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Abstract. We use the theory of Gabor frames to prove the boundedness of bilin-
ear pseudodifferential operators on products of modulation spaces. In particular,
we show that bilinear pseudodifferential operators corresponding to non-smooth
symbols in the Feichtinger algebra are bounded on products of modulation spaces.

1. Introduction

A bilinear pseudodifferential operator Tσ is á priori defined through its (distribu-
tional) symbol σ as a mapping from S(Rd) × S(Rd) into S ′(Rd) by:

(1) Tσ(f, g)(x) =

∫
Rd

∫
Rd

σ(x, ξ, η) f̂(ξ) ĝ(η) e2πix·(ξ+η) dξ dη,

for f, g ∈ S(Rd). A natural question then is to find sufficient (nontrivial) conditions
on the symbol that ensure the boundedness of the operator on products of certain
Banach spaces such as Lebesgue, Sobolev, or Besov spaces; see the works of Coifman
and Meyer [4], [5], [6], Gilbert and Nahmod [14], [15], Muscalu, Tao and Thiele
[25], Grafakos and Torres [16], [17], Bényi and Torres [2], [3], and Bényi [1] and the
references therein for more details. For instance, it is known that the condition

(2) |∂α
x ∂β

ξ ∂γ
η σ(x, ξ, η)| ≤ Cα,β,γ (1 + |ξ|+ |η|)−|β|−|γ|

for (x, ξ, η) ∈ R
3d and all multi-indices α, β, γ is enough to prove the boundedness

of the operator defined by (1) from Lp(Rd) × Lq(Rd) into Lr(Rd) with 1
p

+ 1
q

= 1
r

and p, q > 1. This result was first obtained by Coifman and Meyer [4], [5], [6] who
noticed that, in general, if the symbol is smooth and has certain decay, then the
boundedness of the corresponding operator can be studied through its decomposition
into elementary operators via techniques related to Littlewood-Paley theory. In this
case, the smoothness and decay conditions play an important role and cannot be
removed from the proof. In [14] and [16], for example, the authors used a different
decomposition approach where the functions on which the operator acts are instead
decomposed and the boundedness of the bilinear operator reduces to the boundedness
of an infinite matrix acting on appropriate sequence spaces. In particular, Grafakos
and Torres [16] used wavelet expansions of Triebel-Lizorkin spaces due to Frazier and
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Jawerth [12] (see also the books by Frazier, Jawerth and Weiss [13], and by Meyer
[24]) to impose convenient decay conditions on the entries of the corresponding matrix
that yield boundedness results on the operator side. Here again, the symbols of the
operators are assumed to be sufficiently smooth and have decay at infinity.

In this paper, we obtain certain boundedness results for operators with symbols
which are not necessarily smooth. We also employ decomposition techniques of func-
tions spaces, but the novelty is the use of Gabor expansions of tempered distribu-
tions in the so-called modulation spaces, which were introduced by Feichtinger and
Gröchenig [9], [10]. The modulation spaces play a crucial role in the theory of Ga-
bor frames. Moreover, modulation spaces were recently used to formulate and to
prove boundedness results and Schatten-class properties of linear pseudodifferential
operators; see e.g., the works by Gröchenig and Heil [19], Heil, Ramanathan and
Topiwala [20], Labate [22], [23], and Toft [26]. This is yet another motivation to
study the boundedness properties of bilinear pseudodifferential operators in terms of
modulation spaces. Most of the techniques used in studying the linear pseudodif-
ferential operators on modulation spaces are based on the relationship between the
Weyl and/or the Kohn-Nirenberg correspondences, and some time-frequency repre-
sentations of distributions such as the Wigner transform. The approach we use here is
fundamentally different from the ones previously employed in dealing with the linear
case, namely, we decompose the functions in the modulation spaces into their Gabor
expansions and thereby transform the boundedness of the bilinear operator into that
of an infinite matrix acting on sequence spaces associated to the modulation spaces.
The conditions we impose on the infinite matrix to prove our results turn out to be
equivalent to membership of the corresponding symbol to a particular modulation
space. However, these conditions do not imply any smoothness nor decay of the sym-
bols. In particular, the modulation space M1, also known as the Feichtinger algebra,
turns out to be an important class of symbols that guarantees the boundedness of
the operator defined by (1) on products of certain modulation spaces.

