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Abstract

The recently introduced notion of frame potential has proven useful for the charac-
terization of finite-dimensional tight frames. The present work represents an effort
to similarly characterize finite-dimensional tight frames with additional imposed
structure. In particular, it is shown that the frame potential still leads to a com-
plete description of tight frames when restricted to the class of translation-invariant
systems. It is natural to refer to such frames as convolutional because of the corre-
spondence between translation-invariant systems and finite-dimensional filter banks.
The fast algorithms associated with convolution represent one possible advantage
over non-convolutional frames in applications.
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1 Preliminaries and Notation

Let ¢(Z4) be the d-dimensional real or complex Hilbert space of functions on
Zg := Z/dZ, equipped with addition modulo d > 0. One may equivalently
think of £(Z,) as the set of d-periodic functions defined on the integers. Notice
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that £(Z4) is endowed with a natural translation, T, which acts on x € £(Z,)
via (Txz)(k) = z(k — 1), k € Z4. The notational convention that T := T*,
k € Zg4, will be adopted hereafter. Given two positive integers m and n so that
mn = d, mZ4 will denote the subgroup {0, m,2m,...,(n —1)m} C Z,.

The unitary Fourier transform of x € ¢(Z,) is denoted by Z and defined by

Fua(k) == 3(k) = % Y 2(0) o2,

lely

The circular convolution of x,y € €(Z4) is defined by

(@ xy)(k) = > z(n) y(k —n).

n€ELgq

Hence, (z,T,Ym) = (T * §m)(n), where g(k) := y(—k) is the involution of y €
{(Z4). Tt is routine to verify that (z*y)" (k) = v/dz(k) §(k). Given any positive
integer N that divides d, henceforth denoted N |d, consider the corresponding
downsampling by N operator,

In: UZg) = UZapy),  (nz)(k) = 2(Nk),

and its adjoint, the upsampling by N operator,

Wi l(Zan) = UZa),  (Tvz)(K) =

z(k/N), N|k,
0, N/ k.

The composition of upsampling by N with downsampling by N will be referred
to as the dectmation by N operator and denoted 1.

Recall that a finite collection z1,...,z; € £(Z4) is a frame for £(Z,) if and
only if there exist constants 0 < B; < B, < oo such that for each = € £(Zy),

J
By||z|* < Z (@, 2;)" < Byl (1)

In the event that B; and B, may be chosen to be equal the frame is said to be
tight. Associated to any collection X := {mj}jzl C {(Zy) is the corresponding
analysis operator, L : £(Zq) — €(Z;), defined by Lxz(j) := Lz(j) = (z,z;).
The adjoint of the analysis operator is called the synthesis operator and acts
ony € £(Zy) by Ly := L*y = ¥ ;c;y(j)z;- By composing the synthesis and



analysis operators one obtains the frame operator, S : €(Zq) — €(Zg4), given
by

J
Sxx =8z =L'Lx =) (z,5;)z;.

J=1

The frame operator is well-defined whether or not X is a frame; however,
in the event that X is a frame with bounds A < B it follows that Al <
Sx < BI; and conversely if the last inequality of operators holds then X is
a frame. Finally, note that the Gram operator associated to X is defined as

2 Introduction

The notion of frame potential was introduced by Benedetto and Fickus [1] as
a tool for characterizing sequences of unit-norm vectors that comprise tight
frames for ¢(Z4). In particular, they showed in this context that when the
number of vectors exceeds the dimension of the space that each local mini-
mizer of the frame potential gives rise to a tight frame. In essence, this result
suggests that one may effectively search for tight frames of unit-norm vectors
by minimizing the frame potential. Notice that the frame operator of a tight
frame is simply a multiple of the identity operator, which leads to a simpler
reconstruction procedure than what is generally available for non-tight frames.

Definition 1 ([1]) Let X := {z;}/_g C {(Z4). The frame potential of X is
the quantity

J—1

FP(X) = 3= [zj, 2] (2)

7,k=0

Following this characterization of tight frames of unit vectors, Casazza et al. [3]
examined whether or not a similar result could hold for sequences of vectors
with unequal norms. They found that if a sequence of vectors comprises a tight
frame then, necessarily, the corresponding lengths of the vectors must satisfy
the so-called fundamental frame inequality, cf. (3) below. Moreover, they also
proved that under the restriction to sequences of vectors whose lengths satisfy
the fundamental frame inequality, the local minimizers of the frame potential
again provide a complete description of the tight frames. These results are
collected below as Theorem 2; however, the reader is referred to [3] for further
results as well as a detailed discussion of the physical interpretation of these
findings.



