
map which depends on the size of the matrices.

Note that both horizontal maps are isomorphisms of vector spaces and both vertical
map are bilinear functions: that is, they are functions of two variables which are
linear transformations in each variable separately when the other variable is fixed.
For example,

(A1 + A2) ·B = A1B + A2B .

We’ll see such functions later when we look at determinants and tensor products.

Further note that if n = m = p , then this says that

L : F n×n −→ HomF (F n×1, F n×1)

also satisfies L(AB) = L(A) ◦ L(B) , that is, L is a ring isomorphism since clearly
L(I) = 1F n×1 (the identity function on columns of length n ).

Bases and the Matrix of a Linear Transformation

Let U and V be finite dimensional vector spaces over the same field F . Let A =
{u1. . . . , un } be an ordered basis for U and B = { v1, . . . , vm } an ordered basis for
V . Let T : U −→ V be a linear transformation. Then there exist unique scalars
aij ∈ F such that

T (uj) =
m∑
i=1

aijvi . (3)

The matrix of T with respect to the ordered bases A and B is the matrix

[T ]A,B =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

. . .

am1 am2 · · · amn

 ∈ F m×n . (4)

Note that the columns of this matrix are just the coordinates of T (uj) with respect

to B ,
[
T (uj)

]
B

, so we could have also described the matrix as

[T ]A,B =
[

[T (u1) ]B , . . . , [T (un) ]B
]
. (5)
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Theorem 1. Let U and V be finite dimensional vector spaces over the field F with
ordered bases A and B , respectively. Then the function

[ ]A,B : HomF (U, V ) −→ F m×n

is an isomorphism of vector spaces.

Proof. We give a few of the details.

Linearity: If T : U −→ V and α ∈ F , then in equation (3) for αT all
entries get multiplied by α . Hence all entries in equation (4) get multiplied by α
as well. That is, [αT ]A,B = α [T ]A,B . Similarly by explicitly writing S(uj) and
adding the corresponding equation to that for T (equation (3)) gives [S + T ]A,B =
[S ]A,B + [T ]A,B .

Onto: First, given a matrix M ∈ F m×n with entries mij , by the UMP for bases
there exists a linear transformation S : U −→ V given by S(uj) =

∑m
i=1mijvi .

Hence by equation (4) [S ]A,B = M , that is, [ ]A,B is onto.

One-to-one: If T ∈ ker [ ]A,B , then T is zero on each basis element of A and
hence is the 0 linear transformation.

Now take an arbitrary u ∈ U , write u =
∑n

j=1 αjuj and apply T :

T (u) =
n∑
j=1

αjT (uj)

=
n∑
j=1

αj

m∑
i=1

aijvi

=
m∑
i=1

( n∑
j=1

aijαj
)
vi

that is,

[T (u) ]B = [T ]A,B [u ]A . (6)

Note that this equation allows one to recover the definition of [T ]A,B if one has
forgotten it: Applying (6) to a basis element uj of A yields[

T (uj)
]
B

= [T ]A,B

[
uj

]
A

= [T ]A,B ej

where ej is the j -th element of the standard basis for F n×1 . Hence one obtains the
j -th column of [T ]A,B as noted earlier.

We now give a description of this matrix as the solution of a universality question.
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Theorem 2 (Universality of the Matrix of a Linear Transformation). Let U and V
be vector spaces over the field F with ordered bases A (of size n ) and B (of size
m ), respectively. Then there exists a unique matrix A ∈ F m×n such that the following
diagram commutes:

U
T

- V

F n×1

[ ]A

? LA- F m×1

[ ]B

?

that is, [ ]B ◦ T = LA ◦ [ ]A (i.e., [T (u) ]B = A [u ]A for u ∈ U ). Further,
A = [T ]A,B .

Proof. Note that by equation (6) A = [T ]A,B is one matrix which makes the diagram
commute. But the remark after equation (6) asserts that the columns of this A are
completely determined by the equation: that is, the matrix is unique.

Proposition 3. Let m and n be positive integers and F a field. Let the linear
transformation

[ ]A,B : HomF (F n×1, F m×1) −→ F m×n

be the matrix with respect to the standard bases A and B . Then [ ]A,B is the inverse
of the isomorphism L , that is

L ◦ [ ]A,B = 1HomF (F n×1,F m×1)

and

[ ]A,B ◦ L = 1F m×n

Change of Basis for Coordinates

We next determine precisely how things change when one chooses two different ordered
bases for the same vector space. This is of interest for both theoretical and compu-
tational questions. Before we look at the matrix of a linear transformation, we first
answer the question for coordinates with respect to a basis.

Theorem 4. Let B1 and B2 be two ordered bases of size n for the vector space V
over the field F . Then there exists a unique matrix P = P (B1,B2) ∈ F n×n such that
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the following diagram commutes:

F n×1

V

[ ]B1

-

F n×1

LP

?