Our paper is organized as follows. In Section 2 we set the notations and definitions
that will be used throughout this paper. In Section 3 we define the modulation spaces
and Gabor frames, and collect some of their properties that will be needed later on.
In Section 4 we present a brief review of the bilinear integral operators, of which the
bilinear pseudodifferential operators are a special case. This sets the stage for our
main results which, we state and prove in Section 5.

It is worth noting that our main results can be stated in the more general setting
of multilinear pseudodifferential operators. To ease the flow of reading and for no-
tational convenience we restrict ourselves to the bilinear case. The interested reader
could easily adapt the proofs to the multilinear case.

2. Preliminaries

2.1. General notation. We will be working on the d-dimensional space Rd. We let
S = S(Rd) be the subspace of C∞(Rd) of Schwartz rapidly decreasing functions, with
its usual topology. Its dual is S

′
= S

′
(Rd), the set of all tempered distributions on R

d.
Translation and modulation of a function f with domain R

d are defined, respectively,
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by

Txf(t) = f(t − x) and Myf(t) = e2πiy·t f(t).

The Fourier transform of f ∈ L1(Rd) is f̂(ω) =
∫

Rd f(t) e−2πit·ω dt, ω ∈ R
d. The

Fourier transform is an isomorphism of the Schwartz space S onto itself, and ex-
tends to the space S

′
(Rd) of tempered distributions by duality. The inverse Fourier

transform is f̌(x) = f̂(−x).

The inner product of two functions f, g ∈ L2 is 〈f, g〉 =
∫

Rd f(t)g(t) dt, and its

extension to S
′ × S will be also denoted by 〈·, ·〉.

The Short-Time Fourier Transform (STFT) of a function f with respect to a win-
dow g is

Vgf(x, y) = 〈f, MyTxg〉 =

∫
Rd

e−2πiy·t g(t − x) f(t) dt,

whenever the integral makes sense. Analogously to the Fourier transform, the STFT
extends in a distributional sense to f , g in the space of tempered distributions S

′
, cf.

[11, Prop. 1.42].
Given a strictly positive function ν on R

2d, we let Lp,q
ν = Lp,q

ν (R2d) be the spaces
of measurable functions f(x, y) for which the weighted mixed norms

‖f‖Lp,q
ν

=

(∫
Rd

(∫
Rd

|f(x, y)|p ν(x, y)p dx

)q/p

dy

)1/q

are finite. If p = q, we have Lp,p
ν (R2d) = Lp

ν(R
2d), a weighted Lebesgue space. By

lp,q
ν̃ (Z2d) we denote the spaces of sequences a = (akl)k,l∈Zd for which the mixed norms

‖a‖lp,q
ν̃

=

(∑
k∈Zd

(∑
l∈Zd

|akl|p ν̃(k, l)p

)q/p)1/q

are finite, where ν̃(k, l) = ν(αk, βl) for some given α, β > 0. If p = q, we recover the
weighted sequence spaces lpν̃(Z

2d).

2.2. Weight functions. Given s ≥ 0, a positive, continuous, and symmetric func-
tion ν is called an s-moderate weight if there exists a constant C > 0 such that

(3) ∀ x, y ∈ R
d, ν(x + y) ≤ C (1 + |x|2)s/2 ν(y).

For example, ν(x) = (1+ |x|2)t/2 is s-moderate exactly for |t| ≤ s. If ν is s-moderate,
then by manipulating (3) we see that

1

ν(x + y)
≤ C (1 + |x|2)s/2 1

ν(y)
,

hence, 1/ν is also s-moderate (with the same constant).
In the sequel we let ωs(x) = (1 + |x|2)s/2 for s ≥ 0. Notice that the definition

of s-moderate weight functions can be generalized in an obvious manner to higher
dimensions. If ωs defined above is a function over R

2d, we let Ωs = ωs ⊗ωs ⊗ ωs, i.e.,

Ωs(x1, x2, y1, y2, z1, z2) = ωs(x1, x2) ωs(y1, y2) ωs(z1, z2),
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be a weight function defined on R
6d. Moreover, if A is an invertible transformation

on R
6d, i.e., A ∈ GL(R, 6d), we denote by ΩA

s the weight function defined on R
6d by

ΩA
s (X) = Ωs(A(X)) for X ∈ R

6d.

