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ABSTRACT. We present several boundedness results for linear and multilinear pseu-
dodifferential operators on modulation spaces.

1. INTRODUCTION

The recent years have seen an increasing interest in the theory of modulation
spaces. The family of modulation spaces appear naturally in the study of certain
functions and operators, especially when one is interested in both the time and fre-
quency description of such objects. They constitute a family of Banach spaces of
distributions that behave very much like the Besov spaces: the dilation in the defini-
tion of Besov spaces is essentially replaced by frequency shifts.

In this paper, we present certain results and techniques regarding the boundednes
of linear and multilinear operators acting on these spaces. Our goal is to provide a
story of estimates, known and unknown, on modulation spaces. We would like to
convey to the reader that such estimates are natural substitutes when other classical
function space estimates fail. Moreover, general estimates on modulation spaces
translate-via embeddings- into estimates on Lebesgue, Besov, or Sobolev spaces. In
telling our story of estimates, we choose a non-uniform approach by jumping from
linear to multilinear estimates. Several topics presented here might seem unrelated
when read separately. The unifying theme, however, is the general framework of
modulation spaces that led us to ask certain questions in the first place once previous
questions have been answered in a satisfactory manner.

Our paper is organized as follows. In Section 2 we set the notations and definitions
that will be used throughout this paper. We also define the modulation spaces and
collect some of their properties that will be needed later on. In Section 3 we present
an overview of estimates for various operators. To the best of our knowledge, some
of these estimates or techniques do not appear elsewhere in the literature.
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2. PRELIMINARIES

2.1. General notation. Translation and modulation of a function f with domain
R¢ are defined, respectively, by T, f(t) = f(t — z) and M, f(t) = e f(t).
The Fourier transform of f € L' is f(w) = [ f(t) e 2™ dt, w € R%. The Fourier
transform is an isomorphism of the Schwartz space S onto itself, and extends to
the space S’ of tempered distributions by duality. The inverse Fourier transform is
f(@) = f(-=). o

The inner product of two functions f,g € L* is (f,g) = [z f(t)g(t) dt, and its

extension to S’ x S will be also denoted by (-, ).
The Short-Time Fourier Transform (STFT) of a function f with respect to a win-
dow g is

Vof(z,y) = (f, M,T,g) = / et G~ 1) f(t) dt,

Rd
whenever the integral makes sense. If g € S and f € S then Vo f is a uniformly

continuous function on R?¢. One important technical tool is the extended isometry
property of the STFT [11, (14.31)]: If ¢ € S, ||§]|z2 = 1, then

(1) (f,h) = (Vof,Vuh), VfeS,heSs.

Given a strictly positive function v on R??, we let L2 be the spaces of measurable
functions f(z,y) for which the weighted mixed norms

a/p 1/q
e = ([ ([ s visgpas) ay)

are finite. If p = ¢, we have LPP(R?) = LP(R??), a weighted Lebesgue space.

2.2. Weight functions. Given s > 0, a positive, continuous, and symmetric func-
tion v is called an s-moderate weight if there exists a constant C' > 0 such that

(2) Va,y € R, vz +y) <CA+|z)u(y).
For example, v(z) = (1 + |x|?)"? is s-moderate exactly for |t| < s. If v is s-moderate,

then by manipulating (2) we see that

1 1
<O
v(z+y) v(y)
hence, 1/v is also s-moderate (with the same constant).
In the sequel we let w,(z) = (1 + ||?)*/? for s > 0.
2.3. Modulation spaces.

Definition 1. Given 1 < p,q < oo, and given a window function g € S, and an s-
moderate weight v defined on R??) the modulation space MP4 = MP4(R?) is the
space of all distributions f € S’ for which the following norm is finite:

a/p 1/q
® Wl = ([ ([ Wr@orseras)ar) " = Wiz
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with the usual modifications if p and/or ¢ are infinite. If v = 1, we will simply write
MP1 for the modulation space MP1. If v(x,y) = ws(x), we will simply write MP1.
Moreover, when p = ¢, we will write MP? for the modulation space MP2P.

The definition is independent of the choice of the window ¢ in the sense of equiv-
alent norms. We refer to [7, 11] and the references therein for more details about
modulation spaces.