........................................
[ ]B2 -

that is, LP ◦ [ ]B1 = [ ]B2 (i.e., P [ v ]B1 = [ v ]B2 for all v ∈ V ). Furthermore P is
invertible.

Proof. First note that there exists a unique linear transformation that makes the di-
agram commute and it is [ ]B2 ◦ [ ]−1B1 (also note that these maps are both isomor-
phisms). Now any linear transformation from F n×1 to itself is given by a unique LP
for some P ∈ F n×n by the isomorphism of equation (1). Since L is an isomorphism
of rings (see the last paragraph of the first section of these notes), LP has an inverse
if and only if P does.

Remark 5. 1. The argument used to determine the matrix of a linear transformation
also works here to explicitly describe the columns of P : If B1 = { v1, . . . , vn } is
the first basis, then

P
[
vj

]
B1

=
[
vj

]
B2

Pej =
[
vj

]
B2

.

That is, the j -th column of P is just the column
[
vj

]
B2

:

P =
[

[ v1 ]B2 , . . . , [ vn ]B2
]
.

2. In many texts in Theorem 4 the matrix P is replaced by its inverse (and it’s still
called P ). So the arrow for LP points in the opposite direction; equivalently,
in the equation form, P appears on the other side of the equation. That is, the
matrix called the “change of basis matrix” elsewhere, may be the inverse of the one
here. As usual, you need to be a bit cautious in comparing descriptions of the same
material in different places, even though the exact same terminology is used.

We will now derive two conseqences of our discussion thus far. The following results
can be thought of as studying what happens when
a) one fixes the bases of the vector spaces and composes linear transformations, or
b) one fixes the linear transformation and varies the bases of the domain and codomain.
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Matrix Multiplication

We can now construct larger commutative diagrams by gluing together smaller ones,
such as the ones we’re already constructed. The situation is as follows: there are
vector spaces U , V , W with finite ordered bases A , B , C of size n , m and p ,
respectively. Then one has a commutative diagram:

V

U
S ◦ T

-

T

-

W

S

-

F m×1

[ ]B

?

F n×1

[ ]A

?

L[S◦T ]A, C

-

L[T ]A,B

-

F p×1

[ ]C

?
L[S ]B, C -

1. Theorem 2 gives a commuting left back square and a corresponding equation:

[ ]B ◦ T = L[T ]A,B
◦ [ ]A

2. Theorem 2 gives a commuting right back square and a corresponding equation:

[ ]C ◦ S = L[S ]B, C
◦ [ ]B

3. Theorem 2 gives a commuting front square and a corresponding equation:

[ ]C ◦ (S ◦ T ) = L[S◦T ]A, C
◦ [ ]A

4. The top triangle commutes by definition.

5. A simple computation (left to the reader) shows that the first 4 equations together
imply that the bottom triangle commutes, that is

L[S◦T ]A, C
= L[S ]B, C

◦ L[T ]A,B
.
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Recalling our initial discussion (applying the inverse of the isomorphism L to the last
equation) yields

[S ◦ T ]A, C = [S ]B, C · [T ]A,B . (7)

This equation is the origin of matrix multiplication: that is, multiplication of matrices
is defined to make this equation valid.

Proposition 6. Under the same hypotheses the following diagram is commutative

HomF (V,W )× HomF (U, V )
◦

- HomF (U,W )

F p×n × F n×m

[ ]B, C × [ ]A,B

? ·
- F p×m

[ ]A, C

?

where the top horizontal arrow denotes composition and the bottom horizonatal arrow
denotes matrix multiplication. Further the vertical arrows are isomorphisms of vector
spaces and the horizontal arrows are bilinear functions.

Definition 7. Let U, V,W be vector spaces over the field F . A function

β : U × V −→ W

is bilinear if for any u0 ∈ U and v0 ∈ V both of the restrictions β(u0, ) : V −→ W
and β( , v0) : U −→ W are linear transformations.

Remark 8. Composition of linear transformations and multiplication of matrices are
asserted to be examples of bilinear functions in the proposition. Other examples in
linear algebra occur as inner (dot) products and tensor products. The latter will be
constructed and discussed in the section “Tensor Products”.

Proof. The fact that the diagram commutes is equivalent to the commutativity of the
bottom rectangle in our large diagram ( Equation 7). Matrix multiplication gives a
bilinear function via the left and right distributive law for multiplication of matrices
together with the fact that multiplication by a scalar commutes with matrix multipli-
cation. A similar statement holds for composition of linear transformations.

In the special case where U = V and n = m , many times one calls a linear transfor-
mation in HomF (V, V ) a linear operator on V or an endomorphism of V . We also
write EndF (V ) instead of HomF (V, V ) .

