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ABSTRACT. We show that multilinear pseudodifferential operators with symbols
in the modulation space M>! are bounded on products of modulation spaces.
In particular, M°®! includes non-smooth symbols. Several multilinear Calderén—
Vaillancourt-type theorems are then obtained by using certain embeddings of clas-
sical function spaces into modulation spaces.

1. INTRODUCTION

The study of multilinear operators has been actively pursued in recent years due
to their many applications in linear and nonlinear partial differential equations. For
example, it it known that the formal solutions to certain evolution equations reduce
to infinite sums of multilinear pseudodifferential operators; see [7] and the references
therein. The simplest example of a multilinear operator is the pointwise product of n
functions, and in this case Holder’s inequality regulates the boundedness properties
on Lebesgue spaces. In this paper we address the question of how much of Hélder’s
inequality carries over to the much more complicated class of general multilinear
pseudodifferential operators.

An m-linear pseudodifferential operator is defined a priori through its (distribu-
tional) symbol o to be the mapping 7, from the m-fold product of Schwartz spaces
S(R%) x --- x S(RY) into the space S'(R?) of tempered distributions given by the
formula

TU(fla ey fm)(l')
= /( | 0@, &1y &m) F1(&) -+ fn(En) T EFHm) gedg, (1)
RdYm

for fi,..., fm € S(R?). The pointwise product f;--- f,, corresponds to the case
oc=1.

Various authors have searched for sufficient (nontrivial) conditions on o that guar-
antee the boundedness of T, on products of appropriately chosen Banach spaces.
For instance, by using wavelet decompositions and a multilinear version of Schur’s
test, Grafakos and Torres [13] have obtained results on Besov-Triebel-Lizorkin spaces.
For other results, including the boundedness of multilinear Hormander-Mihlin and
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Marcinkiewicz multipliers, that use classical harmonic analysis techniques, see, e.g.,
[6], [12], [14]. Another line of investigation uses the class of modulation spaces both
as symbols and as the underlying Banach spaces on which a multilinear pseudodif-
ferential operator acts. The modulation spaces figure implicitly in the analysis of
linear pseudodifferential operators presented in [3], [19], [24]. The paper [17] explic-
itly recognized the space M°!(R??) as the appropriate symbol class to establish the
boundedness of T, = o(X, D) acting on M?(R?), 1 < p < oo, including M? = L?
as a special case. Further developments using modulation spaces have since been
obtained in [5], [15], [18], [21], [22], [25]. The analogous investigation of multilinear
pseudodifferential operators on modulation spaces was initiated in [2] and is certainly
only in its infancy.

We will investigate the boundedness of multilinear pseudodifferential operators on
products of modulation spaces. As our symbol class we use the modulation space
ML (R4 - This modulation space can be seen as a useful and conceptually
simple extension of the standard symbol class S7 . In particular, M°" includes non-
smooth symbols. Our main result shows that an m-linear pseudodifferential operator
T, with symbol o0 € M**(R(m+14) is bounded on modulation spaces with indices
that obey a relation similar to Hélder’s inequality. In contrast to pure analysis results
which would use decomposition techniques, Schur’s test, or Cotlar’s Lemma, we will
use tools developed in time-frequency analysis, especially techniques developed in [15,
Ch. 14] and [18]. Further, by using some recent embeddings theorems from [23], we
can state new boundedness results on products of certain Besov spaces.

While concrete boundedness problems are rarely easy to deal with, the bilinear
or multilinear case offers additional difficulties. To give an example of these new
problems, consider the classical symbol class 58,0 consisting of those o which satisfy
estimates of the form

0500(2,€)| < Cap,  Va,820. (2)

A classical result of Calderén and Vaillancourt [4] asserts that the corresponding
linear pseudodifferential operator T, is bounded on L%(R?). In the bilinear case,
however, the analogous class of symbols which satisfy the conditions

|a§55’3830(3?;§,77)\ < CaByys Va,5,720, (3)

does not necessarily yield bounded operators from L? x L? into L', unless additional
size conditions are imposed on the symbols; see [1]. However, as a consequence of
our main result we will show that the Calder6n—Vaillancourt-like condition (3) does
yield boundedness from L? x L? into a modulation space that contains L'.

