MODULATION SPACE ESTIMATES FOR MULTILINEAR
PSEUDODIFFERENTIAL OPERATORS

ARPAD BENYI AND KASSO A. OKOUDJOU

ABSTRACT. We prove that for symbols in the modulation spaces MP4 p > gq,
the associated multilinear pseudodifferential operators are bounded on products of
appropriate modulation spaces. In particular, the symbols we study here are defined
without any reference to smoothness, but rather in terms of their time-frequency
behavior.

1. INTRODUCTION

An m-linear pseudodifferential operator is a priori defined through its (distribu-
tional) symbol ¢ as a mapping from the m-fold product S(R?) x --- x S(R?) into
S'(R?) by

Ty(fus- - fn) (@)
:AMdU($;§1,...,§m)ﬁ(§l) f (gm) 2miz-(§1+-+&m) g ¢, - - dé,,

for fi,..., fm € S(R?). Such operators model the product of m functions and their
derivatives and one expects their boundedness properties on products of Lebesgue
spaces to mimic those given by Holder’s inequality. The main question then is to
find sufficient optimal conditions on the symbol o that guarantee the boundedness
of the corresponding operator 7, on various spaces of functions. The search for
such conditions can be traced back to the pioneering work of Coifman and Meyer
[9, 10, 11]. They have proved, for instance, that (if we assume for simplicity m = 2)
the conditions

(1)

|aga;7yo.($, ’5’ 77)| S Cﬂ:’y
and
070;0 (2", &,m) — 0000 (2,€,m)| < Cppy |2’ — 2
for all 8, v > 0 and some ¢ > (), imply that T, is bounded from LP x L? into L" when
1,1 _1
5+5—;,p,q>1.

The ideas of Coifman and Meyer have had far reaching consequences and have
led, in particular, to the investigation of bilinear and multilinear pseudodifferential
operators in the realm of other classical function spaces, such as Sobolev or Besov-
Triebel-Lizorkin spaces in the works of Grafakos and Torres [19, 20]; see also [1, 3,
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5, 6, 7]. In all these papers the recurrent assumptions on the symbol are sufficient
smoothness and decay conditions, as well as size estimates.

More recently, in [4], we have initiated the study of multilinear pseudodifferential
operators in the context of modulation spaces, which surprisingly appear as the right
spaces in certain problems where more common L? estimates fail. These spaces play
a dual role of classes of symbols and spaces of functions on which the operators act.
For example, we proved in [4] that symbols in the so-called Feichtinger algebra yield
bilinear operators that are bounded on products of modulation spaces. As a corol-
lary, we also obtained boundedness results for operators in this class on products of
Lebesgue and Sobolev spaces. It is important to note that the Feichtinger algebra
as well as all the family of modulation spaces it belongs to are defined without any
reference to smoothness, but rather by imposing some decay conditions on the time-
frequency content of functions; see Grochenig’s book [15] for further details about
modulation spaces. The analysis of multilinear pseudodifferential operators in the
realm of modulation spaces was continued in [2], where it was shown that the modu-
lation space M°!(R(™+1)9) also yields bounded operators on products of modulation
spaces. The space M°! has played an important role in the recent development of
the theory of linear pseudodifferential operators; see the works of Grochenig and Heil
[16, 17, 18|, Heil, Ramanathan, and Topiwala [21], Labate [22, 23|, Sjostrand [25],
and Toft [26]. The results in [2] could be viewed as multilinear extension of the
celebrated Caldéron-Vaillancourt theorem [8] about the L? boundedness of linear op-
erators with bounded symbols having all their derivatives bounded. Indeed, it can be
shown that symbols satisfying such conditions also belong to the modulation space
ML see [24, 16, 21]. We wish also to point out that the conditions on the symbols
we employed in [4] and [2] are not comparable to the ones previously used in the
“hard analysis” works cited above.

In this paper, we investigate the boundedness properties of multilinear pseudo-
differential operators with symbols in more general modulation spaces. More pre-
cisely, we show that symbols in modulation spaces MP4(R™t19) 1 > ¢, give rise to
bounded operators on products of corresponding modulation spaces; see the article
of Czaja [12] and [17, 18] for analogous results in the linear case . As a by-product
of our analysis, we improve one of the main results in [4]. More precisely, we prove
that if the symbol of a bilinear (or multilinear) pseudodifferential operator is in the
Feichtinger algebra M!, then the corresponding operator maps M x M into M?,
and hence it maps MP% x MP2% into M*, for all indices 1 < p;, ¢; < o0.