Theorem 9. Let V be a vector space of dimension n over the field F with ordered
basis B . Then the function

[ ]B : EndF (V ) −→ F n×n

is an F -algebra isomorphism.
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Proof. By Theorem 1 taking coordinates with respect to B is a vector space isomor-
phism. We have just shown that [ ]B respects multiplication as well. Further,
[ 1V ]B = I is easily checked. Finally, the ring multiplication and scalar multiplication
are compatible by applying Equation 7 to α(S ◦ T ) = (αS) ◦ T = S ◦ (αT ) since
[ ]B is a vector space homomorphism.

Change of Basis for the Matrix of a Linear Transformation

Next we will determine precisely how the matrix of a linear transformation changes
when we change the bases. Let U be a vector space over F of dimension n with
ordered bases A1 and A2 having change of basis matrix P = P (A1,A2) . Let V be
a vector space over F of dimension m with ordered bases B1 and B2 having change
of basis matrix Q = Q(B1,B2) . Finally let T ∈ HomF (U, V ) . Then we obtain the
following diagram:

U
T

- V

F n×1
L[T ]A1,B1

[ ]A1
-

- F m×1

[ ]B1

-

F n×1

[ ]A2

?

L[T ]A2,B2

-

LP
�

F m×1

[ ]B2

?

LQ
�

We now make an argument similar to the previous one:

1. The back square commutes (Theorem 2).

2. The front square commutes (Theorem 2).

3. The left end triangle commutes (Theorem 4).

4. The right end triangle commutes (Theorem 4).

5. The 4 equations given by the preceding statements yield (please check!) that
the bottom square commutes.
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The conclusion (after applying the inverse of the isomorphism L and multiplying on
the right by P−1 ) is that

[T ]A2,B2 = Q [T ]A1,B1 P
−1 (8)

This condition on a pair of matrices arises in a number of contexts and motivates the
following definition.

Definition 10. Matrices A,B ∈ F m×n are called equivalent if there exist invertible
matrices Q ∈ F m×m and P ∈ F n×n such that B = QAP .

It is easy to check that equivalence of matrices gives an equivalence relation on pairs
of matrices in F m×n . An equivalent definition would arise if there were an inverse
on the P since an invertible matrix always has an inverse. This symmetry in the
definition then makes the following clear: Two matrices A,B ∈ F m×n are equivalent
if and only if B can be obtained from A be a sequence of row and column operations.
One can then easily show:

Theorem 11. Two matrices A, B ∈ F m×n are equivalent if and only if their row and
column reduced echelon forms are equal.

Proof. See Exercise 5.

Note that by equation (8) two matrices arise as the matrix of the same linear trans-
formation via different pairs of bases if they are equivalent. Conversely given A,B ∈
F m×n which are equivalent, then one easily checks that the linear transformation
T = LA has B as its matrix for appropriately chosen bases:

Theorem 12. Two matrices A, B ∈ F m×n are equivalent if and only if they arise as
the matrix of the same linear transformation with respect to different pairs of bases.

Proof. See Exercise 6

In the important special case of m = n , A1 = B1 and A2 = B2 , the discussion above
gives a more restrictive condition in (8) since in this case one has P = Q . We thus
also make the following definition.

Definition 13. Matrices A,B ∈ F n×n are called similar if there exists an invertible
matrix P ∈ F n×n such that B = PAP−1 .

In an analogous fashion one sees that if U = V and we use the same basis at each end
of T , two matrices are similar if and only if they are the matrix of the same linear
transformation from U to itself with respect to different bases:

Theorem 14. Two matrices A, B ∈ F n×n are similar if and only if they arise as the
matrix of the same linear transformation with respect to different bases.
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Definition 15. If T : U −→ V is a linear transformation, then the rank of T ,
denoted rankT , is the dimension of the vector space imT .

Remark 16. Let B be a basis for V . Since [ ]B is an isomorphism, it preserves
not only the vector space itself, but all subspaces. Hence imT ≈ im([ ]B ◦ T ) have
the same dimension. If U is a finite dimensional vector space and A = {u1, . . . , un }
is an ordered basis, we have the matrix of T described by equation (5) as

[T ]A,B =
[

[T (u1) ]B , . . . , [T (un) ]B
]
.

If we write a vector u ∈ U as a linear combination of elements of the basis A and
apply T , we see that [T (u) ]B is the corresponding linear combination of the columns

of [T ]A,B . That is SpanF
({ [

T (uj)
]
B

∣∣∣ 1 ≤ j ≤ n
})

= im([ ]B ◦ T ) . Thus

rankT is the dimension of the column space of [T ]A,B . By results of the first chapter
of Hoffman and Kunze, this is the same as the row rank of [T ]A,B , that is, just the
rank of the matrix [T ]A,B . When we study dual spaces, we’ll give a different proof
that the row rank and column rank of a matrix are equal.