The definition above quantifies both the time and frequency contents of a function
or distribution. Although not completely correct, one can think of f € MP? as
being represented by the statement “f € L? and f € L97; for a rigorous comparison
of modulation spaces and Fourier-Lebesgue spaces see [10]. Fore more embeddings
between modulation spaces and other function spaces, see [10, 12, 14, 17, 21].

Remark 1. For p = ¢ = 2, if v = 1 then M2 = L?%; if v(z,y) = (1 + |z/?)*/? then
M? = 2 a weighted L2-space; if v(z,y) = (1+|y[?)*/? then M2 = H?®, the standard
Sobolev space, and if v(z,y) = (1 + |z|> + |y|?)*/? then M2 = L2 N H®.

3. ESTIMATES

A k-linear pseudodifferential operator is defined & priori through its (distributional)
symbol ¢ to be the mapping 7T, from the k-fold product of Schwartz spaces S x--- xS
into the space S’ of tempered distributions given by the formula

TU'(fl;' . 7fk;)($)
(4) = /I;kd 0'($, 61, ce. ’fk) fl(fl) . fk(gk) e?m’z-(&+...+€k) dé_l . dé‘k’

for fl;---; k € S.

1-linear operators are simply called linear, 2-linear operators are called bilinear,
and so on. The pointwise product f; - - - fi corresponds to the case o = 1.

We start our story of estimates with a classical class of symbols.

3.1. The Calderén-Vaillancourt class. Assume that ¢ € L* and consider the
linear operator Li(f) = of. Clearly, this operator is bounded on all L? spaces,
1 < p < co. Hélder’s inequality tells us that the bilinear operator Ly(f, g) = ofg is
bounded from LP x L? into L" if the exponents are larger than 1 and satisfy the relation
1/p+1/q = 1/r. The norms of operators L, Ly coincide with ||o||p~. These cases
correspond to pseudodifferential operators with symbol o(z,£) = o(z) independent
of the frequency variable &.

/é much more interesting class of operators is defined on the frequency side by
T(f)=o0 f . In this case, T coincides with a Fourier multiplier with symbol o(z, &) =
0(€) independent of the space variable xz. Using Plancherel’s identity, we see that
T is bounded from L? into L? if 0 € L*®. It is not clear, however, how one would
approach the boundedness of 7" on LP for p # 2. If one could obtain another LF°
estimate, then interpolation would give boundedness for all exponents in the range
(2,p0) or (po,2). A naive approach would be, for example, the following:

1T (A lsee = Nmf) e < llmfllee < lmllose || f1.
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But this is perhaps the most that we can accomplish this way, since, in general, we do
not have any good control on the L! norm of the Fourier transform of a function. The
same approach would have failed if we would have started with a different exponent
Po- Nevertheless, we proved that the operator T is bounded from L? — L? and
L' — L*. The natural question then is whether there are any “intermediate” spaces
on which the operator remains bounded.

The questions above become yet more difficult if we modify the operators and allow
the symbols to be both x and & dependent. Consider then the classical symbol class
S consisting of those o which satisfy estimates of the form

(5) |a;;a§a(x,g)| < Cup, Va,B>0.

A classical result of Calderén and Vaillancourt [6] asserts that the corresponding
linear pseudodifferential operator T, is bounded on L?. Notice that these operators
are generally unbounded on L? for p # 2 [1].

In the bilinear case, however, the analogous class of symbols which satisfy the
conditions

(6) 020,000 (2,6,m)| < Capyy Yo, 3,720,

does not necessarily yield bounded operators from L? x L? into L', unless addi-
tional size conditions are imposed on the symbols; see [5]. Nevertheless, a Calder6n—
Vaillancourt-like condition (6) does yield boundedness from L? x L? into the modula-
tion space MY that contains L. Indeed, considering this problem in the framework
of modulation spaces we find the desired answer for general k-linear pseudodifferential
operators; see [3] for the proof and further details.

Theorem 1. If 0 € MY (R*+V4) then the k-linear pseudodifferential operator T,
defined by (4) extends to a bounded operator from MPLI X -« x MPek jnto MPOT0
14,4 1 14 41 _p 1 s ;
whenp—1+ o T a T +qk—k 1+q0,andlgp,,ngooforogzgk.

