WEAK UNCERTAINTY PRINCIPLE FOR FRACTALS, GRAPHS
AND METRIC MEASURE SPACES

KASSO A. OKOUDJOU AND ALEXANDER TEPLYAEV*

ABSTRACT. We develop a new approach to formulate and prove the weak uncer-
tainty inequality which was recently introduced by Okoudjou and Strichartz. We
assume either an appropriate measure growth condition with respect to the effec-
tive resistance metric, or, in the absence of such a metric, we assume the Poincaré
inequality and inverse volume doubling property. Our results can be applied to a
wide variety of metric measure spaces, including graphs, fractals and manifolds.
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1. INTRODUCTION

The weak uncertainty inequality recently introduced in [24] for functions defined
on p.c.f. fractals in general, and on the Sierpinski gasket in particular, obeys the
same philosophy as the classical uncertainty principle: it is impossible for any non
zero function to have a small energy and to be highly localized in space. We refer
to [11, 25, 26, 34, 35| for more background on uncertainty principles. However, the
existence of localized eigenfunctions on some of these fractals (see [9, 10, 30, 36]), is a
main obstacle in proving any analogue of the classical Heisenberg inequality. In this
paper we introduce a new approach to prove weak uncertainty principles for functions
defined on metric measure spaces equipped with a Dirichlet (or energy) form, and
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which include certain fractals and fractal graphs such as the Sierpinski lattice. More
precisely, we show that the weak uncertainty principle holds on all spaces equipped
with an effective resistance metric and a measure satisfying an appropriate growth
condition. Additionally, we show that if instead of the existence of an effective
resistance metric on the space, we assume that a Poincaré-type inequality holds along
with another appropriate growth condition on the measure, then it is also possible
to prove the weak uncertainty principles in this setting. In particular, our results
show that the self-similarity of the measure, which was heavily used in [24], can be
replaced by weaker conditions.

In order to formulate any uncertainty inequality, one has to define measures of
space and frequency concentration. For example, for complex-valued functions on R
the classical Heisenberg Uncertainty Principle is

Var(F©))Var(f@)f) > —

~ 1672

for any function of f € L%(R) such that ||f|l» = 1 and where f denotes the Fourier
transform on R. This inequality can be rewritten in the following form

[ [ia=vrisr swPady [ 17wra>

for any function of L? norm one. We refer to the survey article [11] for more infor-
mation on the uncertainty principle.

In this paper we consider a metric measure space (K,d,u), that is (K,d) is a
metric space equipped with a Borel measure u. If £k is an energy form on this
metric measure space, then we will say that a weak uncertainty principle holds on K
if the following estimate

(1) Varg(u) Ex(u,u) > C

holds for any function u € L?(K)()Dom(€) such that ||u|lzz = 1. Here C is a
constant independent of u, and the spacial variance is defined by

® Vars(u) = [[  dGe.s)* " uta)* o) du(a) duy).

where b is an exponent which often plays the role of a dimension.

The central question of our paper is the relation between d, b, i and £, which
implies a weak uncertainty principle as long as the measure y satisfies an appropriate
growth condition. We formulate sufficient conditions in two situations. The first
one is when d is the so called effective resistance metric on K with certain scaling
properties, which is particularly useful in analysis on fractals and fractal graphs; see
[3, 16, 17] for more on the effective resistance metric. As a byproduct of our result
in this case not only we provide a different and simpler proof of [24, Theorems 1 and
2], but also extend it to all p.c.f. fractals [15, 17] and fractal graphs [8, 12, 13, 14, 18,
20, 21], as well as to modifications of them such as some fractafolds. Additionally,
our result recovers the classical Heisenberg Uncertainty Principle in R, although not
with the best constant. The second situation is when we deal with spaces on which
an effective resistance metric does not exist. In this case we assume that there is
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a certain scaling in Poincaré’s inequality, which allows us to prove our result. This
latter result is applicable for a wide variety of metric measure spaces, ranging from
graphs, to elliptic operators on manifolds. Note that, in this case, the number b
appearing in (2) cannot, in general, be interpreted as a dimension in the usual sense.
However, b will often represent the so-called walk dimension that appears frequently
in recent works on heat kernel estimates (see [8] and references therein). One of the
features of our results is their robustness. For example, since the weak uncertainty
principle holds for the Sierpinski graphs, it also holds for the manifolds with similar
structures, e.g., the fractal-like manifolds considered in [19].