3. Modulation spaces and Gabor frames

3.1. Modulation spaces.

Definition 1. Given 1 ≤ p, q ≤ ∞, and given a window function g ∈ S, and an s-
moderate weight ν defined on R

2d, the modulation space Mp,q
ν = Mp,q

ν (Rd) is the
space of all distributions f ∈ S

′
for which the following norm is finite:

(4) ‖f‖Mp,q
ν

=

(∫
Rd

(∫
Rd

|Vgf(x, y)|p ν(x, y)p dx

)q/p

dy

)1/q

= ‖Vgf‖Lp,q
ν

,

with the usual modifications if p and/or q are infinite. If ν = 1, we will simply write
Mp,q for the modulation space Mp,q

ν . Moreover, when p = q, we will write Mp
ν for

the modulation space Mp,p
ν

Remark 1. The definition is independent of the choice of the window g in the sense
of equivalent norms. If 1 ≤ p, q < ∞, and ν is an s-moderate weight, then M1

ωs

is densely embedded into Mp,q
ν . In fact, the Schwartz class S is dense in Mp,q

ν for
1 ≤ p, q < ∞ and for all s-moderate weights ν. One can also show that the dual of

Mp,q
ν is Mp′,q′

1/ν , where 1 ≤ p, q < ∞ and 1
p
+ 1

p′ = 1
q
+ 1

q′ = 1. We refer to [18] and the

references therein for more details about modulation spaces.

Remark 2. For p = q = 2, if ν ≡ 1 then M2
ν = L2; if ν(x, y) = (1 + |x|2)s/2 then

M2
ν = L2

s, a weighted L2-space; if ν(x, y) = (1+ |y|2)s/2 then M2
ν = Hs, the standard

Sobolev space, and if ν(x, y) = (1 + |x|2 + |y|2)s/2 then M2
ν = L2

s ∩ Hs.

Remark 3. The modulation space M1
ωs

is a Banach algebra under both pointwise
multiplication and convolution and is invariant under Fourier transform. It plays
also an important role in the theory of Gabor frames where it serves as a convenient
class of windows that generate Gabor frames for the whole class of the modulation
spaces. In particular, if s = 0 (equivalently if ν = ωs ≡ 1), then M1 is the Feichtinger
algebra. We point out that functions in M1

ωs
are, in general, not smooth. Notice

also that M1
ωs

is continuously embedded into L1
ω1

s
where ω1

s is the restriction of ωs to

R
d × {0}; see e.g. [18] for the proof of this embedding.

3.2. Gabor Frames.

Definition 2. Given a window function φ ∈ L2(Rd) and constants α, β > 0, we say
that {MβnTαkφ}k,n∈Zd is a Gabor frame for L2(Rd) if there exist constants A, B > 0
(called frame bounds) such that

A ‖f‖L2(Rd) ≤
∑

k,n∈Zd

|〈f, MβnTαkφ〉|2 ≤ B ‖f‖L2(Rd), ∀f ∈ L2(Rd).

We refer to [7], [18], and [21] for extensive treatments of frames and Gabor frames.
Let φ be a well-localized window in the time-frequency plane. One can generalize

the theory of Gabor frames from the pure L2 theory to obtain a characterization
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of the whole class of modulation spaces [9], [10], [18]. We summarize in the next
theorem certain facts about Gabor frames in modulation spaces that will be needed
in the sequel of this paper.