Remark 17. Let T : U −→ V be a linear transformation with U and V finite
dimensional. Choose a basis A2 for kerT and enlarge to a basis A = A1

�

∪A2 for
U . Then B1 = T (A1) is a linearly independent subset of V and can be enlarged to
a basis B for V . Let ni be the size of Ai and mi the size of Bi . So n = n1 + n2 ,
m = m1+m2 , with n1 = m1 . One easily checks now that [T ]A,B is an m×n matrix
with the upper left hand corner an n1 × n1 identity matrix and all other entries 0 .
That is, the matrix is in both row reduced and column reduced echelon form. The
number n1 = m1 is precisely the rank of the matrix. It follows that two m × n
matrices are equivalent if and only if they have the same rank. See Exercise 7.

Theorem 18. Two matrices A, B ∈ F m×n have equal row and column reduced echelon
forms if and only if rankA = rankB .

Proof. See Exercise 7.

Corollary 19. Two matrices A, B ∈ F m×n are equivalent if and only if rankA =
rankB .

Proof. Just combine Theorem 11 with Theorem 18.

In summary then the three conditions on two matrices of the same size

• equivalence,

• same row and column reduced echelon form,

• equal ranks,

all mean the same thing.
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Examples

In the case of a linear transformation T : V −→ V where B is a basis for V , we
abbreviate [T ]B,B by writing simply [T ]B .

We now give a few examples.

Example 20. Let F be a field and n a non-negative integer. We let Pn ⊆ F [x] be
the subspace of all polynomials of degree less than n together with 0 . So dimPn = n .
Now B = { 1, x, x2, . . . , xn−1 } is an ordered basis for Pn . If we consider D : Pn −→
Pn to be the restriction to Pn of the usual derivative, it is given on this basis by
D(xj) = jxj−1 . Using bases B and B we easily obtain the matrix of D as having
entry i in position (i, i+ 1) and 0 elsewhere:

[D ]B =



0 1 0 0 · · · 0 0
0 0 2 0 · · · 0 0
0 0 0 3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · n− 2 0
0 0 0 0 · · · 0 n− 1
0 0 0 0 · · · 0 0


.

Example 21. We continue with the same notation as in the previous example. Define
the linear transformation ∆ : Pn −→ Pn by ∆(f) = f(x+ 1)− f(x) . If we compute
on elements of the basis B we obtain

∆(xj) = (x+ 1)j − xj

=

j−1∑
i=0

(
j

i

)
xi

Hence the (i, j) entry of [ ∆ ]B is the binomial coefficient
(
j−1
i−1

)
for i < j and 0

otherwise. For example if n = 6 we obtain

[ ∆ ]B =


0 1 1 1 1 1
0 0 2 3 4 5
0 0 0 3 6 10
0 0 0 0 4 10
0 0 0 0 0 5
0 0 0 0 0 0

 .

We will now give another version of this example, but with respect to a different basis.
First a simple lemma.

Lemma 22. Let S = { fi | i ∈ I } be a subset of F [x] . Assume

1. fi 6= 0 for i ∈ I ,
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2. deg fi 6= deg fj for i 6= j .

Then S is linearly independent over F .

This Lemma will in particular apply to collections of polynomials of the form x(i)

given below. Let i ≥ 0 be an integer. Define

x(0) = 1

and for i > 0

x(i) = x(x− 1) · · · (x− i+ 1)

( i factors) since deg x(i) = i .

Example 23. Take A =
{
x(0), x(1), x(2), . . . , x(n−1)

}
which is a basis for Pn by the

Lemma. We compute

∆(x(j)) = (x+ 1)(j) − x(j)

= (x+ 1)x(x− 1) · · · (x+ 1− j + 1)− x(x− 1) · · · (x− j + 1)

= x(j−1)[(x+ 1)− (x− j + 1)]

= jx(j−1) .

Hence we obtain

[ ∆ ]A =



0 1 0 0 · · · 0 0
0 0 2 0 · · · 0 0
0 0 0 3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · n− 2 0
0 0 0 0 · · · 0 n− 1
0 0 0 0 · · · 0 0


.

Note that this is exactly the same matrix which was obtained for D using the standard
basis B :

[D ]B = [ ∆ ]A .

Remark 24. The relationship between the matrices for D and ∆ obtained in the
examples should not be too surprising once one recalls the definition of the derivative
in calculus – take the limit of f(x+t)−f(x)

t
as t goes to 0 .

The operator ∆ defined above can be defined on any vector space of functions by the
same formula: ∆(f) = f(x + 1) − f(x) (some use f(x) − f(x − 1) instead). It is
usually referred to as a finite difference operator. Is is studied for continuous functions,
differentiable functions, etc. in what is called the “calculus of finite differences” or the
study of “difference equations”. Results of this area of study are useful in both pure
and applied mathematics.

09/26/19



Math 4330 Fall 2013 13 The Matrix of a Linear Transformation

Remark 25. One of the major problems studied and some of the most useful results
in linear algebra involve finding a basis (or bases) so that the matrix of a given linear
transformation takes a particularly nice form. Earlier you’ve seen the row reduced
echelon form as well as the row and column reduced echelon form. both of which can
be described this way. There are other such nice forms for matrices which arise: the
Jordan canonical form, the rational canonical form, and the Smith normal form for
example. We’ll study some of these later in the course.
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Exercises

MatLinTrans 1. Prove Lemma 22.