Theorem 2 ([3]) Let {a;}]=; C R be such that ag > a; > --- > aj1 > 0.
Let d > J be a positive integer and denote by jo the smallest index 0 < 57 < d—1
such that

(i)} < Y . ®)

If {x;}/—0 C €(Zy) is a local minimizer of the frame potential over the set

A={{z;}jZ0 CUZy) : ||z;]* = aj, 0<j<JT—1}

77

then the collectzon {xJ}J ! may be divided into two mutually orthogonal sub-

collectzons {z;}} ol 01, which consists of jo mutually orthogonal vectors, and

{x]}] Zjo» Which is a tight frame for its (d — jo)-dimensional span. In particu-
lar, if jo =0 then {x;}]=¢ is a tight frame for {(Zy).

Remark 3 If X : {a:J}‘] ' is a local minimizer over A as in Theorem 2
then it follows that each x; is an eigenvector of the associated frame operator
Sx. Moreover, if 0 < j < jo — 1 then the eigenvalue of :L'] is ||lz;1|?, whereas
if jo < j < J —1 then the eigenvalue of x; must be -— EJ Z lzsl1?. Similar
reasoning leads to the following expressions for the fmme potential of X :

jo—1 Jo—1 1 J—1

FP(X) = Y FP({z;}) + FP({z;}/}) Z ot + (¥ @)

j=0 d‘]OJJO

The last expression implies that all local minimizers of the frame potential
over A have the same frame potential, i.e., local minimizers are also global
minimizers. Further explanation of these observations may be found in [3].

Another consequence of the above observations is that if Ay > Ao > --- > N4
are the eigenvalues of Sx (listed according to multiplicity) then

[y

d
Y= Ml
=0

n=1

In addition to [1] and [3], there have been many other recent works devoted to
the study of finite-dimensional frames [4-6,8]. One recurring theme in these
works has been the careful attention paid to tight frames with additional struc-
ture. For example, in [6] a study of ellipsoidal tight frames was conducted,
while in [8] various notions of symmetry were described for tight frames. It is
therefore natural to ask whether the frame potential can still be used to char-
acterize tight frames under the restriction to collections with a given structure.



One specific structure that has found great use in applications is that of a fil-
ter bank. The main goal of this work is to provide a characterization of filter
bank tight frames in terms of the frame potential analogous to Theorem 2.

Let ho,hy,...,hy 1 € €(Zg) and consider the translation-invariant system
{Tyhm : k € NZg,0 < m < M — 1} where N | d is a positive integer. The
frame operator of this collection, S, acts on = € £(Zy) by

M-1
= (, Tkhym ) Tihm (£)
m=0 kENZg
M-1 ~
= (% hpp) (k) hpn (£ — k)
m=0 kENZg
M-1

(Nn (@ % hyy) % By (), £ € Zy.

3
Il
)

In this sense, S may be regarded as arising from a convolutional system. It
may also be thought of as a filter bank frame operator, induced by the filters
{hm}M=) with downsampling by N. A block-diagram representation of the
filter bank frame operator is given as Figure 1. The latter expression for S
above will be exploited further in the next section.

Fig. 1. A filter bank analysis operator and corresponding synthesis operator.
Analysis Synthesis

ilo* 4@—/ /—@7 ho*

EM—Q* @—/ /—@ har—ox
7ZM71* @—/ /—@ har—1%

Definition 4 Let {h,,} =5 C ¢(Z4) and suppose N and d are positive integers
such that N | d. The collectzon

Hy({hm}m=y) = {Thm : k € NZ4,0 <m < M — 1}

will be referred to as the convolutional system generated by {h,} M-t with



downsampling N .

Remark 5 Let H = {h,}M_3 C U(Z4) and suppose N | d and denote the
frame operator of H := Hy(H) by Sy. Observe that

Z T_kS’HTk,

kENZg4

which implies that the matrix representing Sy is a sum of diagonal shifts of
the matriz representing Sv. Many familiar ezamples of frames may be realized
through this simple relation.