Theorem 1. Let φ ∈ S(Rd) be such that {MβnTαkφ}k,n∈Zd is a Gabor frame for L2.
Let 1 ≤ p, q ≤ ∞, and let ν be an s-moderate weight. Then the following hold.
a. The frame operator Sφ is a continuously invertible operator from Mp,q

ν onto itself,
and the (canonical) dual γ = S−1

φ φ belongs to S(Rd).
b. Every tempered distribution in Mp,q

ν has a Gabor expansion that converges uncon-
ditionally (or weak* unconditionally if p = ∞ or q = ∞), namely

f =
∑

k,n∈Zd

〈f, MβnTαkγ〉MβnTαkφ, ∀f ∈ Mp,q
ν (Rd);

moreover, we have the following norm equivalences

‖f‖Mp,q
ν

� ‖〈f, MβnTαkφ〉‖lp,q
ν̃

� ‖〈f, MβnTαkγ〉‖lp,q
ν̃

.

To summarize, a tempered distribution f belongs to the modulation space Mp,q
ν (Rd)

if and only if the sequence of its Gabor coefficients (〈f, MβnTαkφ〉)k,n∈Zd belongs to
the sequence space lp,q

ν̃ (Z2d). Moreover, the norm of f is equivalent to the norm of
its Gabor coefficients.

The next proposition gives a characterization of M1
Ωs

(R3d) in terms of Gabor
frames using standard tensor product arguments; see [18, p. 272] for further de-
tails.

Proposition 1. Let φ ∈ M1
ωs

(Rd) be such that {MβnTαkφ}k,n∈Zd is a Gabor frame
for L2(Rd) with (canonical) dual γ ∈ M1

ωs
(Rd). Then K ∈ M1

Ωs
if and only if

K =
∑

k,m,i,l,n,j∈Zd

〈K, MβnTαmγ ⊗MβlTαkγ ⊗MβjTαiγ〉MβnTαmφ⊗MβlTαkφ⊗MβjTαiφ

with unconditional convergence of the series in M1
Ωs

(R3d). Moreover, the norm of K
in M1

Ωs
is equivalent to the norm of its Gabor coefficients

(〈K, MβnTαmγ⊗MβlTαkγ⊗
MβjTαiγ〉

)
k,m,i,l,n,j∈Zd in l1

Ω̃s
(Z6d).

4. Bilinear operators and a discrete model

4.1. Bilinear operators.

Definition 3. A bilinear operator associated with a kernel K ∈ S
′
(R3d), is a mapping

BK defined á priori from S(Rd) × S(Rd) into S
′
(Rd) by

(5) BK(f, g)(x) =

∫
Rd

∫
Rd

K(x, y, z) f(y) g(z) dy dz,

for f, g ∈ S(Rd).

The next proposition establishes the relationship between a bilinear integral opera-
tor and a bilinear pseudodifferential operator defined by (1). Notice also the similarity
with the relationship between the Weyl and Kohn-Nirenberg correspondences in the
linear case.
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Proposition 2. Let Tσ be a bilinear pseudodifferential operator associated to a sym-
bol σ ∈ S ′(R3d). Then Tσ is a bilinear integral operator BK with kernel K(x, y, z) =
F−1

1 σ̂(N(x, y, z)), where N(x, y, z) = (x, y − x, z − x) is a change of coordinates on
R

3d and F−1
1 denotes the inverse Fourier transform in the first variable.

Proof. For f, g ∈ S we have:

Tσ(f, g)(x) =

∫
Rd

∫
Rd

σ(x, ξ, η) f̂(ξ) ĝ(η) e2πix·(ξ+η) dξ dη

=

∫ ∫ ∫ ∫
σ(x, ξ, η) f(y) g(z) e−2πiξ·y e−2πiη·z e2πix·(ξ+η) dξ dη dy dz

=

∫ ∫
K(x, y, z) f(y) g(z) dy dz = BK(f, g)(x),

where

K(x, y, z) =

∫ ∫
σ(x, ξ, η)e−2πiξ·(y−x) e−2πiη·(z−x) dξ dη

= F2F3σ(x, y − x, z − x) = F−1
1 σ̂(N(x, y, z)).