Our paper is organized as follows. In Section 2 we state and prove our main results.
To this end, we first make explicit the main assumptions needed on the measure, and
the metric of the underlying spaces under consideration. In Section 3 we modify our
main results so that they are applicable to spaces where global and local structure can
be significantly different, such as graphs, manifolds and compact spaces. Section 4
describes a few metric measure spaces for which the main results of Sections 2 and
3 can be applied: p.c.f. fractals, uniform finitely ramified graphs, Sierpinski carpets,
fractal-like manifolds. We also discuss relation with recent results on the heat kernel
estimates on metric measure spaces.

Acknowledgments. The authors are grateful to Robert Strichartz and Richard
Bass for helpful discussions.

2. MAIN RESULTS

Let (K, d) be a metric space equipped with a measure p and an energy (or Dirichlet)
form £x. We denote by B,.(z) the ball with center 2 and radius r in the metric d. To
simplify notation, we presume that the L?-norm is infinite if a function is not square
integrable, and that the energy form is infinite if a function is not in its domain.

We assume that the space (K, d, p) is in one of the following two categories:

Category I: the metric d is the effective resistance metric on K, defined by (6), and
there exist two positive constants C4,Cy such that for all  and for all » > 0 the
following inequalities hold:

(3) Cir® < (B, () < Cyr®.

For the spaces in this category, the constant b in the last inequality is usually the
Hausdorff dimension of (X, d).

Category I1I: the energy form £k on K satisfies the following Poincaré inequality for
all locally square integrable functions

@ [ (6) =t Pdta) < Corntus ),
B:(y)

where %, (y) is the average of u over B,(y), and v and C, are some positive constants;
additionally, the measure y is assumed to satisfy the “inverse volume doubling prop-
erty”, that is there exists a positive constant C; > 1 such that for all z € K and
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r > 0 we have
(5) Cip(Bi(z)) < p(Bar())-

Note that in general, and as opposed to the spaces in Category I, the constant v in
(4) may not represent any sort of dimension of the space (K, d). However, in some of
the examples we consider later, v can be interpreted as the so called walk dimension
(see [4, 8] and references therein). Note also that for spaces in this category, we will
take b =~ in (2).

We point out that, when the effective resistance metric exists, it is related to the
energy form £k by

(6) d(z,y) = sup Ex* (u, u),
where the supremum is taken over all functions u such that u(z) = 1,u(y) = 0. The
existence of the effective resistance metric is a nontrivial problem, see [2, 3, 4, 5,
16, 17]; in particular, it is worth noticing that there are spaces without an effective
resistance metric, e.g., R® with n > 2. However, on p.c.f. fractals and on some
Sierpinski carpets, which are “not far from being one dimensional”, it is known that
the effective resistance metric does exist (see Subsection 4.4).

Finally, note that in either category, the measure p is not necessarily a self-similar
measure. But if it is self-similar, then the measure weights and the resistance scaling
weights are related by a power law.

One can see that, by a simple scaling argument, we have b = 1 in Category 11 if
K =R",n>1, as well as in Category I if K = R'.

Remark 1. 1t is implicit from the definitions that spaces in Category I or Category 11
are assumed to be unbounded, and that they are equipped with measures having no
atoms. Moreover, the global and local properties of these spaces are comparable in a
certain sense. However, with small modifications our main result below still applies
to bounded spaces, manifolds, and spaces equipped with measures possessing atoms
(graphs, for example) etc. To deal properly with these situations, we make small
changes in the definitions of category I and Category I spaces in Section 3.