Our paper is organized as follows. In Section 2 we set the notations and the
fundamental facts about the modulation spaces that will be used throughout the
paper. In Section 3 we state our main results. Their proofs and some corollaries are
presented in Section 4.

2. NOTATION AND PRELIMINARIES

2.1. General notation. We will be working on the d-dimensional space R?. We let
S = S(R?) be the subspace of C*(R?) of Schwartz rapidly decreasing functions, with
its usual topology. Its dualis S’ = S'(R?), the set of all tempered distributions on R?.



ESTIMATES FOR MULTILINEAR PSEUDODIFFERENTIAL OPERATORS 3

Translation and modulation of a function f with domain R? are defined, respectively,
by
T.f(t) = f(t —x) and M, f(t) = ™" f(¢).
The Fourier transform of f € L'(RY) is f(w) = [o f(t)e ™ dt, w € R%. The
Fourier transform is an isomorphism of the Schwartz space S onto itself, and extends
to the space &' of tempered distributions by duality. L
The inner product of two functions f,g € L? is (f,g) = [ga f(t)g(t)dt, and its
extension to &’ x § will be also denoted by (-, -).
The Short-Time Fourier Transform (STFT) of a function f with respect to a win-
dow g is
Vof(z,y) = {f, MyT,g) = / ) e~ g(t — ) f(t) dt,
R
whenever the integral makes sense. Similar to the Fourier transform, the STFT
extends in a distributional sense to f, g € &'; see Folland’s book [14, Prop. 1.42].
An important technical tool used throughout this paper is the extended isometry
property of the STFT [15, (14.31)]: if ¢ € S(RY), ||}z = 1, then

(2) <f, h’> = <V¢fa V¢h>a Vf S Sl, hes.
We let LP¢ = [P9(R2?) be the spaces of measurable functions f(z,%) for which the

mixed norms
q/p 1/q
||f||m=< / (/ \f(x,y)\pdér> dy)
R \JR4

are finite. If p = ¢, we have LPP(R?*?) = [P(R??), the usual Lebesgue space.

2.2. Modulation spaces. Given 1 < p,q < 00, and given a fixed, non-zero win-
dow function ¢ € S, the modulation space MP?¢ = MP4(R?) is the space of all
distributions f € S for which the following norm is finite:

a/p 1/q
e = ([ ([ WatnPae) " dr) = Wasllne,

with the usual modifications if p and/or ¢ are infinite. When p = ¢, we write MP for
MPP_ Note that for p=q =2, M? = L2

Remark 1. When p = ¢ = 1 the resulting modulation space M? is also known as
the Feichtinger algebra. It is sometimes denoted Sy, and it has some remarkable
properties; see [13] for a detailed description of this modulation space. In [4], we
proved that M! as well as some of its weighted versions are convenient classes of
symbols that give rise to bounded bilinear pseudodifferential operators on products
of modulation spaces.

Remark 2. The definition of modulation spaces is independent of the choice of the
window ¢ in the sense of equivalent norms. It is important to note that the Schwartz
class § is dense in MP+? for 1 < p,q < co. One can also show that the dual of MP+?

iSMp’,q"WheI'e1§p,q<ooand%+]%:$+$:1_



4 A. BENYI AND K. A. OKOUDJOU

Remark 3. Most of our results will be stated even for the cases p = oo and/or ¢ = oo
To properly deal with duality (which will be used constantly in our proofs) in these
cases, we define the related modulation spaces M%% MP? and M%? = M. Let L°
denote the space of bounded measurable functions on R?¢ vanishing at infinity. Then

MY = {fe M1V, fel}, q<oo,

MPO = {feMp’“:I/;fELO}, p < 00,

M = {feM=®:V,fel,
equipped with the norms of M9 MP->° and M°* = M respectively. Moreover,
it follows from [2, Lemma 2.2] that (MP?)" = MPL (M%) = MY and (M®0) =

MU From now on we will will use these duality relations in the cases p = oo and/or
g = oo without any further explanations.