(a) Letd = 2P (p a positive integer) and N = 2. Define H = {hg, h1} C £(Zy)
by ho =.(%, %,0,...., 0) and hy = (f,—%,ﬂ,...,O). The matriz rep-
resentation of Sy is zero everywhere except the first two diagonal entries,
which are equal to 1. It is easy to see that this leads to Sy = 14. In this
case Hy(H) corresponds to the Haar orthonormal basis for £(Z).

(b) Let d = 2P (p a positive integer) and N = 2. In this case, define H =
{ho, h1, ha} C U(Zg) by he = (1,0,0,...,0), by = (=3, {,0 .,0), and
hy = (—%, _T\/g, 0,...,0) . Again the matriz representation of Sy, is zero
everywhere except the first two diagonal entries, which in this case are
equal to 3. This leads to Sy = 31,4, which implies that Hy(H) is a 3-tight
frame.

The main result of this article is an analog to Theorem 2 characterizing con-
volutional tight frames in terms of the restriction of the frame potential to
convolutional systems.

Theorem 6 Let {a,,}X =5 C R be such that ag > a; > -+ > ap—1 > 0. Let
d and N be positive integers such that N | d and N < M. Denote by myg the
smallest index 0 < m < d—1 such that

(N —m)aZ, < Z as. (4)

If Hy({hm}YX28) € £(Z4) is a local minimizer of the frame potential over the
set

A= {ln}mzy CUZa): |hmll* = ag,, 0<m <M -1},

then Hy({hm}M-3) may be divided into two mutually orthogonal subcollec-
tions: Hy({hm}™%"), which consists entirely of mutually orthogonal vectors,
and Hy ({hn}2=1 ), which is a tight frame for its &(N — mq)-dimensional

span. In particular, if mg = 0 then Hy({hn}M=3) is a tight frame for £(Zy).



The remainder of this article is devoted to building the machinery necessary
to prove Theorem 6. Section 3 deals with the modulated filter representation
of convolutional systems, which allows questions about the frame properties of
convolutional systems to be examined in terms of associated non-convolutional
systems via the action of the Fourier transform. Section 4 is devoted to the
proof of Theorem 6, which relies heavily on the insight obtained through the
modulated filter representation.

3 The modulated filter representation

As above, let N and d be positive integers such that N | d. Fix a sequence of
real numbers, ag > a; > -+ > ap_1 > 0 and consider the family of systems
of the form H := Hy({hm}M_4) where each filter h,, € £(Z4) satisfies ||| =
@, In light of the observations preceding Definition 4, the synthesis operator
L* associated to such a collection acts on a sequence &,,y,, C @M ! E(Zd)
by

M—-1

L*(Gamym) = Z ( ™ ym) * hyp,.

m=0

Under the action of the Fourier transform upsampling becomes periodic ex-
tension, i.e., (v ym)" (k) = \/Lﬁgjm(k), and one may verify that the Fourier
transform of the synthesized signal is given by

'EIL*(EBmym - Z h k € Zd

The component functions ¢, are (d/N)-periodic, hence for any particular
indices,

AL @) (50 =5 3 Bl 30 6

For any k € Zg4, stacking the N versions of (5) for 0 < n < N—1 in the form
of a matrix yields,
EiL*(EBmym)(k"{_(])v_d) gO(k)
: = Hyoq(k) | : (6)
FaL* (@ mym) (k+15H1) G- (k)



where H} (k) is the N x M adjoint modulated filter matriz,

holk +9%) .y (k+ %)
i d|. .
Hmod(k) = N : : . (7)
ho(k + 19) gy (k + 519

That is, H 4(k) is the N x M matrix whose (n, m)th entry is,

H:;’lod(k)(n’ m) = \/;Bm(k + nﬁd) (8)

Stacking the d/N matrix-vector equations (6) that correspond to 0 < k <
d/N —1, results in the d x (Md/N) block matrix-vector equation,

FaL* (®mym)(0+ %) %0(0)
FyL* (®mym)(0+ T4 I1(0)
FL* (@mym)(1+%2) yo(1)
: H; 4(0) 0 :
FgL* (®mym)(1+ W) B 0 H: 4(1) ... 0 T (1)
* d
0 0 o HE (£ 1)
BL* (@mym)(£-1+%) Yo(&-1)
| FBal* (@mym) (% -1+ | | T (1) |