All the questions we asked above can be answered from this theorem, by using the
embeddings 58,0 C Mt LY ¢ MY, M?2 = [2, and choosing k = 1 respectively
k=2.

It is worth pointing out that there is an extensive literature on the continuity
properties of (linear) pseudodifferential operators on modulation spaces; see [9, 13,
18, 21].

3.2. The Hilbert transform and related multipliers. Closely related to the
linear operators with symbols in the class 5§, is the Hilbert transform defined by

1 -1
Hi) = 2im [ LE=Y 4
Te0 et
H is a Fourier multiplier operator
(7) Hf =mf,
where m(&) = —isgn €. The multiplier m is bounded and its derivatives, which exist

everywhere except at the origin, are also bounded. Thus, m “almost” belongs to
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the class Sg,. Yet, its behavior does not follow the pattern we saw in the previous
subsection: the Hilbert transform is bounded on all L? spaces, 1 < p < oo. This is
due to the fact that H enjoys additional cancellation properties, and as such it can
be treated in the context of Calderén-Zygmund theory; m is known to be a particular
example of a Hormander-Mihlin multiplier as well.

Nevertheless, m does follow the pattern of the Calderén-Vaillancourt class on mod-
ulation spaces. In fact, a larger class of multipliers extending the Hilbert transform
enjoys this property of boundedness on modulation spaces. Let b > 0 and ¢ = (¢)nez
be a bounded sequence of complex numbers. The operators H, . are defined by

(8) Hb,Cf = mb,cf;
with Fourier multipliers
+00

(9) Mpec = —20 Z CnX(bn,b(n+1))}

n=—oo

X(ap) denotes the characteristic function of the real interval (a,b). It is easy to see
that H =  H, for any b > 0 and ¢ = (¢;)nez, with ¢, = 1 for n > 0 and ¢, = —1
for n < 0.

The following result was proved in [2].

Theorem 2. The operators Hy. are bounded from MP4(R) into MP4(R) for 1 <
p < oo, 1<qg<oo with a norm estimate

[ Hpefllmra < Cllelloo [|.f[| atre

for some constant depending only on b, p, and q. In particular, the Hilbert transform
H is bounded on MP? for1 <p<oo and1 < q< o0

Remark 2. Interestingly enough, the multiplier operators H,. are not bounded in
general on LP spaces, except when p = 2. As such, they resemble the behavior
of the class 58’0 investigated in the previous subsection: the modulation spaces are
the “appropriate” spaces on which to study their boundedness. See [2] for some
extensions of Theorem 2.

In [8], a slightly more general class of multipliers as the one exposed in Theorem 2
was shown to be bounded on modulation spaces.

3.3. Fourier multipliers and evolution PDEs. A strong motivation for the devel-
opment of a theory of pseudodifferential operators is provided by the fact that pseu-
dodifferential operators generalize classical partial differential operators with variable
coefficients. As such, it is not surprising that they appear in the study of solutions
of certain partial differential equations.

An extensive amount of research in the area of partial differential equations has
been devoted in recent years to study the well-posedness or solvability of various
dispersive equations; see [19], also [20]. In the remaining of this subsection we would
like to explore two such classical evolution equations: the Schrédinger and wave ones.
We will see how to approach their behavior in the context of modulation spaces, as
well as the connections with the operators discussed above.
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The Schrédinger equation iu; — Au = 0, for example, with v a complex valued
function in R? x R, describes the evolution of a free non-relativistic quantum particle
in d spatial dimensions. This equation can be perturbed in many ways, mainly by
adding a potential or an obstacle, and the resulting equations arise as models from
several areas of physics. Clearly, the solution of the corresponding Cauchy problem
with initial data f is given by a Fourier multiplier operator:

(10) u(z,t) =Tpf(x) = [ m(€)e* =t f(€)d¢,

Rd
where m,(€) = e’

It is known that 7} is bounded on LP(R?) only for p = 2 [15]. Therefore, it is
natural to ask whether this Fourier multiplier operator is of Calderén-Vaillancourt
type on modulation spaces.