Remark 2. Note that in Category I the so called energy form £ does not have to
be a Dirichlet form, but just a non negatively defined quadratic form on Li.

The main result of our paper is the following theorem.

Theorem 1. Let K be a space equipped with a measure u and a metric d. Assume that
the metric measure space (K, d, p) is either in the Category I or in the Category I1.
Then there exists a positive constant C' such that for all u € L*(K) with ||uljs = 1
one has

Varg(u)éx(u,u) > C.

Proof. We first give the proof when the metric measure space (K, d, p) isin Category I.
Denote a = b+ 1 and Varg(u) = v. Then there exists y such that

/K & (2, y)e? (@) dpu(z) < o.
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Let 7 be defined by
(7) r = sup {s : / u?(z)du(z) < 1} .
) 2

For each s > 0 such that [, . [u(z)|*du(z) < 1, we have

02 [ deyr el e 2 [ ) )

—Bs(y)

and the definition of r implies that
(8) r < 2v.
Moreover, by (3) there is ¢ > 1 such that

(9) #(Ber(y)) > 8Cor”.
Note that the definition of r also implies that

(10) / ( )U2(:L‘)d,u($) >

which together with (3) yields

N =

max u?(z) > ! .
B’r(y) - QCQTb

Additionally, since ||u||2 = 1 and using (9) we see that
1
2
min v°(r) < ——.
Bcr(y) ( ) o 802Tb
Consequently, there are x1,x9 € B, such that

1
802Tb '

Thus, by the definition of the effective resistance metric,
(ua) —u(@)? | 1

(u(z1) — u(z2))* >

& > :
(v, ) d(z1,12) — 16Cyerrt
Using now (8) we conclude that
1
vEK (u,u) > v v

brl =S
Cyva Cyow Oy

where we have used the fact a = b+ 1.

Now assume that the metric measure space (K, d, i) is in Category I1. Recall that
in this case we take b = «y in the definition of the variance (2). The proof is similar
to the above proof, with the main difference that there exists no effective resistance
metric relating the energy to the distance d. Thus we need to make some changes and
use Poincaré’s inequality (4) in place of the effective resistance metric. We use the
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same notations as above. Note that (5) implies the existence of a positive constant
¢ > 1, such that

(11) T=

Recall also that using (7) we proved the following

N | =

= [ wa)duta) >

Br(y)

The following estimates hold:

/ u(@)du(z)| < / u(@)du(z)| + / u(z)du(z)
er () r(y) er(¥)\Br (y)

< VSu(Br(y)) + (1 = S)(T - 1)u(B:(y)).

Now if we maximize the last inequality over S > % we get

[ wl@)du@)| < 0+ VT G(B. ),

cr (y)
or equivalently

1+VT =1 1
T 2u(B,(y))

Hence

_ 1
lom i, , < 0+ VT=Dy/ o

Maximizing this last estimate over 7' > 8 we obtain

1
+ﬁ<1.

||ﬂBcr(y) ||L230’r(?;) < 4
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Therefore, by (4) we see that
Cacrrtecun) > [ (ula) = i V(o)

Ber(y)

— 2
= ||U/ - U’Bcr(y) ||LQBC7"(?J)

2
> (”u”LZBm(m - ||chr(y)”Lchr(y))

()
4

=6>0.
Thus, by (8) we have
v v 1
& >4 > =
vEx (1) 2 Cscere — Oy C4’
which concludes the proof. Note that in this case a = v + 1. O

3. GRAPHS, MANIFOLDS AND COMPACT SPACES

As mentioned above, Theorem 1 implicitly assumes that the space K is unbounded.
Thus, for bounded metric measure spaces we introduce the following C'ategory Ipqq
and Category Ilpqq, and the weak uncertainty principle takes a different form. Note
however that its proof is identical to the previous one, and so we omit it.