Observe that the vectors in this equation on the left and right contain all the
values of FyL*(®mYm) and &,,Um, respectively, albeit in a permuted order.
Thus, through the appropriate use of Fourier transforms and permutations,
the synthesis operator of Hy({h,,}2=}) may be related to the block adjoint

modulated filter matriz HY, 4 whose (Nk+n, Mk+m)th entry is given by,

d ~ d
Hygg Nk, Mh+m) = || o (k4 50),

forall k =0,...,(d/N)—1and n = 0,..., N—1, with the remaining entries
all being 0.

The reordering of terms involved in the above factorization is formally de-
scribed as a perfect shuffle, as noted in Strohmer’s work on Gabor frames [7].



Given any positive integers N |d, the mod N perfect shuffle operator is

PN,d : K(Zd) — E(Zd), (PN,df)(]Vk-FTL) = f(k + ,;L\j{)

where the indices are restricted to k = 0,..., (d/N)-land n =0, ..., N-1. For
example, if d = 15 and N = 3, the effect of the mod 3 perfect shuffle P; ;5 upon
the identity function f € £(Zi5) defined by f(k) =k, for all k = 0,...,14, is
summarized in the following table:

£ (k) 0[1]2 (345|678 |9]10]11]12]13]14

Pyysf(k)| 0 |5]10[1|6]11|2]7|12(3|8 |13]|4 |9 |14

Any such shuffle operator is clearly unitary, with Py , = Pg}d = Pyn,q-
This leads to a formal factorization for the synthesis operator. For notational
convenience, let Y denote the direct sum of M copies of the discrete Fourier
transform of size d/N.

Theorem 7 Let L be the analysis operator associated to Hy({h,YM=3) and
let Hyoa be the corresponding modulated filter operator. Then,

L= (PM,Md/Nf;jlyN)* Hrnod (PN,d Ei)

PROOF. Let &,y € ®¥- 1Z(Zd/N) By combining the definition of the
shuffle Py 4 with equation (5) and the definition of H} ,, one obtains

nd
PN, aFal” (@mym) (Nk‘i'n) :ﬁL*(@mym)(k+ N)
d
Z . k+” (k)
= Z mod Nk+n7 Mk—"m)gm(k)’ (9)

forallk=0,...,d/N—1,and alln=0,...,N—1.

Now observe that the (Mk+m)th entry of the standard column vector repre-
sentation of

Prrvia/n f;j]y[N(@mym) = Py, via/N (®BmUm)



may be obtained by extracting the kth entry of mth block of &,,¥,,, namely
the kth entry of ,:

md

(P, paa/n E%(GBmym))(Mker) = @mgm(k'i‘W)'

In this light, the right hand side of (9) becomes the expression of one term of
a matrix-vector product,

M-1
> Hioa(Nk+n, Mk+m) (Pu,sia/v Fajn (Smym)) (Mk+m)
m=0

= (HI;odPM,Md/N jiilyN (@mym))(Nk'—i“n)

As this holds for all k =0,...,d/N—1,and n =0,..., N—1, then,

Py, aFal* (®mym) = Hioa Pryia/vy Fijn (@mym). O

In essence, the modulated filter representation decomposes ¢(Z,) into the di-
rect sum of <4 copies of £(Zy). In fact, the product H}, qHmod may be realized
as the tensor product of frame operators acting on the respective copies of
{(Zy). Consider the £ collections

d
Xj ={zmtmo CULN), 0<j< -1, (10)

where z,,;(n) = \/%ﬁm(j + 24y 0 < n < N — 1. With this notation it is
apparent that

SX = SXO D SXl h---P SXi71 = H:;demod.
N

Theorem 7 implies that Sg, the frame operator of Hy({h,,}X=y), is unitarily

equivalent to the block-diagonal frame operator Sx, associated with the col-
lections X;, 0 < 5 < % — 1. Hence, frame-related computations involving, for
instance, the eigenvalues of Sy, may be performed by computing the corre-
sponding quantities for the collections X;. This statement is made precise by
the following corollary to Theorem 7.