3. MAIN ESTIMATES

Our first main result, of which [2, Theorem 3.1] should be regarded as the limiting
case, can be stated as follows.

Theorem 1. Let 0 € MPL(R™DY) and 1 < p,pi,¢; < 00, 0 < i < m, be such that

1 &1 1 1
-+ —=—and ——|— )+ —.
b i Z 90

Then the m-linear pseudodifferential operator T, defined by (1) can be extended to a
bounded operator from MPHT x MP2:22 x . x MPmim gnto MPO0O,

More generally, if we assume that the symbol belongs to MP4(R™+D4) 5 > ¢
then we can prove the following.

Theorem 2. Let 1 < py,p,q,7,¢ < oo for 0 < i < m be such that

pOSqm

Im < T,

pl S qlaqz)araqi Zf 1 stma
¢<q¢ if 1<i<m-1

Moreover, assume that

m

1 1 1 1 1 1
—{—Z =m-14+—, and - +-+-=1+—.
— q; 0 p g Po

-1 1

_+_. —
q
If 0 € MPA(R™D)  then the m-linear pseudodifferential operator T, defined by (1)

/ ! /
can be extended to a bounded operator from MI-1 x MT: x .. x MI:Im=1 x MTm
into MPo-9o,
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4. PROOFS

It is readily seen that the action of T, on fq,..., fu, g € S can be written as

<T0(f1a"':fm)’g>
- /ﬂ«mm 0, €1, e n) 1 (&) -+ frn(m) 27O G(0) dy -
= <0’ Wm(g: fla sy fm))

where

3)  Wnl0s fi oo o) (@, 6ty oors ) = 9(2) Fi(€1) -+ fin(En) €727 Crtctn),

Remark 4. For m = 1, the Kohn-Nirenberg correspondence can be written as (T, f, g)

= (0, Wi(g, f)), where Wi (g, f) = e 2"@€g(z)f(€) is the so-called cross Ryhaczek
distribution of f and g. One may think of W,,, as a multilinear version of the Ryhaczek
distribution. The key idea in obtaining any type of modulation spaces estimates
on multilinear pseudodifferential operators 7, is to understand the time-frequency
characteristics of W, (g, f1, f2,- - fm)-

To compactify the notation, we write
(615 agm) = g:
dé; - -~ déy = dE,

Wm(gafla 7fm) = Wm(97 f)a

Let now (¢0a d_;) = (d)Oa (bl, SRR ¢m) € S(R(m—l—l)d)’ and (u07 a’) = (U’OJ U1, .-+ Um),
(vo, 7) = (vo, V1, ..., m) € (RY)™1. Then clearly Wy, (¢, @) € S(R™TD4).

The proofs of our main results will be based on the Lemma and Propositions below.
The following result was proved in [2].

Lemma 1. Let (f,g) € (M®(RY))™ L. With the notation above, we have
VWm(¢0,$)Wm(g7 f)((U’Oa E)a (Uo, ﬁ))
2miug- Z U; n m

(4) =e =1 V¢0g(u0, Vo + Z UZ) H V¢ifi(U0 —+ Vi, UZ)

=1 =1

The next proposition contains the main estimate needed for proving Theorem 1.

1 1 1 1 1
Proposition 1. Assume that — + Z el + Z — =m—1+ —, where
p =P Do p 4 4o
1 <p,pi,qi <00, 0<1<m. Then

=

Vv 0.5 W9, Pl e < Cllfillmerar = ([ finll pemoam (|9l go.05 5
whenever the right-hand side is defined. Equivalently, we have Wy,(g, f) e MP,
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Proof. Lemma 1 implies that for all (vg, ) € R4 we have

=

0007 = [ Wi Wil (00,3, 7)1

n m
= /R( i ‘V¢Og(’U,0,U() + Zui)\pl ‘ HV@_}CZ(UO + vi,ui)|pldu0 di.