MatLinTrans 2. Compute the change of basis matrix P = P (A,B) and its inverse
for the two bases A and B given for Pn in the Examples 20 and 23 above.

MatLinTrans 3. a) Let T : P4 −→ P4 be the linear transformation given by
T (f) = f ′′ + f ′ − 2f . Using the computation in Example 20, compute the matrix
associated to T with respect to the basis { 1, x, x2, x3 } .

b) Let T : P5 −→ P5 be the linear transformation given by T (f) = f 〈3〉+3f 〈2〉−f 〈1〉−
2f , where f 〈i〉 = ∆f 〈i−1〉 , and f 〈0〉 = f . Using the computation in Example 23,
compute the matrix associated to T with respect to the basis

{
1, x(1), x(2), x(3), x(4)

}
.

MatLinTrans 4. a) Show that equivalence and similarity of matrices form an equiv-
alence relation.

b) Show by example that equivalent matrices need not be similar.

MatLinTrans 5. Prove Theorem 11.

MatLinTrans 6. Complete the proof of Theorem 12

MatLinTrans 7. Using elementary operations prove Theorem 18:
Two matrices A, B ∈ F m×n have the same row and column reduced echelon form if
and only if they have the same rank.

MatLinTrans 8. Let T : V −→ V be a linear transformation. Let Bn = kerT n ,
and let Cn = imT n .

a) Show that Bn ⊆ Bn+1 , and that B =
⋃
Bi is a subspace of V .

b) Show that Cn ⊇ Cn+1 , and that C =
⋂
Ci is a subspace of V .

c) Show that if V is finite dimensional, B = Bn for some n , and find a bound on
n (depending on V ) that is independent of T . Similarly, show that C = Cn for
some (possibly different) n .

d) Show that if V is finite dimensional, V = B ⊕ C .

e) Is part (d) true if V is not finite dimensional?

f) Show that T maps B to B and C to C . Furthermore, show that if V is finite
dimensional, T restricted to B is nilpotent (that is, T k = 0 for some k ) and T
restricted to C is an isomorphism.

g) Use part (f) to show that any matrix in F n×n is similar to a matrix of the form(
X 0
0 Y

)
where X is nilpotent (that is, Xk = 0 for some k ), and Y is invertible.
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MatLinTrans 9. Let U , V be vector spaces over the field F . Let HomF (U, V ) be
the set of all linear transformations T : U −→ V . Recall that cokerT = V/ imT
and T determines an exact sequence:

0 −→ kerT
i−→ U

T−→ V
p−→ cokerT −→ 0 .

i denotes the inclusion map and p : V −→ V/ imT the natural surjective linear
transformation. The rank of T is the dimension of imT , that is, the cardinality of
any basis for imT .

a) For S, T ∈ HomF (U, V ) we will say that S and T are equivalent if there exist
invertible P ∈ HomF (V, V ) and Q ∈ HomF (U,U) so that S = PTQ . Verify that
this gives an equivalence relation on HomF (U, V ) .

b) Assume U is finite dimensional. Show that S, T ∈ HomF (U, V ) are equivalent if
and only if rankS = rankT .

c) If U and V are not finite dimensional, show that there are counter-examples to
the previous statement.

d) For arbitrary vector spaces U , V over F , show that two linear transformations
S, T ∈ HomF (U, V ) are equivalent, if and only if all three of the following hold:

(1) dim kerS = dim kerT ,

(2) dim imS = dim imT ,

(3) dim cokerS = dim cokerT .

[Hint: Construct a basis for kerS and enlarge to a basis for U carefully. Similarly
for T .]

e) In view of the previous part, characterize precisely when equivalence is determined
by the rank.

f) In view of the previous parts, one is forced to find a characterization of rank differ-
ent from that of part (a) for vector spaces of arbitary dimension. Let S, T ∈
HomF (U, V ) . We will say that S and T are semi-equivalent , if there exist
P1, P2 ∈ HomF (V, V ) and Q1, Q2 ∈ HomF (U,U) such that both of the follow-
ing hold:

(1) S = P1TQ1 ,

(2) T = P2SQ2 .

Show that semi-equivalence defines an equivalence relation. Further show that
S and T are semi-equivalent if and only if rankS = rankT . [Note that two
equations were necessary here as we do not assume that Pi or Qi are invertible.]
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MatLinTrans 10. a) Let R be a commutative ring. Matrices A,B ∈ Rm×n are
said to be equivalent if there exist invertible matrices Q ∈ Rm×m and P ∈ Rn×n

so that B = QAP . C,D ∈ Rn×n are similar if there exists P ∈ Rn×n such that
D = PCP−1 . Show that these yield equivalence relations.

b) Let F be a field and F ⊆ F [X] . Show that if A, B ∈ F n×n are similar, then
xI − A , xI −B ∈ F [x]n×n are equivalent.