Corollary 8 Let {h,}M= c £(Z4) and let N and d be positive integers such
that N | d. Then, defining the collections X;, 0 < j < % —1, as in (10),

10



(i) the frame bounds for Hy({hn})=1) are the minimum of the lower frame
bounds and the mazimum of the upper frame bounds for the collections
Xj)

(i) Hy({hm}NZ9) is a tight frame for £(Z4) if and only if for all j, X; is a

tight frame for £(Zy) of common frame bound,

(#3) the squares of the Hilbert-Schmidt norms of the analysis, synthesis, frame

and Gram operators for the collection Hy ({hm Y =3) are equal to the sums
of the squares of the Hilbert-Schmidt norms of the corresponding operators

for the collections X;.

Remark 9 In the (*(Z) setting, part (i) of Corollary 8 was known by Bélcsket,
Hlawatsch and Feichtinger [2] in the context of the polyphase representation,
while part (i7) was observed independently in both [2] and [4] and later used
in [5]. It should be noted that Vetterli considered filter banks over finite fields

in [9].

Remark 10 Corollary 8 suggests a natural approach for constructing convo-
lutional tight frames that deserves brief mention here. Suppose a convolutional
frame with M filters is desired for ¢(Zq) with downsampling by N | d under
the constraint that ||hy|| = am with ag > agy -+ > apy—1 > 0. Provided that

Theorem 2 guarantees the existence of a tight frame for £(Zy), X = {z, YNy,

where ||z,||> = a2,. One can construct the desired convolutional tight frame
by filling in the columns of H} 4(k) with the coordinates of the corresponding

vector from X and computing the associated filters {hy, M

4 Proof of Theorem 6

Again let N and d be positive integers where N | d. Fix a sequence of real
numbers, a; > ay > --- > apr > 0 and consider the family of systems of the
form H := Hy({h,}}=}) where each filter h,, € £(Z,) satisfies ||hp|| = am.
One important consequence of the modulated filter representation and, in
particular, of Corollary 8 is the fact that the local minimizers of the frame
potential over this family of convolutional systems are in direct correspondence
with the local minimizers of the sum of the frame potentials over the family

d_
of systems of the form {X j}]f-"zol where each collection X is defined according
to (10) and is regarded as a subset of an independent copy of £(Zy). Through
this correspondence, the constraints on the filter lengths, i.e., [|hn| = am,

11



imply that

41
> 1zm,]
j=0

d
= Y IThall® = ek, 0<m< M -1
JENZ,

Moreover, the set of eigenvalues of the frame operator Sy is identical to the
union of the sets of eigenvalues of the frame operators S x;, 0<7 < % — 1.
Thus, one may derive Theorem 6 from the following result.

Theorem 11 Let {a,,} Y= C R be such that ag > a; > -+- > ap—; > 0. Let
d and N be positive integers such that N | d and N < M. Denote by my the
smallest index 0 < m < d —1 such that

M-1
(N—m)az, < > al. (11)
ji=m
If the collections X; = {xmj}N=3 C U(Zy) form a local minimizer of the
d

combined frame potential, ijgl FP(X;), under the constraint that

d
W—l

> lzmgl
j=0

m?

d
ZZNaZ 0<m<M-1,

then each collection X; may be divided into two mutually orthogonal subcol-
lections of L(Zn): {Tmj}m", which consists of mutually orthogonal, nonzero
vectors, and {x, ;j})_} , which is a tight frame for its (N — my)-dimensional
span. Moreover, for each j the norms of the vectors of X; must satisfy ||z ;|| =
am for 0 <m < mo—1 and X020 ||@mjl|> = Xommo 02, In the event that

mo = 0 each collection X;, 0 < j < & — 1, is a tight frame for {(Zy) with a
common frame bound.

The following technical lemmas will be used frequently in the proof of Theorem
11.

Lemma 12 Let Xj = {:Em,j}%:_ol, 0 < ] < % - L Suppose that Tmo,j1 is

an eigenvector of Sx; with eigenvalue A\; # 0 and that ||Tm, | = 0. Also
suppose that there exists a unit eigenvector u of Sx;, with eigenvalue Ay. Define

X; = {xin,j}rﬂr/z[:_()l by

1 . .
(1= mrsp)* Bmosins (M, ) = (Mo, 1),
xf”’j = \/gu’ (ma]) = (mOan)a

T otherwise.