When dealing with bounded spaces, we require that they belong to one of the
following categories:

Category Ipqq: the metric d is the effective resistance metric, and there exist three
positive constants Cy, C, Cy such that for all z and for all 0 < r < Cj the following
inequalities hold:

(12) Cir® < u(B,(x)) < Cyr®.

For the spaces in this category, the constant b in the last inequality is usually the
Hausdorff dimension of (K, d).

Category I1pqq: the energy form £k on K satisfies the following Poincaré inequality:

(13) / (ule) — w5, ) dplz) < CorEx(u, ),
B (y)

where 7, (y) is the average of u over B,(y), v and C, are some positive constants;
the measure p satisfies the “inverse volume doubling property”, that is there exist
positive constants Cy > 0 and C; > 1 such that forallz € K and 0 < r < Cj

(14) C1pu(By(z)) < p(Bar())-

Note that the constant v appearing in (13) has the same meaning as in the definition
of Category 11.
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Theorem 2. Let K be a space equipped with a measure p and a metric d. As-
sume that the metric measure space (K,d, ) is either in the Category Iy or in
the Category Iy Then there exist positive constants Cj and C such that for all
u € L*(K) with ||ul|s = 1 one has

Varg(u)ék(u,u) > C
provided Varg(u) < Cj.

Similarly, when dealing with spaces where the local structure is significantly dif-
ferent from the global one, for instance, manifolds, graphs and spaces equipped with
measure having atoms, we require them to belong to one of the following categories:

Category Igpn: the metric d is the effective resistance metric, and there exist three
positive constants Cy, C7, Cy such that for all x and for all » > Cj the following
inequalities hold:

(15) Cir° < (B, () < Cyr®.

Again, for the spaces in this category, the constant b in the last inequality is usually
the Hausdorff dimension of (K, d).

Category Ilgpn: the energy form £ on K satisfies the following Poincaré inequality:

(16) [ (6) = 1m0 dta) < Corntu, ),

Br(y)

forall z € K and r > Cy, where ip,(y) is the average of u over B, (y), v, Co and C; are
positive constants; the measure p satisfies the “inverse volume doubling property”,
that is there exists a C'; > 1 such that for all x € K and r > Cj

(17) Cipu(By(z)) < p(Bar())-

Note also that the constant -y appearing in (16) has the same meaning as in the
definition of C'ategory 11 above.

For spaces (K, d, i) is in Category Igpn or in Category Ilgp, Theorem 1 takes
now the following form.

Theorem 3. Let K be a space equipped with a measure i and a metric d. Assume
that the metric measure space (K,d,u) is either in the Category Iy, or in the
Category Ilgpn. Then there exist positive constants C and C§ such that for all
u € L*(K) with ||ul|s = 1 one has

Varg(u)ék(u,u) > C

provided Varg(u) > Cj.
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4. APPLICATIONS AND EXAMPLES

4.1. Sierpinski gasket and p.c.f. fractals. As mentioned in the Introduction,
the weak uncertainty principle for functions defined on the Sierpinski gasket was
first introduced in [24]. While the results in that paper were stated for p.c.f. fractals,
they were only proved for the Sierpinski gasket. In this subsection, we use the results
of Section 2 not only to provide a simpler proof to the main results of [24] , but also
to establish weak uncertainty principles on all p.c.f. fractals. We briefly define the
Sierpinski gasket which is a typical example of a p.c.f. fractal, and refer to [1, 17, 33]
for more background on analysis on p.c.f. fractals.

Consider the contractions maps F}, Fy and F3 defined on R? by Fy(z) = %x, Fy(z) =
1o+ (1,0) and Fy(z) = 1o+ (1, ¥3), for = € R?. The Sierpiniski gasket K = SG, is
the unique nonempty compact subset of R? such that

(18) K =U}  FK.

