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ABSTRACT. In this note we investigate the asymptotic behavior
of spectra of Schrédinger operators with continuous potential on
the Sierpinski gasket SG. In particular, using the existence of
localized eigenfunctions for the Laplacian on SG we show that the
eigenvalues of the Schrédinger operator break into clusters around
certain eigenvalues of the Laplacian. Moreover, we prove that the
characteristic measure of these clusters converges to a measure.
Results similar to ours were first observed by A. Weinstein and
V. Guillemin for Schrodinger operators on compact riemannian
manifolds.

1. INTRODUCTION AND MOTIVATIONS

The construction by Kigami [9] of a Laplacian on the post critically
finite (pcf) fractals, spurs new researches on analysis on fractals. In
particular, numbers of results in this area are reminiscent of results
from analysis on manifolds, while other results are only true in this
fractal setting. We refer to [1, 10, 13, 14] and the references therein for
more background on analysis on fractals. In this note we consider the
typical example of pcf fractal, namely the Sierpinski gasket denoted by
K = SG. This is the attractor of the iterated function systems (ifs)
consisting of the functions Fy, F;, and F3 defined on R? respectively by

Fi(z) = iz, Fo(z) = sz + (3,0) and Fi(z) = Lo+ (3, ?) In other

words, the Sierpinski gasket is the unique nonempty compact subset
of R? such that K = U}_, F;K. Alternatively, SG can be defined as a
limit of graphs. For a word w = (wy,ws,...,wy) of length m, the set
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F,K=F, o0---0F,  ofF, K withw; € {1,2,3}, is called an m-
cell. Let Vo = {(0,0),(1,0), (3, @)}, i.e., Vj is the set of fixed points
of the contractions F;. Let V,, = U F;V,_1, n > 1, and define a
sequence of graphs I',,, with vertices in V,, and edge relation x ~,, y
given inductively by: I'y is the complete graph with vertices in Vg,
and x ~,, y if and only if x andy belong to the same m-cell F, K .
Notice also that K is the closure of V, in the Euclidean metric, where
Vi = U2, Vi
In all that follows, we assume that K is equipped with the probability
measure y that assigns the measure 37™ to each m cell.

A Laplacian on SG can be defined as a renormalized limit of graph
Laplacian in the following way. First, a graph Laplacian A,, is defined
on the graph I';, by

(1) Amf(x) =Y fly)—4f(2)

Y~mx
for x € V,, \ Vo. A Laplacian on SG can now be defined by
— 31 m
(2) A=3 731_1)205 A,

Using the spectral decimation method of Rammal and Toulouse [11],
Fushikima and Shima gave a complete characterization of the spec-
trum of the Laplacian on SG [5]. Further description of this spectrum
has been investigated in [4, 15]. The tenet of the spectral decimation
method is based on the fact the eigenvalues and the eigenfunctions of
A on SG are completely determined by the eigenvalues and eigenfunc-
tions of the graph Laplacians A,,. More specifically, for every Dirichlet
eigenvalue A of A on SG, there exits an integer m > 1 (”the genera-
tion of birth”), such that every A-eigenfunction f, when restricted to
Vi is an eigenfunction of A, with eigenvalue 2,5 or 6. Additionally,
2 occurs only for m = 1, while 6 occurs only for m > 1. Moreover,
the restriction of f to Vi for £ > m is an eigenfunction of A, with
eigenvalue Ay given by A\;,_1 = At(5 — Ax). Furthermore, the eigenvalue
A is related to the graph eigenvalues by

A= 3 lim 55

The eigenvalues obtained from the graph eigenvalue 2 i.e., the gen-
eration of birth is m = 1 are called the 2-series eigenvalues and all
have multiplicity 1. However, the 5-series and the 6-series eigenvalues
have very high multiplicities. A similar description for the Neumann
eigenvalues exists and can be found in [14] and the references therein.
A unique feature of the spectrum of the Laplacian on SG (and other
pcf fractals) is the existence of localized eigenfunctions [2, 5]. These
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are eigenfunctions which satisfy both Dirichlet and Neumann bound-
ary conditions. In particular, every 6-series eigenspace starting with a
large m is spanned by localized eigenfunctions, and a similar statement
is true for most of the 5-series eigenfunctions. Moreover, it is known
that the proportion of localized eigenvalues of A is close to 1 [14]. An-
other feature of the Laplacian on SG, which we heavily use below, is
the existence of gaps in its spectrum.