Here, Fj denotes the Fourier transform in the jth variable. �

Let X = (x1, x2, x3), Y = (y1, y2, y3) ∈ R
3d. We define an invertible linear transfor-

mation on R
6d by A(X, Y ) = ((NT )−1(x1,−y2,−y3), N(y1, x2, x3)), where N is the

change of variables defined in Proposition 2. We show in the next proposition that
the symbol of the bilinear pseudodifferential operator is in M1

ΩB
s

if and only if the

corresponding integral kernel as defined in Proposition 2 is in M1
Ωs

, where B = A−1

is the inverse of A.

Proposition 3. σ ∈ M1
ΩB

s
(R3d) if and only if K = F−1

1 σ̂ ◦ N ∈ M1
Ωs

(R3d).

Proof. Let G ∈ S(R3d). For u = (u1, u2, u3), v = (v1, v2, v3), and t = (t1, t2, t3) ∈ R
3d

we have

VGK(u, v) =

∫
R3d

K(t) e−2πit·vG(t − u) dt

=

∫
Rd

∫
Rd

∫
Rd

∫
Rd

σ̂(x, t2 − x, t3 − x) e−2πi(v2·t2+v3·t3) e2πit1·(x−v1)×

G(t1 − u1, t2 − u2, t3 − u3) dx dt1 dt2 dt3

= e−2πiu1·v1

∫
Rd

∫
Rd

∫
Rd

σ̂(x, t2, t3) e−2πi(x,t2,t3)·(−u1+v2+v3,v2,v3)×

F1G((x, t2 + x, t3 + x) − (v1, u2, u3)) dx dt2 dt3

= e−2πiu1·v1

∫
R3d

σ̂(Z) e−2πiZ·(N−1)T (−u1,v2,v3)×
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(F1G) ◦ N−1(Z − N(v1, u2, u3)) dZ

= e−2πiu1·v1 V(
F1G

)
◦N−1

σ̂(N(v1, u2, u3), (N
−1)T (−u1, v2, v3))

= e−2πiu1·v1 VH σ̂(N(v1, u2, u3), (N
T )−1(−u1, v2, v3))

where H =
(F1G

) ◦ N−1. Since |Vgf(x, y)| = |Vĝf̂(−y, x)|, whenever the STFT is
defined, we have

|VGK(u, v)| = |VH σ̂(N(v1, u2, u3), (N
T )−1(−u1, v2, v3))|

= |VȞσ((NT )−1(u1,−v2,−v3), N(v1, u2, u3))|
= |VȞσ(A(u, v))|.

Therefore,∫
R3d

∫
R3d

|VGK(u, v)|Ωs(u, v) du dv =

∫
R3d

∫
R3d

|VȞσ(A(u, v))|Ωs(u, v) du dv

=

∫
R3d

∫
R3d

|VȞσ(u, v))|ΩB
s (u, v) du dv < ∞,

and the proof is complete. �

4.2. A discrete model. Consider φ ∈ S(Rd) that generates a Gabor frame for L2

with (canonical) dual γ ∈ S(Rd). We can then expand f, g and h in S(Rd) as in
Theorem 1, where the series converge unconditionally in every modulation space
norm as long as p, q 6= ∞. Then using (5), we obtain:

〈BK(f, g), h〉 =

∫
Rd

∫
Rd

∫
Rd

K(x, y, z)
∑

k,l∈Zd

〈f, MβlTαkγ〉MβlTαkφ(y)×

∑
m,n∈Zd

〈g, MβnTαmγ〉MβnTαmφ(z)
∑

i,j∈Zd

〈h, MβjTαiγ〉MβjTαiφ(x) dx dy dz

=
∑
i,j

∑
k,l

∑
m,n

〈f, MβlTαkγ〉 〈g, MβnTαmγ〉 〈h, MβjTαiγ〉×

∫
Rd

∫
Rd

∫
Rd

K(x, y, z) MβjTαiφ(x)MβlTαkφ(y) MβnTαmφ(z) dx dy dz

=
∑
i,j

∑
k,n

∑
l,m

〈f, MβlTαkγ〉 〈g, MβnTαmγ〉 〈h, MβjTαiγ〉×

〈BK(MβlTαkφ, MβnTαmφ), MβjTαiφ〉.(6)