12



Then P(e) := X1y FP(X?) satisfies P'(€) = 4z + 2(A — A1)

PROOF. The only terms in the expression for P(e) that actually depend on
e are FP(X7)) and FP(X3)). Let o := ||Zy,,j,|| and observe that

. £ 9 4 c M-1 9
FP(X5) =(1—- =) +200— =) > [Zmoss Tmj)|
@ o m=0,m#mo
M-1

+ z ‘(xm,h ’ xn,]&) ‘27

m,n=0,m,n#mo

while FP(X%,) is given by

M-1 M-1
FP(X3,) = e2+2 > u, xm,j2>|2 + > (T, xn,j2)|2.
m=0,m#mo m,n=0,m,n#mo

By hypothesis ”Slexmo,jl“Z = /\1||xm0,j1||2 = /\1a2 and ||SXj2u||2 = /\2““”2’
from which one may deduce that P'(¢) = 4e + 2(Ay — A1) after differentiating
the above expressions and appropriately interpreting the resulting terms. 0O

Lemma 13 Let Xj = {.’L’m,j}%[:_ol, 0 S ] S % -1 Suppose that Lmo,j1 and
Tme,j» GTE NON-2€70 eigenvectors of Sx; and Sx; with eigenvalues Ay and Ag,

respectively. Define X¢ = {z5, ;} =0 by

€ 1 . .
(1 - ||sz,j1||2)2xmo,j1’ (m’]) = (mOajl)a
1
xfn,j = (1 + ||mm§,j2||2)2xm0:j2’ (ma]) = (mOajZ):

T, js otherwise.
a
Then P(e) := Y. 2 FP(X?) satisfies P'(e) = 42 +2(Xs — \1).

PROOF. The proof is analogous to that of Lemma 12 and the details are
left to the reader. O

The proof of Theorem 11 will be accomplished through a sequence of steps,
relying mainly on Theorem 2, Lemma 12, and Lemma 13.

13



PROOF. Proof of Theorem 11 Assume that the collections X; form a local
minimizer of the combined frame potential, as described in the statement of
the theorem. Then each collection X; may be regarded as a local minimizer
of FP(Xj) over the family of collections in £(Zy,) with norms prescribed by
those of X; and where N, is the minimum of /N and the number of nonzero
vectors in X;. It will be shown below that N; = NN, but this is not clear a
priori. In any case, X; may be decomposed using Theorem 2 and each vector
Trm,; Will be an eigenvector of the associated frame operator Sx;. The presence
of zero-norm vectors in X; has no effect on the conclusion of Theorem 2. These
facts will be used below.

1. Each collection X; is a frame for {(Zy). Assume by way of contradiction
that X, is not a frame for ¢(Zy). It follows from Theorem 2 that if
X, consists of at least N nonzero vectors then it must be a frame for
¢(Zy). Therefore, the contradiction hypothesis implies that X, contains
strictly fewer than than N nonzero vectors. Without loss of generality
assume that z,, ;, = 0. Since X}, is not a frame for ¢(Zy) there exists
u € ¢(Zy) such that v is orthogonal to Xj,, i.e., u is a O-eigenvector of
Sx;,- Now observe that the constraints on the collections X; require that
at least one of {xml,j}ogjg 4 is nonzero, say T, ; where necessarily
J1 # J2- As remarked above, each vector x,,; is an eigenvector of Sx;,
so Lemma 12 may be applied to zp,, j,,m, j,, and u with Ay = 0 and
A1 > 0. By considering sufficiently small ¢ this leads to a contradiction
of the minimality of the combined frame potential.

2. Nonzero siblings have identical eigenvalues. The collection {xm,j}OSjS%—1
will be referred to as a collection of siblings, because these vectors are
related to one another through the length constraints of the theorem.
Suppose Z, j, and z,, ;, are any two nonzero siblings. Applying Lemma 13
one finds that P'(e) = 4e +2(A\y — A1), where \;, Ay are the eigenvalues of
Ty i a0d Ty, 4y, Tespectively. If Ay # Ay then |P'(¢)| > 0 for sufficiently
small ¢, contradicting the minimality of the combined frame potential.