Similarly, the wave Cauchy problem Oyu—Au = 0, u(z,0) = f(z), dwu(z,0) = g(z)
has a solution represented by a sum of two Fourier multiplier operators. In this
case u(z,t) = T} f(z) + T?g(x), where, like in (10), the multipliers are given by
m;(€) = cost|¢], and mZ(£) = sin(t[€])/|€|. Again, it is known in this case that T;
is bounded on LP(R?¢) only when p =2 and d > 1 or when 1 < p < oo and d = 1
(15, 16].

In a recent work [4], combining tools from Littlewood-Paley theory and time-
frequency analysis, it has been proved that a large family of Fourier multipliers whose
symbols are given by unimodular functions e*¢/* for a specific range of o, are bounded
on all modulation spaces. It is worth pointing out that these operators are in general
unbounded on other classical function spaces such as the Lebesgue spaces.

3.4. Strichartz-type estimates. The solution of the linear Schrodinger equation
iuy — Au = 0 with initial condition u(z,0) = f(z) is given by a t-parameter Fourier
multiplier (10) u(x,t) = T} f(x), typically written as u(x,t) = 2 f(x).

The classical Strichartz estimates for the Schrédinger equation give L{ L bounds
on the solution u(x,t) in terms of the initial condition f. Here,

lu(z, Ollcszy = Mul,t)llegllzs-

The pair of exponents (g,r) is called Schrédinger admissible if q,r > 2,(q,r,d) #
(2,00,2) and 1/q + d/2r = d/4. For such a pair we have

(11) €2 Fllozy S 11|z
In particular, for the admissible pair (¢*, ¢*), ¢* = 2(d + 2)/d, (11) gives
(12) ||eitAf||Lq*(Rde) S ||f||L2(1Rd)-

But, since ¢* > 2, we have LY C M% and L? = M?2, therefore from (12) we
obtain a Strichartz estimate for a pair of modulation spaces

(13) €2 Fllvaar S 11 gz

It is natural to ask then if there are other Schrddinger admissible quadruples (p, q,r, s)
such that

(14) 16" Fllawagsy S N Fllaarsa)-
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Similarly, it would be interesting to know for which Schrodinger admissible triples
(p,q,r) we have an estimate like

(15) 1% fllmpa@ry S N Fllzr)-

Note that from the embeddings I? C MP?' 1 < p < 2and LP C MP? 2 < p < oo,
we immediately get the following spatial estimates for triples (p,p’,p') respectively

(p,p, p'): o
1€ Fll it @y S 792N fll gy 1 < p <2
and
A < [t~ 2<p<
1€ fllmpw @) S 2] P fll 2o (@) 2 < p < o0

However, only from these inequalities we cannot conclude estimates of the form (15).
Indeed, unlike the Lebesgue spaces, the modulation spaces are not lattice spaces,
that is, it is not true that if |f| < |g| and g € MP? then f € MP1.

Following ideas from the classical Schrodinger estimates on mixed Lebesgue spaces,
we would like to make use of the scaling properties of the equation to arrive to a
possible definition of admissibility for quadruples in (14). A similar condition will
then give admissibility for triples in (15). Unfortunately, the scaling of the STFT
with respect to a window function g gets corrupted, therefore we need to correct it
by introducing a new parameter in the definition of the STFT.

For ;4 > 0 and a given window g, the d-dimensional y-STFT is defined by

Z—x

(16) Vol () = @ / L) ) dr

Let fa(z) = f(\z). It is easy to see that
Y
V:‘wa)\(xa y) = V:q;ukf()‘xa X)
and -
Vo fallra = Ad(a_5)||v;};u/\f||m’q-

It is natural then to define the spaces Mpa through
(17) 1 (@)l 557 = sup [[Vgyuf [l oe-
©>0

Clearly, by letting 4 = 1 in (17), we have MpPa ¢ MP. For the smaller spaces Mpa
we have a “good” scaling property

d(i-1
1A llsgm = A9 il

This takes care of the scaling of the initial condition. We now take a similar route to
deal with the scaling of the solution u(z,t). In particular, we would like to investigate
the mixed Lebesgue norms of appropriate (i1, u2)-STFT of scaled solutions uy(z,t) =
u(x/\,t/)\?). Here, we distinguish between the positive parameters p; and p, that
refer to the distinct homogeneities in x respectively ¢t. With ¢ = ¢; ® ¢o, a similar
computation as above gives