Remark: It is true, but much more difficult to prove, that the converse is true as
well.

MatLinTrans 11. Let V be a vector space of dimension n over the field F , and
let T : V −→ V be a linear transformation such that T n = 0 , so T is nilpotent.
Assume also that T n−1 6= 0 . Suppose v ∈ V is not in the kernel of T n−1 . Prove that
B = { v, T (v), . . . , T n−1(v) } is a basis for V . Compute the matrix of T with respect
to the basis B . Let c ∈ F and define S : V −→ V be given by S(u) = cu + T (u) .
Compute the matrix of S with respect to B . Compute the matrix of T 2 with repect
to B .

MatLinTrans 12. Let V = U = R3×2 . Let T : V −→ U be the linear transforma-
tion given by the formula T (B) = AB where

A =

 2 5 0
0 1 −1
2 1 4

 .
Choose ordered bases for V, U and compute the matrix of T with respect to these
bases. Find the rank of T and find a basis for the kernel of T .

MatLinTrans 13. Let F be a field and let V be the vector space consisting of 0
together with all polynomials of degree n or less. Define the function α on elements
of V by

α(p(x)) =
d

dx
(xn · p( 1

x
))

for p(x) ∈ V . Show the following:

a. α(p(x)) ∈ V for p(x) ∈ V .

b. α is a linear transformation. Compute the matrix [α]B,B with respect to the
standard basis B = {1, x, . . . , xn} .

MatLinTrans 14. Let V be the vector space over the complex numbers C of all
functions from R into C , i.e., the space of all complex-valued functions on the real
line. Let f1(x) = 1 , f2(x) = eix , f3(x) = e−ix .

a. Prove that f1 , f2 , and f3 are linearly independent over R .
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b. Let g1(x) = 1 , g2(x) = cosx , g3(x) = sinx . Show that g1 , g2 , and g3 are
linearly independent over R . Further find an invertible 3× 3 matrix P satisfying

gj =
3∑
i=1

Pijfi

MatLinTrans 15. Let T : R3 → R3 be the linear transformation which rotates a
vector counterclockwise by π/2 around the axis given by the vector (1, 1, 1)t . Write
the matrix [T ] of T with respect to the standard basis.

MatLinTrans 16. Let T denote the linear transformation from F 2×2 to F 2×2 de-

fined by T (X) = AX−XA , where A =

[
1 2
3 4

]
. Find the matrix of T with respect

to the standard basis of F 2×2 . What are dim kerT and dim imT ?

MatLinTrans 17. Let θ be a real number. Prove that the following two matrices
are similar over the field of complex numbers:[

cos θ − sin θ
sin θ cos θ

]
,

[
eiθ 0
0 e−iθ

]
.

Hint: Let T : C2 −→ C2 be the linear transformation which is represented by the
first matrix with respect to the standard ordered basis. Find vectors v1 and v2 such
that T (v1) = eiθv1 , T (v2) = e−iθv2 and { v1, v2 } is a basis for C2 .

MatLinTrans 18. Let V be a finite-dimensional vector space over the field F and
let S and T be linear transformations from V to V . When do there exist ordered
bases B and B′ for V such that

[S ]B,B = [T ]B′,B′ ? (?)

Prove that such bases exist if and only if there is an invertible linear transformation
U : V −→ V such that T = USU−1 .

Outline of proof: If the equation ( ? ) holds, let U be the linear transformation which
sends B to B′ , and show that S = UTU−1 . Conversely, if T = USU−1 for some
invertible U , let B be any ordered basis for V and let B′ be its image under U .
Then show that the required equation ( ? ) holds.

MatLinTrans 19. a. Show that the linear transformation T : R2 −→ R2 defined by
T (x1, x2) = (x1, 0) is represented with respect to the standard ordered basis of R2

by the matrix

A =

[
1 0
0 0

]
.

and satisfies T 2 = T .

b. Prove that if S : R2 −→ R2 is a linear transformation which satisfies S2 = S , then
S = 0 , or S = I , or there is an ordered basis B for R2 such that [S ]B,B = A .
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MatLinTrans 20. Let V be an n -dimensional vector space over the field F , and
let B = { v1, . . . , vn } be an ordered basis for F .

a. By the Universal Mapping Property of bases there exists a unique linear transfor-
mation T : V −→ V such that T (vj) = vj+1 for 1 ≤ j ≤ n− 1 , and T (vn) = 0 .
Give the matrix of T with respect to the ordered basis B (used as the basis at
each end of T ).

b. Prove that T n = 0 but T n−1 6= 0 .

c. Let S : V −→ V be any linear transformation such that Sn = 0 but Sn−1 6= 0 .
Prove that there exists an ordered basis B′ so the the matrix of S with respect to
this basis is the same matrix as found in part a.

d. Prove that if M and N in F n×n are such that Mn = Nn = 0 , but Mn−1 6= 0
and Nn−1 6= 0 , then M and N are similar matrices.