Our conditions should also be compared to a typical hard analysis result of Coifman
and Meyer [6, Thm. 12]: If the symbol o of a bilinear pseudodifferential operator
satisfies the conditions

‘agago.(x’ 'Sa 7])| S Cﬂ;’y (4)
and
0,070 (2", &,m) — 80)0(x,&,m)| < Cpy |2’ — | (5)
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for all B, v > 0 and some 6 > 0, then the corresponding operator is bounded on
products of certain Lebesgue spaces. It turns out that conditions (4) and (5) are not
comparable to the condition o € M°>!; neither set of conditions implies the other.

Our paper is organized as follows. In Section 2 we set the notation, define the
modulation spaces and collect some of their basic properties and the embeddings that
will be needed later on. The main results are then stated and proved in Section 3,
and some applications of these results are obtained in Section 4.

2. NOTATION AND PRELIMINARIES

2.1. General notation. Translation and modulation of a function f with domain R¢
are, respectively, T, f(t) = f(t — x) and M,f(t) = €*™* f(t). The inner product
fog € L2(RY) is (f,g9) = [pa f(t) g(t)dt, and the same notation is used for the
extension of the inner product to &' x §. The Fourier transform of f € L'(R?) is
f(w) = fou f(8) 7m0 dt.

The Short-Time Fourier Transform (STFT) of a function f with respect to a win-
dow g is

Vof(.9) = (£ MTg) = [ TGRS fO e, (ay) € R
R

whenever the integral makes sense. If ¢ € S and f € &' then V,f is a uniformly

continuous function on R?¢. One important technical tool is the extended isometry

property of the STFT [15, (14.31)]: If ¢ € S(R?), ||¢]|z2 = 1, then

(f, h) = (Vo f, Vph) VieS heS. (6)

A second important tool is the fundamental identity V, f(z,y) = e=2@¥ V},f(y, —).
We let LP9(R??) be the mixed-norm Lebesgue space defined by the norm

a/p 1/q
e = ([ ([ 1rempas) ")

with the usual adjustment if p or ¢ is infinite, and we use a similar notation for the
mixed-norm sequence spaces /P4,

2.2. Modulation spaces. Given 1 < p,q < 0o, and given a fixed, nonzero window
function g € S(R%), the modulation space MP4(R%) consists of all distributions
f € 8'(R?) for which the following norm is finite:

a/p 1/q
s = ([ ([, Wa@lae) " ar) " =Wadllins @

with the usual modifications if p or ¢ are infinite. Note that M?? = L2

We refer to [15] for a detailed description of the theory of modulation spaces and
their weighted counterparts. In particular, MP is a Banach space, and any nonzero
function ¢ € M"! can be substituted for g in (7) to define an equivalent norm for
MP14. The Schwartz class is dense in MP? for all p, ¢ < oc.
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For 1 < p, ¢ < oo, the dual of MP? is MP ¢ where 11) —i—}% = é—f— % = 1. To deal
with duality properly in the cases p = 0o or ¢ = 00, we introduce the following new
related modulation spaces.

Definition 2.1. Let L°(R??) denote the space of bounded, measurable functions on
R2?¢ which vanish at infinity. We define

MR = {f € MPUR?): V, f € L)(R*)}, 1< ¢< oo,
MPOR?) = {f € MP2(RY) : V, f € LO(R)}, 1<p<oo,
MOO(RY) = {f € Me(RY) - V, f € LO(R)},

equipped with the norms of M9 MP>° and M, respectively.

Though not yet explicitly mentioned in the literature, we will see that these spaces
are useful for the treatment of end-point results and in the study of compactness

properties of pseudodifferential operators. The following properties are easily estab-
lished.

Lemma 2.2.

(a) M%?is the M>-closure of S in M, hence is a closed subspace of M.
Likewise, MP? is the MP*-closure of S in MP*® and M%? is the closure of
S in the M°>*-norm.
(b) The following duality results hold for 1 < p,q¢ < oco: (M%) = ML,
(MPO) = MP! and (MO0) = MO
Proof. Statement (a) is proved exactly as [15, Prop. 11.3.4], and (b) can be obtained

by a modification of [15, Thm. 11.3.6]. Both statements can also be seen as special
cases of the coorbit space theory developed in [8]. O

Using these spaces, we can prove that the following compactness result for linear
pseudodifferential operators is a corollary of the boundedness result for the symbol
class M. Other compactness results have been obtained by Labate in [22].

Proposition 2.3. If 0 € M%(R??), then T, is a compact mapping of MP¥ into
itself for all 1 < p,q < o0.