The exchange of the integrals and summations above is justified, since, f, g, h ∈ S

have absolutely summable Gabor coefficients. Moreover, K ∈ S
′
(R3d) =

⋃
s≥0 M∞

1/ωs
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(cf. [18, Prop. 11.3.1]) and φ ∈ S imply that the triple integral in the second equality
is uniformly bounded with respect to i, j, k, l, m, n ∈ Z

d. Therefore, to study the
boundedness of BK on products of modulation spaces, it suffices to analyze the
boundedness of the matrix B = (bij,kl,mn) defined by

(7) bij,kl,mn = 〈BK(MβlTαkφ, MβnTαmφ), MβjTαiφ〉
on products of appropriate sequence spaces.

The next theorem will be of special importance in proving our main results. In
particular, it shows that, under some mild condition on its entries, an infinite matrix
yields a bounded operator on products of sequence spaces associated with the mod-
ulation spaces as in Theorem 1. For an infinite matrix (amn,ij,kl), let O denote the
bilinear operator associated to it, i.e., (O(fij), (gkl))mn =

∑
ij,kl amn,ij,kl fij gkl, where

(fij) and (gkl) are sequences defined on Z
2d.

Theorem 2. Let ν be an s-moderate weight, and let 1 ≤ pi, qi, ri < ∞, for i = 1, 2
be such that 1

r1
= 1

p1
+ 1

q1
. If (amn,ij,kl) ∈ l1

Ω̃s
(Z6d), then O is a bounded operator from

lp1,p2

ν̃ (Z2d) × lq1,q2

ν̃ (Z2d) into lr1,r2

ν̃ (Z2d). In particular, if (amn,ij,kl) ∈ l1(Z6d) then O is
a bounded operator from lp1,p2(Z2d) × lq1,q2(Z2d) into lr1,r2(Z2d).

Proof. Let (fij) ∈ lp1,p2

ν̃ (Z2d), (gkl) ∈ lq1,q2

ν̃ (Z2d) and (hmn) ∈ l
r′1,r′2
1/ν̃ (Z2d) where r′1, r

′
2

are the dual indices of r1, respectively r2. We have

|〈O((fij), (gkl)), (hmn)〉| ≤
∑

m,n,i,j,k,l

|amn,kl,ij| |fij| |gkl| |hmn|

=
∑

m,n,i,j,k,l

|amn,kl,ij|
1
p1 |fij | ν̃(i, j)

ν̃(i, j)
|amn,kl,ij|

1
q1 |gkl| ν̃(k, l)

ν̃(k, l)
×

|amn,kl,ij|
1
r′1 |hmn| ν̃(m, n)

ν̃(m, n)

≤ C3
∑

m,n,i,j,k,l

|amn,kl,ij|
1
p1 ν̃(i, j)|fij |ω̃s(i, j) |amn,ij,kl|

1
q1 ν̃(k, l)×

|gkl|ω̃s(k, l) |amn,ij,kl|
1
r′1

1

ν̃(m, n)
|hmn|ω̃s(m, n)

= C3
∑

m,n,i,j,k,l

(|ãmn,kl,ij|
)1/p1 |fij|ν̃(i, j)

(|ãmn,kl,ij|
)1/q1 |gkl|×

ν̃(k, l)
(|ãmn,kl,ij|

)1/r′1 |hmn| 1

ν̃(m, n)

where ãmn,kl,ij = amn,kl,ij Ω̃s(m, n, k, l, i, j) = amn,kl,ij ω̃s(m, n) ω̃s(k, l) ω̃s(i, j). We
have used the fact that ν̃, and 1

ν̃
are s-moderate with the same constant C. Since
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1
p1

+ 1
q1

= 1
r1

we can apply Hölder’s inequality to obtain the following:

|〈O((fij), (gkl)), (hmn)〉| ≤ C3
( ∑

m,n,i,j,k,l

|ãmn,ij,kl| |fij|p1ν̃(i, j)p1

) 1
p1×

( ∑
m,n,i,j,k,l

|ãmn,ij,kl| |gkl|q1 ν̃(k, l)q1

) 1
q1×

( ∑
m,n,i,j,k,l

|ãmn,ij,kl| |hmn|r′1 1

ν̃(m, n)r′1

) 1
r′1

≤ C3 sup
i

(
sup

j
|fij|ν̃(i, j)