3. The distribution of squared-norm is uniform across the collections Xj,
i.e.,

M-1
2
m=0

where C' > 0 s independent of j. Assume by contradiction that there
exist j; # jo such that

M-1 M-1
2 2
2 Nzmall® > D2 lzmall

List the eigenvalues of SXJ.1 and Sij according to multiplicity, SX].1 :
)\12)\22---2)\N>0andSXj2: 7127222')/N>0The

14



contradiction hypothesis implies that ¥, A\, > SV | v, cf. Remark 3.
Thus, there exists n such that A\, > ~,. Let ny be the smallest index for
which A, > 7,,. In order to derive a contradiction it will be shown that
there is a A, -eigenvector z,,, j, such that ||z, j,|| = 0. In this case one
may apply Lemma 12 to show that the combined potential cannot be a
local minimum.

If A, is not an eigenvalue of Sy, then the existence of such an eigen-

vector is immediate. If A,, is an eigenvalue of Sx; then one concludes
that v,,—1 = An,, but since the eigenvalues are listed in decreasing or-
der this implies that A,,—1 = Ay, as well. Similar reasoning leads to the
conclusion that if v,,_x = Ap, then so must A\,;_x, 1 < k£ < np — 1.
This means that the multiplicity of the eigenvalue A, is strictly greater
for S X;, than it is for S X;, and, hence, there is at least one more A, -
eigenvector among the collection X; than among X;,. Moreover, the
Ano-eigenvectors of Sy, must be linearly independent because A,, > .
It follows from dimensional considerations that there exists some z,, ;,
which is a A, -eigenvector whose sibling Z,, ;, = 0.
. The index set M :={0,1,..., M — 1} may be partitioned into two sub-
sets, My and Msy, so that for each 0 < j < % — 1 the collection
{Zm,jtmerm, consists of mutually orthogonal nonzero vectors and is or-
thogonal to {Tm ;}tmem,, which is a tight frame for its span. It follows
from Theorem 2 that such a partition, M = M;; U My, exists for
each j, but it remains to show that the same partition is valid for all
0<j<&—1,

Let T, j, be the vector in {zn,; : 0 < j < £ —1,m € My} of
maximum norm. It will be shown that each sibling of z,,, j, is nonzero.
Assume by way of contradiction that z, j, = 0. If Sx; has no eigenvalue
strictly less than ||z, jo||* then

M-1 M—-1 N

2 2 2
Z ||$m,j0|| = Z ||‘,'Em;j1|| = Z An > N”‘,'Eml,jO” )
m=0 m=0

n=1

where {),},_; are the eigenvalues of Sx, . This implies that N ||z, j,[|* <

M= @ jol|?, which is a contradiction of the fact that m; € My .
Hence, each sibling of z,,, j, is nonzero.

This argument may be repeated after the removal of z,,, j, from each
X, until the remaining vectors in each X; form a tight frame for their
span. In other words, if m € M, then m € M, ; for each j and,
therefore, the partition is independent of j as claimed.

. Let my be as in the statement of the theorem. Then My ={0,1,...,my—
1} and the norms of the vectors in X; are as claimed. If m € M; then
the eigenvalue of z,, ; must be ||z, ;||* for each j. Since each sibling has
the same eigenvalue, the constraint on the norms of the siblings implies
that ||z, ;|| = am for each j. Because ¥,,eaq, ||Zm,;]|* is then independent
of 7, so must ¥,,caq, [|[Zm,;||> be. In particular, the tight frame constant
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of {Zm,j}mem, is also independent of j.

In order to establish the fact that M; = {0, 1, ..., mg — 1} first notice
that Theorem 2 implies that the tight-frame constant of {Z,, ; }men, is
strictly smaller than any eigenvalue associated with z,, ;, m € M. Sup-
pose that m; € My, then the tight-frame constant must be greater than
or equal t0 ||z, j||* for each 0 < j < 4 — 1. The norm constraint on the
siblings {zm, ;}; implies that at least one of the siblings, say z, j,, has
norm greater than or equal to a,,,. Hence the tight-frame constant is at
least as big as a,,,. Suppose that ms € M; with my > m;. The eigenvalue
associated to each z,,; is a,, and, therefore, cannot be strictly larger
than a,,,, providing the desired contradiction. This shows that M, must
be of the form {m;,m; +1,..., M — 1} for some m; > my. It remains to
prove that m; = my.