=1 =1

Observe that the condition on the exponents p; is equivalent to p—l, = pL, + 30 1%'
0 i

Hence, if we apply Holder’s inequality we get
n m
P, < [ WanaCooo+ 3wl TTIVaukiCwlfs, d
" i=1 i=1

Let G(v) = [[Vgog(-,0)ll .y and Fi(u;) = [[Vg, fi(-; —ui)llprs.  With this notation,
1GN . = ll9ll \oha @and [|[Fillzes = || fill mpi-ai . Therefore, we may rewrite the previous
inequality as

T(vg, 7)P < G DY F(—w)? di
ot < [ G+ Y wy []F-w) di

=1 1=1

= (Gp’*Ff’l*---*Ff;:) vp) -

Note that the expression on the right hand side of this inequality is already indepen-
dent of ¥. Thus, the only meaningful estimate we may hope for is an L*> estimate.
The condition on the exponents ¢; is equivalent to z% + é = % +>3 ", é, and this
allows us to use Young’s inequality for convolution. We obtain

—

0.y W9, DIy S NGY 5 FY - FE|| o

P o0

Vv

m

m
<G Ny TTIF i

=1
14 o P
= |61, TLIEN..
i=1

This proves that

=

Wi o0y Wi 9 Dl e < Cllgl iyt il =1l g

m

The appearance of the constant C' is due to the use of different windows to measure
the modulation space norms and as such it depends only on the dimension and the
indices of these spaces. O

We come now to the proof of Theorem 1.

Proof of Theorem 1. Let f; € MPi% be given, and let ¢g, ¢y, - .., ¢ € S(R?) be fixed
so that ||¢;||zz2 = 1 for each i. Then, using the extended isometry property of the
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STFT (2), Hélder’s inequality, and Proposition 1, for any g € MPo% we have

(T, f9)| = |{o, W(g, F))]

UV

_‘< Win ($0,6) Win ( ¢0¢) _‘>|

< “ Win(%0,8) U”LPI ||V m(60,8) m(g’f)”LP’,oo

< Cllollames H [ fillvarsas gl oty -

=1

If py, ¢y < oo, then the duality properties of the modulation spaces imply that 7, f €
MPo-® with the norm estimate

m
1T, fllaroso < Cllollamsen T TIillagsias.

i=1
If either pj, = oo or g} = oo or both, then we take g € M%%, MP0:? or M instead,
and, following Remark 3, a similar duality argument yields the desired result. O

Remark 5. If we let p = 1 in Theorem 1, we necessarily have py = ¢y = 1 and
p; = q; = oo for s = 1,...m. The theorem reads then as follows:

If o € MYR™V9) then T, is bounded from M™ x M>® x ... x M* into M*.
Thus, since M! C MP4 C M* for 1 < p,q < oo, we infer that symbols in the
Feichtinger algebra produce bounded multilinear pseudodifferential operators from
arbitrary products of modulation spaces into an arbitrary modulation space. This
improves on our results in [4] where the technical tools we used required further
restrictions on the indices. Furthermore, since M! C LP C M, it also follows from
Theorem 1 that if o € M?, then T, is bounded from any product of Lebesgue spaces
into M1, thus into any L” space. These strong boundedness results are a consequence
of the fact that symbols in M?, although non-smooth, have a considerable smoothing
effect on the corresponding operators.

Remark 6. If p = 0o, we recover the main result of [2]. In a sense, Theorem 1 should
be viewed as a general result about a continuous family of spaces that yields bounded
multilinear pseudodifferential operators on products of certain modulation spaces.

The next proposition provides us with the estimate needed in the proof of Theo-
rem 2.

Proposition 2. Let 1 < pg,p,q,7,q¢ < 00 for 0 < i < m be such that

pOSQOJ

Gm < T,

pl S q,aq{)aTaQi Zf 1 §Z§m7
¢ <q¢ i 1<i<m-L1
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Moreover, assume that

-1 1 &1 1 1 1 1 1
m +—+Z—:m—1+—, and —+—-—+-=1+ —.
p 9 % 9 p q T bo
Then
”VWm(¢0,$)Wm(g> Nro < ClAl et "'||fm—1||M4’,qm71 | frmll atram ||g||MP6"16 )

=

whenever the right-hand side is defined. Equivalently, we have W,(g, f) € WiE

Proof. We recall from the proof of Proposition 1 that we have

(5)  T(vy, 0 = / Viog (o, vo + Y i) [P | T [ Ve filo + i, i) P dug di.