Proof. Assume first that o € S(R??). Then we can write T, as an integral operator
with kernel £ € S(R*?). Let ¢ € M"'(R?) and o, 3 > 0 be such that {¢y,}tneza is
a Parseval Gabor frame for L?(R?), where ¢y, = Mg, Tor$. Then {®@kemn }rommezd

is a Parseval Gabor frame for L?(R*®), where ®ppnn(z,y) = dpn() dem(y). Since
k € MY, we therefore have

k= Z <k7 (bkﬁmn> q)lcﬁmna with Z ‘(k: q)kfmn>| < 0,

k,.,m,n k.lm,mn

and hence
T,f= Y (k Prtmn) {f> bem) brn-
k.4,m,n
Since the ¢y, are uniformly bounded in MP%-norm, it follows easily that T, is a
compact mapping of MP? into itself; in fact, 7, is nuclear.
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For the general case, if 0 € M%!(R??) then by Lemma 2.2 there exists a sequence
o, € S(R?) such that || — 0, || s — 0. By the boundedness theorem for linear
pseudodifferential operators with symbols o € M®! [15, Thm. 14.5.2], the operator
norm can be estimated as ||T, — Ty, || mrasrmra < Cllo — 04 || pme1. Since the ideal of
compact operators is closed in the operator norm, this implies that 7, is compact on

MP, O

2.3. Embeddings. We conclude this section by listing a few embeddings proved
in [23] between Lebesgue or Besov spaces and modulation spaces. Further embeddings
and comparisons of modulation space with standard spaces can be found in [16], [11],
[20], [25].

(a )BS CLPC MPP fors>0,1<p<2and1l<gq<oo;

(b) By, € L? C MPP for s >0,2<p<ooand 1< q< oo;

(c) B CMW for s > d/p', 1 <p<oo.

3. BOUNDEDNESS OF MULTILINEAR PSEUDODIFFERENTIAL OPERATORS
Our main result is the following.

Theorem 3.1. If ¢ € M (R(™+14)  then the m-linear pseudodifferential operator

T, defined by (1) extends to a bounded operator from MPV? x --. x MPmim into
) ..y 11 1 — 1 -

Mpo'qo when ot +pm—p0,ql+ to=m 1+q0,and1§pz,q,§oofor

0<i<m.

Theorem 3.1 has the following intuitive explanation. Though not literally correct, it
is instructive to think of f € MP? as being represented by the statement “f € LP and
f € L7 (for a rigorous comparison of modulation spaces and Fourier-Lebesgue spaces
see the embeddings in [11]). Under this analogy, the first condition ) p,;* = p, " is the
condition required to estimate the pointwise product fi - - - f,, by Holder’s inequality,
and the second condition qu_l =m — 1+ ¢! is the condition needed to apply
Young’s inequality to the convolution product f1 SRR fm. Thus, loosely speaking,
Theorem 3.1 asserts that the symbol class M°! yields multilinear operators T}, that
behave like pointwise multiplication with respect to both time and frequency.

The proof of Theorem 3.1 requires some preparation. To compactify the notation,
let us write £ = (€1, ...,&n), d€ = d&; ---d&n, etc. Then for fi,..., fm,g € S(R?),
the action of T, can be expressed by the formula

(T, f, 9) = {To(f1, -, fm)s 9)
= /R(m+1)d o(x,&,...,&m) fl(gl) .. fm(fm) e2miz-(§14++Em) mdfl e d€ dx

= <o’, Wm(g,fl,...,fm)>: <U, Wm(gaf)>a

where

Wilg, fi,- oy fm) (@, &1, ..o, &m) = g(2) ]?1(61) f (&m) e —2miz-(61++Em)
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Remark 3.2. For m = 1, the Kohn-Nirenberg correspondence can be written as
(T, f,q) = (o, Wi(g, f)) where Wi(g, f) = e 2"€ g(z) f(€) is the so-called cross-
Ryhaczek distribution of f and g. Thus, one may think of W,, as a multilinear
version of the Ryhaczek distribution.

The following multilinear “magic formula” will be an important tool.