Our goal in this note is to study the asymptotics of the spectrum of
the Schrodinger operator H = —A + x on SG, where the potential x
is a real-valued continuous function defined on SG. However, we first
reduce the problem to the case where x is a step function on SG. In
this case the existence of localized eigenfunctions for A implies that
the spectrum of the Schrodinger operator breaks into clusters whose
asymptotic distribution may be described precisely. These clusters ap-
pear very naturally due to the existence of gaps in the spectrum of A.
By then approximating every continuous function on SG by such step
functions we establish the same result for general Schrodinger opera-
tor with continuous potential. Notice that some experimental results
pertaining the Schrodinger equation on the Sierpinski gasket were first
introduced in [3]. Finally, we wish to point out that a result similar to
ours was obtained by Weinstein [16] for the Schrédinger operator cor-
responding to the Laplace-Beltrami operator on compact riemannian
manifold, with a smooth potential; see also [6, 7, 8]. In particular, the
eigenvalues of the Laplace-Beltrami operator —A on the unit n-sphere
S™ are of the form k(k +n — 1), for £k = 0,1,2,..., and where the
multiplicity of each eigenvalue grows as a polynomial of order n — 1 in
k. Tt was shown in [16] that the eigenvalues of the Schrodinger opera-
tor on S™ break into clusters whose distribution converges to a certain
measure when £ tends to infinity. However, the techniques used in the
above paper are completely different from ours and rely on the well es-
tablish theory of pseudodifferential operators on riemannian manifolds,
which as yet has no analog in this fractal setting.

We begin by proving the following lemma, which uses a mini-max ar-
gument ([12]) to compare the eigenvalues of two Schrédinger operators
with different potential. More precisely we have the following result.

Lemma 1. Fori = 1,2, let x; be real-valued bounded measurable func-
tions on SG. Let H; = —A + x; denote the corresponding Schrodinger
operators. Forn > 1, the nth eigenvalues v} of H;, i = 1,2, satisfy the
following inequality

vy — V2] < lx1 — xellpe-
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Proof. Note that for ¢ = 1,2, H; is a self-adjoint operator. Moreover,
since x; is bounded from below, it is readily seen that H; is bounded
from below. More specifically we have

(Hif, f) = (A + minxa)[|f1]72

where \; is the smallest (positive) eigenvalue of —A on K. Therefore,
by [12, Theorem XIII.2], it follows that the eigenvalues of the operators
are given by

(3) V= sup inf (H), ).
T ibarabn 1 VEBL Bt [l 2=l

Moreover, we have the following estimate
<H1¢: ¢) = (HQq/}: ¢> + <(X1 - X2)¢: ¢>

(4) < (Hotp,¥) + [ = xallz= 19122
Using (4) together with (3) completes the proof. O

2. SCHRODINGER OPERATORS WITH STEP FUNCTION POTENTIAL

Let N > 1 be an integer and consider a partition of the Sierpinski
gasket into

(5) K= U|w|:NFwK,

where for each word w of length N, F,K is an N cell. Note that there
are exactly 3% such cells, each of which has a measure 37V.

Consider a real-valued function associated to this partition: yy =
Z;’Zl aj Xc; where the constants a; € R are not necessarily all distinct,
and where C; = F,,K for some word w of length V.

We wish in this section to study the asymptotics of the spectrum of
the Schrodinger operator Hy = —A + xn.

We adopt the notation of [4], and let Ay := 5510 be one of the
eigenvalues corresponding to the 6-series as described above. Note that
we ignore the second index n as it is irrelevant for our investigation.
Additionally, because we are looking at the limiting behavior of the
spectrum of Hy as k — oo, we may assume without loss of generality
that £k >> N. Let Ej be the eigenspace associated to A\, and set E =
span{uf,l =1,2,... dy} where d, = dimEy = 3’10773 is the multiplicity
of \y. We may choose uf so that the first dj, of them are entirely
supported in a single N cell, where dp = 3N mk;, with m%, representing
the multiplicity of eigenfunctions supported in a given N cell. Denote
by Ej the span of these localized eigenfunctions. It follows from the

description of the spectrum of A in [4] that m%, = 31%2& Each of
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the mk eigenfunctions uf supported in the cell C; is trivially seen to
be an eigenfunction of Hy. Indeed, it follows from the form of the
potential xy that Hyuf = (A\x + a;)uf, for all { = 1,2,...,mk. Thus,
Al = A 4 a; is an eigenvalue of Hy with multiplicity m},. Note that
these eigenvalues all belong to the interval [A\; + min xn, A\x, +max x y].
Denote by ]\’f\, the portion of the spectrum of Hy lying in this interval,
and denote the eigenvalues in A% by {\¥} (counting multiplicity). We
claim that, for k£ large enough /NX’]“V contains exactly dj eigenvalues. This
follows from Lemma 1, since the separation between )\, and the next
higher and lower eigenvalues of A grows exponentially in £, and so

eventually exceeds ||xy||z- So we have identified dj, eigenvalues in A%,
3V+1_3
2 7

and the remaining number of eigenvalues is ok = d;, — dp =
k
which is independent of k, so limy_, Z—JIZ’ =0.