Alternatively, SG can be defined as a limit of graphs: Let V{; be the complete graphs
with vertices {(0,0), (1,0), (%, ¥3)} which these are the fixed points of the contractions

39 th
F;. Define V,, = U?_;F;V,,_1, n > 1, and let V, = U, V,,. Then K =V, i.e., K is the
closure of V, in the Euclidean metric. For any positive integer m, w = (w1, ws, - . ., W)

where each w; € {1,2,3} is called a word of length |w| = m, and we denote F, =
F, oF, ,o...0F,. Then F, K is called a cell of level m if w is a word of length m.
The (standard) measure on K is the probability measure on K that assigns to each
cell of level m the measure 37™. It follows that SG is equipped with a self-similar
measure that satisfies trivially (12). By defining an energy form on SG, it can be
shown that this gives rise to a resistance metric on SG, see [1, 15, 17]. Consequently,
SG belongs to Category Ipqq, and thus Theorem 2 applies.

More generally, let {F;}¥, be a set of contraction maps on R?, and consider the
following two sets of positive real numbers {a;}Y, C (0,1), and {3}, such that
Zf.vzl B; = 1. Following [15, 17], one can sometimes define a self-similar p.c.f. fractal
K equipped with a (self-similar) measure u, and an energy form &(-,-) which gives
rise to an effective resistance metric. Moreover, K constructed in this way can be
shown to belong to Category Ipqq, and thus Theorem 2 applies.

From the p.c.f. fractal constructed above, one can construct an increasing sequence
of sets K,,, and define the blowup of K to be K, = U ,K,, where Ky = K. Then
K, is an unbounded self-similar set, called fractal blowup and was first introduced
in [32], see also [30, 29, 28, 36] for more about fractal blowups. Choose the measure
scaling factors 3; such that 8; = of for each 4 = 1... N, where b is the Hausdorff
dimension of (K, d). Then one can show by a simple scaling argument that Theorem
2 holds on K, for each n > 0 with a constant independent of n, and hence in the
limit Theorem 1 holds for the unbounded self-similar set K. The choice 8; = af is

natural, as with this choice the asymptotic behavior of the Weyl function is known
[17].

4.2. Sierpinski graphs. As another application of the results of Section 2, we prove
a weak uncertainty principle of some graphs related to the Sierpinski gasket K = SG,
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and its blowup K. More precisely, for any integer n > 0, let V}, be the nth pre-
gasket approximation to K, i.e., the nth graph approximation of K. We define a
(finite) graph V_, by V., = wa oF,!...0F !(V,), and an infinite graph Vi, by:
Voo = UnzoVopn. Vi is an example of an infinite self-similar graph, which is also
referred to as the Sierpinski lattice; we refer to [36] and the references therein for
more on this type of graphs. Note that for all integer n > 0, V_,, is similar to the
(finite) graph obtained by taking F,, = F; for all ¢, in which case, V_, = 2"V,.
Consequently, we will assume without any loss of generality that V_, = 2"V,,. It is
easy to see that V_, and V,, belongs to Category Igpn, and we can apply Theorem
3 in these two cases.

Remark 3. We would like to indicate how to use the results in [24] to obtain a weak
uncertainty principle on graphs related to the Sierpinski gasket.

Observe that Laplacians and a corresponding energies can be naturally defined
on V_, and on V. We will denote them respectively by A,, &,(,) for V_,, and
by Ay and €y (,) for V.. Given a function u defined on V_, such that ||u|? =
> sev, [u(z)[* =1, extend it to a function @ on the blowup K, as follows:

e @ is harmonic in the interior of each triangle (similar to V5), which makes up K,,

e and the restriction of @ to V_,, coincides with u, i.e., 4|y , = u.