)
sup

k

(
sup

l
|gkl|ν̃(k, l)

)×

sup
m

(
sup

n
|hmn| 1

ν̃(m, n)

) (∑
m,i,k

∑
n,j,l

|ãmn,ij,kl|
)

≤ C3 ‖amn,ij,kl‖l1
Ω̃s

(∑
i

(∑
j

|fij|p1 ν̃(i, j)p1

)p2

p1

) 1
p2×

(∑
k

(∑
l

|gkl|q1 ν̃(k, l)q1

) q2

q1

) 1
q2 ×

(∑
m

(∑
n

|hmn|r′1 1

ν̃(m, n)r′1

) r′2
r′1

) 1
r′2

where we have used the fact that lp,q(Z2d) ⊂ l∞(Z2d). By duality we get that

‖O((fij), (gkl))‖l
r1,r2
ν̃

≤ C3 ‖amn,ij,kl‖l1
Ω̃s

‖(fij)‖l
p1,p2
ν̃

‖(gkl)‖l
q1,q2
ν̃

.

The second part of the theorem follows by choosing ν = ω0 ≡ 1. �

5. Boundedness of bilinear pseudodifferential operators

Our first main result shows that a bilinear integral operator with kernel in the
modulation space M1

Ωs
—in particular, in the Feichtinger algebra— gives rise to a

bounded operator.

Theorem 3. Let ν be an s-moderate weight, and let 1 ≤ pi, qi, ri < ∞ for i = 1, 2
be such that 1

p1
+ 1

q1
= 1

r1
. If K ∈ M1

Ωs
(R3d), then the bilinear integral operator BK

defined by (5) can be extended as a bounded operator from Mp1,p2
ν (Rd) ×Mq1,q2

ν (Rd)
into Mr1,r2

ν (Rd).

Proof. Let f, g, h ∈ S(Rd) and expand each of these functions into their Gabor se-
ries, i.e., f =

∑
i,j〈f, MβjTαiφ〉MβjTαiγ, g =

∑
k,l〈g, MβlTαkφ〉MβlTαkγ, and h =
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∑
m,n〈h, MβnTαmφ〉MβnTαmγ, where φ and γ are dual Gabor frames as in Theorem

1. By Proposition 1, the matrix defined by (7) belongs to l1
Ω̃s

since K ∈ M1
Ωs

.

Therefore, using Theorem 2 we have the following estimates:

|〈BK(f, g), h〉| = |
∑
mn

∑
ij

∑
kl

amn,ij,kl 〈f, MβjTαiφ〉 〈g, MβlTαkφ〉 〈h, MβnTαmφ〉|

≤ C ‖amn,ij,kl‖l1
Ω̃s

‖〈f, MβjTαiφ〉‖l
p1,p2
ν̃

×

‖〈g, MβlTαkφ〉‖l
q1,q2
ν̃

‖〈h, MβnTαmφ〉‖
l
r′1,r′2
1/ν̃

= C ‖K‖M1
Ωs

‖f‖Mp1,p2
ν

‖g‖Mq1,q2
ν

‖h‖
Mr′

1
,r′

2
1/ν

(8)

and by duality we obtain,

‖BK(f, g)‖Mr1,r2
ν

≤ C ‖K‖M1
Ωs

‖f‖Mp1,p2
ν

‖g‖Mq1,q2
ν

.

The result then follows by standard density arguments, using the fact that S(Rd) is
dense in Mp,q

ν for 1 ≤ s, t < ∞. �

The previous theorem together with Propositions 2 and 3 yield our second main
result, which provides a sufficient condition on the symbol so that the operator (1) is
bounded on products of modulation spaces. Recall that the invertible transformation
A was defined on R

6d by A(X, Y ) = ((NT )−1(x1,−y2,−y3), N(y1, x2, x3)), where N
is the change of variable defined in Proposition 2; we also let B = A−1.