Define the characteristic measure of the subset Ay of the spectrum
of H N by

SO = 7> 8= (= a0

- ”;_:Za[A—(A;?—Ak)Hdlk > A= (O = A

j=1 leak,
mk, il 1 .
(6) = d—kz5()\—aj)+d—k D 6= (AF = ),
i=1 leAk,

where # A% = ok Observe that the factor m% in the definition of ¢
is due to the fact that the eigenvalue \¥ has multiplicity m%,. We prove
below that the measures ¢ converge to a measure ¢, defined to be
the pullback of y under xy. More specifically, ¢{’ is defined by

3N 3N

(7) ¢ (N) =Y u(C) (A —a;) =37V (A —ay),
j=1 j=1

or equivalently, for any continuous bounded function f,
@.0) = [ 1ot duto)

Lemma 2. ¢ — ¢) weakly as k — oo; in other words, for any
continuous and bounded function f € Cy(R),

Tim (o), f) = (8}, ).
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Proof. Let f € Cy(R),

3N k
m _ 1 ~
(B =68, N < | (G =37)fag)| + = D7 1 = Al
J=1 k Freak,
N+1_ ak
<1l B2 4 1 e 5
(8) =2||flle= 255"
Letting £ — oo in (8) concludes the proof of the lemma. O

3. SCHRODINGER OPERATOR WITH CONTINUOUS POTENTIAL

In this section we would like to investigate the asymptotics of the
eigenvalues of the Schrodinger operator H = —A + x. For each N > 1
construct a partition of K asin (5). Any continuous function x € C(K)
can be approximated uniformly by a sequence of simple functions yy =
Z;’:l a;jXc;- Then Lemma 1 says that the spectrum of H is approxi-
mated by the spectrum of Hy. In particular, if AF denotes the portion
of the spectrum of H contained in the interval [z +min x, Ay + max x/,
then A* is approximated by A’fv (we can choose the approximation so
that min x < minyy and max xy < maxy). As before, for k large
enough, A* contains dj, eigenvalues which we will denote {vf ;iil. We
call this the Ay cluster of the eigenvalues of H.

Define the characteristic measure of the A, cluster of H by

(9) Yy = di S 00— (0 — A

=1
We show below that these measures converge to the pullback of the
measure g on SG under x defined by

(10) (o, ) = /K f(x(x)) dp(z)

for all test function f.

As mentioned in Section 2, for each k large enough, most of the
eigenvalues of Hy are just )\2? = A\ + a;, which are just shifts of A\, by
—a;. Moreover, according to Lemma 1, for all k£ and !

v = M| < D = xwllee.

Theorem 1. v, — Yy weakly as k — oo, i.e., for all continuous
bounded function f € Cy(R),

Tim (b, f) = (o, ).
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Proof. Given any f € Cy(R), let €, > 0.

(k= o, f) = (e — &7, ) + (& — b0, ) + (b0 — %o, f)
=1+1II+1III,

where ¢ and ¢} where previously defined in section 2.
Choose Ny > 1 such that for all N > N,
(11) X = xwllLe <.

Now let N > Ny be fixed but arbitrary. Notice that f is uniformly
continuous on the compact set

N
X(K) U xn (K) = x(K) Ui {a;}.
Therefore, there exists a > 0 such that for all z;, 20 € x(K) U xn(K)
with |21 — 29| < «, we have
|f(21) = f(2)] < €/3.
By choosing n = « in (11), it follows that

(12) |I11| </ |f(x xn(z))| dz < €/3.
Moreover, by Lemma 2, it is readily seen that

N+1_
1] < 2| fllze (Pqe=52)-

Consequently, we can choose ly >> N such that for all £ > [, we have
(13) |[I1]| < €/3.

Note that v and M\¥ belong to the interval [\, +min x, \; + max x], and
f is uniformly continuous on this interval and on x(K)Uxy (K). Using
Lemma 1 and the observations made above, one can choose 0 < o < «
such that for all a,b in the above set, with [a — b] < ', we have
|f(a) — f(b)] < ¢€/3. Therefore,

17| < &

— (D)

<r3
(14) o3

Combining (12), (13) and (14) we conclude the proof of the theorem.
U
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Remark 1. Similar results can be proved for the Neumann spectrum.
Since the proof is quite similar to the one above, we omit it.

One could do the same analysis starting from the 5-series eigenvalues
of —A. However, in this case the analysis is a little different. In
particular, the proof of Theorem 1 relies on the existence of large gaps
between the (6-series) eigenvalues of —A. But the key argument when
dealing with the 5-series eigenvalues is that while other eigenvalues of
H can be very close, it is true that for a given cluster, the number of
(other) eigenvalues, counting multiplicity, that are nearby is bounded
by a constant that only depends on the seize of the neighborhood.

Our results are also likely to hold on all pcf fractals with localized
eigenfunctions as described in [2].
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