MatLinTrans 21. Let T : V −→ V be a linear transformation on a finite di-
mensional vector space V of dimension n . For i ≥ 0 , let Wi = ker(T i) and
ki = dim(Wi) , where T 0 = I . In this problem, you will investigate possibilities
for the sequence (k0, k1, k2, . . .) . In particular, you will show that successive differ-
ences cannot increase. In other words, if the dimension of the kernel increases by some
amount m at a particular step, then at each future step, it cannot increase by more
than m .

a. A Simple Example: Assume T is nilpotent with T n−1 6= 0 . Compute the se-
quence ki for T . (The extra assumption on T holds ONLY in this part.)

b. Prove that ki+1 ≥ ki for i ≥ 0 .

c. Prove that k2 − k1 ≤ k1 − k0 .

d. Prove that ki+2 − ki+1 ≤ ki+1 − ki in general. (Hint: Induction is not necessary.
Consider induced maps on appropriate quotient spaces such as Wi+1/Wi or V/Wi .)

e. Let Ti : Vi −→ Vi be linear transformations on the finite-dimensional vector spaces
Vi , for i = 1, 2 . Determine the sequence for T1 ⊕ T2 : V1 ⊕ V2 −→ V1 ⊕ V2 in
terms of the sequences for Ti . [Here (T1 ⊕ T2)(v1, v2) = (T1(v1), T2(v2)) .]

f. There is a sort of converse which states that if (k0, k1, k2, . . .) is a sequence of non-
negative integers with ki+1 ≥ ki , ki+2 − ki+1 ≤ ki+1 − ki , and ki ≤ n for i ≥ 0 ,
and also k0 = 0 , then there exists a linear transformation T : F n −→ F n with
dim(ker(T i)) = ki for i ≥ 0 . Find a 6 × 6 matrix in row reduced echelon form
which gives the sequence (0, 3, 5, 5, 5, . . .) ?

g. Carefully state and prove the converse.

MatLinTrans 22. A linear transformation T : V → V is called nilpotent if T i = 0
for some i > 0 . If dim(V ) = n <∞ and T is nilpotent, prove that T n = 0 .
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MatLinTrans 23. Let E = HomF (V, V ) where V is a vector space of dimension n
over the field F . An element α ∈ E is called nilpotent if αk = 0 for some integer
k ≥ 1 . The smallest integer k such that αk = 0 but αk−1 6= 0 is called the nilpotency
index of α . Show that:

a. The nilpotency index of a nilpotent α ∈ E is at most n .

b. If α, β ∈ E are both nilpotent and αβ = βα , show that α + β and αβ are both
nilpotent.

c. Give an example where α, β ∈ E are nilpotent, but do not commute and α+ β is
not nilpotent.

d. If α ∈ E is nilpotent with nilpotency index k , I is the identity element of E and
fi ∈ F , show that

γ = f0I + f1α + f2α
2 + · · ·+ fk−aα

k−1

is invertible if and only if f0 6= 0 .

e. If f0 6= 0 , compute γ−1 .

MatLinTrans 24. Let m , n , s be positive integers and F a field. For A ∈ F m×n

define T : F n×s −→ F m×s by T (M) = AM (matrix multiplication by A on the
left).

a. If A is an ordered basis for F n×s and B is an ordered basis for F m×s , give the
dimensions of the matrix for [T ]A,B .

b. Using the standard bases for F n×s and F m×s , compute [T ]A,B in terms of A .
Note that you MUST choose an ordering for the bases used; a nice choice will
substantially simplify the problem.

c. Give, and prove, a formula for the rank and nullity of the matrix [T ]A,B in terms
of A .

d. Similarly B ∈ F n×m define S : F s×n −→ F s×m by S(M) = MB (matrix
multiplication by B on the right). Repeat all of the parts above for S , including
finding a really nice matrix for S by ordering the standard bases carefully. Explain
how you choose this ordering (which should be different from that chosen above for
A ), that is, what facts are you exploiting?

MatLinTrans 25. Let R be a ring. An element e ∈ R is called idempotent if
e2 = e . Let V be a vector space over the field F and let T ∈ HomF (V, V ) be an
idempotent linear transformation.

a. Prove that V = imT ⊕ kerT .
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b. If V is finite dimensional, let B = B1 ∪ B2 be a basis for V where B1 is a basis
for imT and B2 is a basis for kerT . Compute the matrix [T ]B .

c. Let A, B ∈ F n×n be two idempotent matrices. Prove that A and B are similar
if and only if they have the same rank by considering the linear transformations LA
and LB and applying the previous parts.