— \@2(G—g

”Vg;ul,muAHLP’q )||V:q;u1/z\,u2/>\2u||LP’q-
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In particular, by denoting

(18) lu(z, )| xma = sup |[Vosur o ttl|zoe,
w1,42>0

we obtain the scaling property

= NG|y

||U’/\||M1’14 Mpa-

We know that if u is a solution of the linear Schrédinger equation with initial condition
f, then uy is also a solution for the problem with initial condition f). Therefore, in
order for an estimate

(19) 1 fllgmaen S 115y
to hold, the quadruple (p, g, r, s) must satisfy the admissibility condition
1 1 1 1
d-—-)=d+2)(-—-).
G- =[+2 -1

Admissibility for triples (p, g, ) in the analogue of (15) with MP:-norms on the left

hand-side is

d 1 1

. (d+ 2)(q p).
Note, however, that the admissibility condition for quadruples is not sufficient. For
example, the quadruple (2,2,2,2) is admissible, yet (19) does not hold. This is a
simple consequence of Plancherel’s theorem: |lu(t,-)|[z2 = || f]|z2-

Unfortunately, as it was pointed out to us by K. Gréchenig;:c_llere is a flaw in this
approach. While introducing the modified modulation spaces M?: (or MP:¢) through
the parametrized STFT makes sense, our definition might give only the trivial {0}
space in certain situations. For example, for p = ¢ =2, |V, ,/all2 = [|Vg,urfl 22, and
Vo Fllze = £l lgallze = I Fllz2lgllzpe 2. This explains why certain quadruples,
although admissible, do not yield the expected boundedness.

It is not clear to these authors what modifications, if any, are needed to our ar-
guments, or what additional restrictions to require on the quadruples that would
guarantee estimates of the form (14). It may also well be the case that the quadruple
(¢*,q%,2,2) (which is admissible) is in fact the only one for which a modulation-
Strichartz type estimate holds.

3.5. Derivative estimates. We end our overview of estimates on modulation spaces
with the following boundedness results about partial differential operators. The re-
sults we present in this subsection are special cases of more general results obtained
independently by Feichtinger [7, Remark 6.3] and by Toft [22, Corollary 3.3].

Let

v(z,y) = vap(z,y) = (1 + [2[3)2(1 + |y[*)*2.

We denote the weighted modulation space MZE? by Mgz The weighted Lebesgue
space LY  is denoted by Lf.
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Theorem 3. If1 <r <p,1<s<gq,a>d(1l/r—1/p), and b> d(} — %), then

o0« f
(s (P 4.7 5,0, d)|| | g
for all multiindices o such that |a] < b— d(% — %)

Proof. Note that for a given window g, we have
aaf _ |a‘ aa
Volga)(wv) = (=1)(f, 52

Using Leibniz’s rule to compute the derivative of the product M,T,g, and using the
aOt

vTug)-

notation g,—, = 29 we obtain

o=
) ] eI
%(axa)(ua U) = (_1) Z Ca’7(2’/T7,) v vaa_’yf(u,rv)_
17I<la
Therefore,
°J v
Vs (G Gl < C(@) 3 ol 1V f (0) s
1| <lef

Using the conditions of the parameters a,r, p and Holder’s inequality, we can write

W Pl = [ W, £ ) P+ Y7200+ )

(20) < C(r,p, d)||Vga, F (5 0)I1z-
(21)

Integrate now with respect to y to obtain

IIV( )IILM < Clp,ryand) Y I+ )2V (o) g e

I7I<le

Using now the conditions on b, s, ¢, a similar argument as above using Holder’s in-

equality allows us to conclude the inequality we wanted to prove. 0
Corollary 1. Let P(D Z aa
la| <k

stant coefficients. Then P(D) : Mp’q — M"™* for a,b,p,q,r,s as in Theorem 3, and
k| <b— d(— - 1.

q
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