Suppose that m; > myg, then the associated tight-frame constant must
be

1 M-1

)\::B > al,

m=my

where D is the dimension of the span of {Z, ;}me,. The contradiction
hypothesis implies that m; — 1 > my, so

1 M1 D)+ a?
afnlqﬁ - Z afnziml_l
D+1, 4= D+1

It follows that afmfl < )\, which is again a contradiction of the tight-frame
constant being strictly smaller than the eigenvalues associated with M.
Hence, My = {mg,mo + 1,..., M — 1}, finishing the proof of this claim
and the theorem. 0O

PROOF. Proof of Theorem 6: Assume that H := Hy({h,}¥-}) is a local
minimizer of the frame potential as described in the statement of the theorem.
Define £ collections X; C £(Zy), 0 < j < & —1, by (10). By Corollary 8 (iii),
it follows that the collections X satisfy the hypotheses of Theorem 11 with
my identical to that of the hypotheses of Theorem 6.

Let Sx = @; Sx, and observe by Theorem 7 that Sy = (Pn,a Fa)*Sx(Pn,a Fa)-
Hence, h,, is an eigenvector of Sy if and only if Py 4 F3h,, is an eigenvector
of Sx. By definition, @, Z, ; = Pn,q Fahm and since each nonzero sibling x,, ;
shares a common eigenvalue it is apparent that €,z ; is an eigenvector of
Sx as desired. If m < my, then the corresponding eigenvalue is a2,, while if

m?
m > my then the eigenvalue is N+mo %:_}no aZ,. Finally, notice that if h,, is
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a A-eigenvector of Sy, then so is T}, h,, for n € NZjg:

M-—1
SuTohm =Tn 3 S (Tuhim, Tehum)Tk-nhime (€) = AT S = XTy b

m'=0 keNZg4

This observation completes the argument. O

5 Underdetermined Systems

Theorems 6 and 11 fail to describe the case in which the systems involved are
underdetermined. The arguments used above require minor modifications, but
work in more or less the same way. The following result is the counterpart to
Theorem 11 for underdetermined systems.

Theorem 14 Let {a, }-} C R be such that ag > a1 > --+ > apy—1 > 0. Let
d and N be positive integers such that N | d and N > M. If the collections
d

X; = {xm ;1023 C U(Zy) form a local minimizer of EJJ-"_ZBI FP(X;) under the

d_
constraint that Z]?V:Ol |Zml[* = £a2,, 0 < m < M — 1, then each collection

X; is an orthogonal sequence with ||Tp ;|| = am, 0 <m < M — 1.

PROOF. The main reason for separating the underdetermined case from
the overdetermined case is that in the latter situation Theorem 2 guarantees
that each collection X; must at least comprise a frame for ¢(Zy). Whenever
M < N this is impossible, so the argument used to prove Theorem 11 must
be modified.

Following the proof of Theorem 11, assume that the collections X; form a
local minimizer of the combined frame potential as described in the statement
of the theorem. Regard each collection X, as a local minimizer of FP(Xj)
over the family of collections in £(Zy,) with norms prescribed by those of
X, and where N; is the minimum of M and the number of nonzero vectors
in X;. By modifying Step 1 of the proof of Theorem 11 it can be shown
that all M vectors in each collection X; must be nonzero and hence each
collection forms a basis for an M-dimensional subspace of ¢(Zy). Theorem 2
thus provides a decomposition of each X; into two mutually orthogonal parts,
the first consisting of an orthogonal sequence and the second comprising a tight
frame for its span. Because the tight frame portion is also linearly independent,
one can conclude that each X; consists entirely of mutually orthogonal vectors.
Therefore, the eigenvalue of each vector z., ; must be ||z, ;||* and by repeating
Step 2 of the proof of Theorem 11 one finds that ||z, || = a, as desired. O
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The next corollary follows from Theorem 14 in the same way that Theorem 6
follows from Theorem 11.

Corollary 15 Let {a,}M-} C R be such that ag > a1 > -+ > ap—1 > 0. Let
d and N be positive integers such that N | d and N > M. If Hy({h,,}M-})
L(Zyg) is a local minimizer of the frame potential over the set

A= {h Mg CUZy) : bl = a2, 0<m< M—1},

m?

then Hy({hm}M_1) is an orthogonal sequence.
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