MatLinTrans 26. Let V be a finite dimensional vector space over the field F . Let
T : V −→ V be a linear transformation and let W be a T -invariant subspace of
V (i.e., T (w) ∈ W for all w ∈ W ). Let T0 : W −→ W be the restriction of
T to W . Let A = {w1, . . . , wm } be a basis for W and enlarge this to a basis
B = {w1, . . . , wm, v1, . . . , vn } for V . Then C = { v1 +W, . . . , vn +W } is a basis for
V/W . Let T1 : V/W −→ V/W be the linear transformation given by T1(v +W ) =
T (v) +W .

a. Show that

[T ]B,B =

[
[T0]A,A J

0 [T1]C,C

]
where 0 denotes the n×m matrix of zeros and J is some m× n matrix.

b. Now assume that the field F has the following special property:
For every linear transformation T : V −→ V on a finite dimensional vector space,
there exists a scalar c ∈ F and some non-zero vector v ∈ V so that T (v) = cv .

For example, the complex numbers have this property as we will see later. In
this situation, prove (by giving an induction argument and quotient spaces) that
for any linear transformation there exists a basis so that the matrix of the linear
transformation with respect to this basis is upper triangular. (A matrix is upper
triangular if every entry below the main diagonal is 0.)

MatLinTrans 27. Let U, V, U1, U2, V1, V2 be arbitrary vector spaces over the field F
(Note that their dimensions need not be finite).

a. Show that there is an isomorphism

HomF (V, U1 ⊕ U2) −→ HomF (V, U1)⊕ HomF (V, U2) .

b. Show that there is an isomorphism

HomF (V1 ⊕ V2, U) −→ HomF (V1, U)⊕ HomF (V2, U) .

c. Put parts (a) and (b) together and give a description of HomF (V1⊕V2, U1⊕U2) as
a direct sum of 4 vector spaces.

d. Let fij : Vj −→ Ui be a linear transformation. Then by part (c) we can use these
four linear transformations to describe a linear transformation from V1 ⊕ V2 to
U1 ⊕ U2 . Write these in the form of a matrix:(

f11 f12
f21 f22

)
.
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We will call this matrix M the decomposition matrix of the linear transformation.
Note that it depends on the particular way in which we write the vector spaces
as direct sums. If T : V1 ⊕ V2 −→ U1 ⊕ U2 is a linear transformation, give
explicit formulas for the fij in terms of the canonical injections and surjections
(i.e., p1 : V1 ⊕ V2 −→ V1 defined by p1(v1, v2) = v1 , etc.). We will denote this
matrix by [T ] (it will be too cumbersome to include its dependency on the direct
sums, but keep in mind that it does). Now if we write elements of the direct sums
in columns we can apply these matrices of linear transformations as follows:

M

(
v1
v2

)
=

(
f11(v1) + f12(v2)
f21(v1) + f22(v2)

)
.

e. If W1,W2 are also vector spaces over F , consider

HomF (V1 ⊕ V2, U1 ⊕ U2)×HomF (W1 ⊕W2, V1 ⊕ V2) −→ HomF (W1 ⊕W2, U1 ⊕ U2)

given by composition, that is, (T, S) goes to TS . Show that in terms of our
matrix notation above

[TS] = [T ][S]

where the operation on the right-hand side is given by (you guessed it) matrix
multiplication.

f. Assume these vector spaces have finite dimension over F . Choosing bases Aj
for Vj and Bi for Ui construct bases A for V1 ⊕ V2 and B for U1 ⊕ U2 (as
was done in class to prove the formula for the dimension of the direct sum). Let
T : V1 ⊕ V2 −→ U1 ⊕ U2 be a linear transformation. Give a formula relating the
matrix [T ]A,B to the matrices of the fij (see part (d) above) given in terms of
Aj,Bi . What can you deduce applying this to the formula in part (e)?

g. State (but do not prove) the generalization of (a)-(f) to direct sums with a larger
finite number of summands.
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The Notes for the course Math 4330, Honors Linear Algebra at Cornell University have
been developed over the last ten years or so mainly by the following (in chronological
order):

Gerhard O. Michler

R. Keith Dennis

Martin Kassabov

W. Frank Moore

and

Yuri Berest.

Most sections have been revised so many times the original author may no longer
recognize it. The intent is to provide a modern treatement of linear algebra using
consistent terminology and notation. Some sections are written simply to provide
a central source of information such as those on “Useful Definitions”, “Subobjects”,
and “Universal Mapping Properties” rather than as a chapter as one might find in a
traditional textbook. Additionally there are sections whose intent is to provide proofs
of some results which are not given in the lectures, but rather provide them as part
of a more thorough development of a tangential topic (e.g., Zorn’s Lemma to develop
cardinal numbers and the existence of bases and dimension in the general case).

A large number of challenging exercises from many different sources have been included.
Although most should be readily solvable by students who have mastered the material,
a few even more challenging ones still remain.

Much still remains to be done. Corrections and suggestions for additional exercises,
topics and supplements are always welcome.
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