Theorem 4. Let ν be an s-moderate weight, and let 1 ≤ pi, qi, ri < ∞ for i = 1, 2 be
such that 1

p1
+ 1

q1
= 1

r1
. If σ ∈ M1

ΩB
s
(R3d), then the bilinear pseudodifferential operator

Tσ defined by (1) can be extended to a bounded operator from Mp1,p2
ν (Rd)×Mq1,q2

ν (Rd)
into Mr1,r2

ν (Rd).

Proof. By Proposition 3, σ ∈ M1
ΩB

s
if and only if K ∈ M1

Ωs
where K is the kernel of

the corresponding integral operator, and the result follows from Theorem 3. �
If we assume that ν = ω0 ≡ 1, and that p1 = p2 = p and q1 = q2 = q (hence

r1 = r2 = r), we obtain the following

Corollary 1. Let 2 ≤ p, q < ∞ and 1 ≤ r ≤ 2 be such that 1
p

+ 1
q

= 1
r

. If

σ ∈ M1(R3d), then Tσ can be extended to a bounded operator from Lp(Rd) × Lq(Rd)
into Lr(Rd). In particular, if σ ∈ M1(R3d), then Tσ has a bounded extension from
L2(Rd) × L2(Rd) into L1(Rd).

Proof. For the range of p, q being considered we have the following continuous embed-
dings: Lp ⊂ Mp, Lq ⊂ Mq and so Lp × Lq ⊂ Mp ×Mq. Moreover, since 1 ≤ r ≤ 2,
we have that Mr ⊂ Lr (see [18]). These continuous embeddings combined with
Theorem 4 imply then the result. �
Remark 4. It is remarkable that the condition σ ∈ M1(R3d), does not imply any
smoothness nor decay on the symbol. In particular, Coifman-Meyer-type conditions
(2) are not satisfied by the symbols we consider. Note also that while the symbols
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considered in [15] or [25] are very singular along the anti-diagonal in the frequency
plane, they are independent of the space variable x. Furthermore, the techniques
used there to prove the boundedness of the corresponding operators fit the one di-
mensional situation, but they are yet to be developed in a multidimensional setting.
Our result has the advantage of dealing with symbols in both a non-smooth and
higher dimensional framework.

Assume that ν(x, y) = ωs(x, y) = (1 + |x|2 + |y|2)s/2 for some s > 0, and that
pi = qi = 2. Let ω1

s be the restriction of ωs to R
d × {0}. Then the following holds.

Corollary 2. If σ ∈ M1
ΩB

s
then Tσ can be extended as a bounded bilinear pseudodif-

ferential operator from M2
ωs

×M2
ωs

into L1
ω1

s
.

Proof. Notice that M1
ωs

is continuously embedded in L1
ω1

s
, cf. [18, Prop. 12.1.4].

So we only need to prove that under the hypotheses of the corollary, the bilinear
pseudodifferential operator can be extended to a bounded operator from M2

ωs
×M2

ωs

into M1
ωs

. But this follows from Theorem 4 by taking ν = ωs. �
Remark 5. If the symbol σ satisfies the estimates

(9) sup
x

‖∂αj

ξj
∂βk

ηk
σ(x, ·, ·)‖L2(Rd×Rd) ≤ C

for all j, k = 1, . . . , n, and αj , βk = 0 or 1, it was shown in [2, Theorem 2] that
the corresponding bilinear pseudodifferential operator is bounded from L2 × L2 into
L1. We wish to point out that, in general, neither that result nor Corollary 1 in this
paper imply each other. On one hand, if g ∈ S(R2d) then σ1(x, ξ, η) = χ[0,1[d(x)g(ξ, η)

where χ[0,1[d is the characteristic function of the unit cube in R
d, satisfies (9) and

hence it yields a bounded operator from L2 × L2 into L1. However, because σ1 is
not a continuous function, it is not in M1(R3d). Therefore, our corollary does not
apply. On the other hand, functions in M1 must be continuous, but there are non-
differentiable functions in M1, hence they do not satisfy (9), thus [2, Theorem 2]
does not apply here.
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Ann. Inst. Fourier Grenoble 28:177-202, 1978.
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