(Rd)m+1 i—1 i1

For a function F(z,y) on R?¢ we let F(z,y) = F(x,—y). With this notation, (5)
can be rewritten as an equality between I' and a convolution integral

1
"%

000, 8) = ([ Wongtuns 170t P Vo b )1 o) )
R

Here, the convolution is only in the second variable. Consequently,

= / T(vy, #)7 duvy dif
R(m+1)d

can be rewritten as

"d|~Q

/ / (/ Vo g (0, )P 5| Vg, f1 (uo+v1, ) P 5. . %V, frn (g, -) P (vo) du()) dvg dv.
Rmd JRd R4

Since ¢'/p’ > 1, Minkowski’s inequality allows us to bound I by [,.. I1(¥) dv, where
I1(7) is given by the following expression:

P’ q

(Ao e ’ - ’ ! ! ? v
(/ (/ (Vo (s, )7 4V Tt v, )Pt Vi ot v, )P ()77 d“O) d“")
Using now the conditions on the indices and Young’s inequality we can further esti-
mate [pna 11(7) d¥, and get
, m ) 7/p
P p >
s /Rmd (/Rd ”V%Q(U’Oa ')||Lq6 Zl;[ ”V@fz(uo + 4, ')“Lqi duO) dv.

By a repeated use of Minkowski’s inequality to each of the variables v;,7 = 1---m,
we obtain

me1 q/p
P<TL [ Wouhtwn Mg [ (Voo g Vol + ) B )
i=1

m—1
=TT [ Wit [ (G Fntom)*
i=1 Rd Rd
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where we have set Go(uo) = [|Vaog(uo, -)|I7,;» and F(to) = [V, fin (0, ) [

it is easy to see that for i = 1,--- ,m — 1, we have on the one hand,

(6) [ WVoufiws o < 1
R4

while on the other hand,

q’/p, q q
< ’or m ram -
™) (G Bt i <l Wil

Consequently, from (6) and (7), we conclude that

Wonlg, Pl = ( /

) 1/¢
F(’Uo, ,U)q d’l)() dﬁ)

(m+1)d

m—1

(8) < Cligllyywpa, 1T 1Fillpearas 1 fnllarom

i=1

Now,

where C is a positive constant depending only on the dimension and the indices of

the spaces involved.

g

The proof of Theorem 2 can be derived from the previous proposition as follows.

Proof of Theorem 2. The proof is adapted after the proof of Theorem 1 with the

obvious changes. The details are left to the interested reader.

g

If we choose ¢ = p' in Theorem 2, then py = r and we obtain a restricted general-

ization of symbols in M>' to symbols in MP?’; see Remark 6.

Corollary 1. Letp> 2 and 1 < r,q; < oo for 0 <1 < m be such that

TSQOa
QmST:
pléqéi’ra% Zf 1§Z§m7
¢<q if 1<i<m-1

Moreover, assume that

m—2 <=1 1

mo2 oyl gy L
p =1 i do

If o € MPY (RMD) then T, can be extended to a bounded operator from MPa x

MP,Q2 X ... X Mpaqm—l X Mraqm ZntO Mraqo.

With some modifications in the proof of Proposition 2, we can also obtain the

following result.

Corollary 2. Let 1 < p,q,q; < oo for 0 < i < m be such that ¢ < p < qq, and

p' < q; <{q foralll <i<m. Moreover, assume that

m—1 1 1 1
+ -+ —=m-1+—.
P q Z%’ q
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If 0 € Mp’q(R(m“)d), then T, can be extended to a bounded operator from M?-4 x
MT2 x . x MTAm jnto MPO,

Remark 7. The condition p > ¢ appears naturally in the hypothesis of Theorem
2 or Theorem 3 due to the extensive use of Minkowski’s inequality. Furthermore,
the absence of this condition has rather unexpected consequences. If we assume, for
example, that 1 < p < 2 and 0 € M'P(R(™+1)4) then it can be shown that T, is
bounded from L? x LP x ... x L? into LP. However, if p > 2 and o € M'P(R(™+1)d),
then 7, might actually fail to be bounded on products of Lebesgue spaces. Indeed, if
we let 0 = §g, the Dirac (point mass) distribution at the origin, then it is easy to see
that o € Ml"’o(R(m“)d), but 7, is not bounded on any product of Lebesgue spaces.
It is not clear to these authors how to proceed for the case p < g < .
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