By the construction of the extension % of u, it is clear that the energy of @ on K,
and that of v on V_,, satisfy the following relation:

(19) Ek, (U,1) = Ey(u,u),

where £k, (u,u) denotes the energy form on the blowup K,,. Note that in this case
the variance (2) takes the following discrete form: For a function u define on V_,
such that [|ulls =1 by

(20) Vargsa(w) = ) di™ (2,y)u(@)? u(y)l.

z,yeV_p

Since harmonic functions form a three dimensional space, it is clear that the vari-
ance of the extended function @ can be controlled by the discrete variance of u. Thus
one can apply some of the results from [24] to obtain analogous weak uncertainty on
the graphs V_,,, and passing to the limit establish such inequality for functions defined
on V. We leave it to the interested reader to fill in the details of this argument.

4.3. Uniform finitely ramified graphs. These are graphs obtained from uniform
finitely ramified fractals (u.fr.). Note that u.f.r. fractals include nested fractals and
is contained in the class of p.c.f. self-similar sets, see [14, 17, 15]. It was proved in [14,
Section 2] that there exists an effective resistance metric on these class of graphs, and
moreover [14, Lemma 3.2] establishes that these graphs belongs to Category Igpn.
Thus Theorem 3 applies in this setting as well.

4.4. Sierpinski carpets and graphical Sierpinski carpets. These are examples
of non finitely ramified fractals and fractal graphs [2, 3, 4, 5]. In particular, they
are non p.c.f. fractals, and it is interesting to notice that most of our results apply
in this setting. Hence, we answer affirmatively a question posed in [24] of whether
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the main results of that paper apply to “genuine” non-p.c.f. fractals. More precisely,
on the generalized Sierpinski carpets (GSC) and the unbounded sets that can be
constructed based on them, it is known that a two sided heat kernel estimate holds,
[2, 4, 6]. Thus, following [2, 4, 6, 8] or [13, Theorem 3.2], one can show that (3)
holds on the GSC and all related sets; this in turn implies that (5) holds also in these
settings. Consequently, Theorem 1 or Theorem 2 applies for GSC and all related
sets.

Notice also that on the graphical Sierpinski carpets [5] and the unbounded sets
that can be constructed based on them, one could also prove that Theorem 3 holds.

It is worth noticing that if the Sierpinski carpet is constructed in the 2 dimensional
Euclidean space, then it is known that there exists an effective resistance metric d.
Moreover, a (double-sided) heat kernel estimate holds also in this context, see [3, 6].

Thus, the two dimensional Sierpinski carpet is also in C'ategorylygaq, so Theorem 2
holds.

4.5. Metric measure spaces and heat kernel estimates. Our results of Section 2
are applicable to the general setting of metric measure spaces. For a metric measure
space (K, d, 1) the main assumption we make is the existence of a heat kernel {p; };~o0,
which is the fundamental solution of the heat equation where the self-adjoint operator
associated with the energy form £ plays the role of a Laplacian. If the heat kernel,
which is a non-negative measurable function p;(z,y) on [0,00) X K x K, satisfies the
following two sided estimate for p-almost z,y € K and all ¢ € (0, 00) (see [13]):

1 d(z,y) 1 d(z,y)

where « is the Hausdorff dimension of (K,d) and § = o+ 1, and ®;, P, are non-
negative monotone decreasing functions on [0, 00) , then under a mild decay condition
on ®,, it is shown in [13, Theorem 3.2] that (21) implies (3) with b = «. This can be
used in turn to prove (5). Consequently, once a Poincaré-type estimate is established
in this setting, one can conclude that (K, d, ;1) belongs to Category 11 and our results
can be applied. Fortunately, heat kernel estimates of the type

C1 d(xay)’y 71?1
WGXP (— <7> ) < pilw,y)

<y (- (422)”)

imply the Poincaré inequality, and these estimates can be established on many fractals
and other spaces (see [8] and references therein).

Relevant results of a different kind, related to the scaling in the effective resistance
metric and Category I spaces, can be found in [22, 23].
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