Lemma 3.3. Let (¢o, 8) = (o, 91, - ., m) € (S(R?))™! be given. Then for (f, g) €
(M=®(R))™ L and (ug, @) = (ug, Ui, - -, Um), (vo,7) = (Vo,V1,...,0y) € R
we have

Vit (oo Wen (9, F) (10, @), (vo, 7))

= gm0t tum) Vo g(ug, v+ g + -+ -+ Uy ) H Vi filuo + vi,ue). (8)
i=1

Proof. Note first that Wi, (¢, ¢) € S(R™TD4). Assume that we also had (f,g) €
(S(R%))™*!. Then the integral defining the STFT V,,, W (60.3) Wrn (g, f) converges ab-
solutely, and hence the following manipulations are justified:

VWm(¢0,$)Wm(gﬂ ]?)((Uo, i), (vo, ¥))

= /R(m+1)d Wm (g’ ﬁ(x, 5) e*QWi(w,a-(vo,ﬁ) Wm(¢0a g)((x, g) — (UO, 11‘)) dx dg

m
_ A_ . —27ri:l,‘-zll & —27Ti(l‘-’l}0-|—zll &iv5)
= X e v e v X
/R i

i=1
x — uo H e2mi(z—u0)-225L, (& —ui) 1, d{?
— 2miuo T us /( s g(x) H fz(&) m H ng(fz — u;) X
R(m iy i=1

m
o—2miz-(v0+ 7L, i) He—Zﬂi&'-(uo-H)i) dr d€

=1

— 2ol i V%g(u(}’ v+ uz) T Vs, fiCus, —uo — vi)
=1

i=1

= 62”“0'2?:1 i Vd)o (UO; Vo + Z ul) H V@fz U + V5, Uz)

i=1
and the result follows in this case. X X
Now assume that (g, f) € (M*®(R%))™!. Then we have §® fi1 ® -+ ® fi, €
M (RM+1D4) - Since pointwise multiplication by the “chirp” e=2m@-(&1++&m) Jeayes
M invariant ([9] or [15, Thm. 12.1.3]), we find that Wy, (g, f) € Mo (Rm+1)d)
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=

as well. Consequently V;, Won (90 q;)Wm(g, ) is a well-defined, bounded, uniformly con-

tinuous function on R™+1d

We prove the validity of the identity (8) by approximation. Since S is weak*-
dense in M °°, we can choose sequences g, € S(R?) and f, € (S(RY))™ such
that (gn, fn) (9, f) in M°*_ By continuity of tensor products and multipli-
cation by chirps, we obtain that W,,(g,, ﬁ) I W4, f) in M°*  Since weak*-
convergence of distributions is equivalent to uniform convergence of the STFT on
compact sets [8], we find that V/, (do ¢)Wm(gn, fn) converges uniformly on compact

sets t0 Viy 40 3 Woalyg, f).
Similarly, for the right-hand side of (8) we obtain that Vg, — V4,9 and Vy, (f): —
Vy,; [i uniformly on compact sets. Consequently the right-hand side converges uni-

formly to e2moXizi ¥ Vy g(ug, v + Yoy u;) [1oey Vi fi(uo + v, ;). This proves the
identity in the general case. O

Lemma 3.4. Let (qbo,q;) € (S(R4))™*! be given. Assume that p% 4+ 4
and qil—l—---—l—qim:m—l—f—qio, with 1 < pg, go < 0o for 0 <4 < m. Then

1
Pm Po

Vi g0y Won (9, Dllsoe < Cllfillagssar = Ifmllagoman gy

whenever the right-hand side is defined.

Proof. Lemma 3.3 implies that for all (vy, 7) € R(™+1? we have

/]R;(m-l-l)d ‘VWm(¢05¢ (g7 _’)((U/O, ) (U(); 17))‘ duo dﬂ:

/R(m+1)d

< [ Wangon 3wl TLIVausiCoulon di = (4,
" i=1 i=1

Viod (o, vo + > u;) ‘H Vo, fi(uo + vi, u;) | dug di
i=1 i=1

the last line following by applying Hélder’s inequality in the first variable, since p% +
t o —|— = 1. Now write G(v) = |[Vi,g(-, v)l| oy, and Fi(ui) = ||V, fi(+, —ui)| v
With thls notatlon 1G5 = gl \wiap and [|[Fillzes = || fill ppiei (more precisely, a

different equivalent norm for MPi% is used for each 7 because of the different choice
of window functions), and we may rewrite the term (x) above as

(%) = GUO—FZUZH —u;) dii = (G * Fy % - F,) (v).

Rmd
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Note that this expression is independent of 17 Applying now Young’s inequality for
convolutions, since ll +- 4 q— =m-1 + we obtain

Vit (0. Wrn (95 P10

= s V0 Wonl: P, ), (0, ) o d
R(m+1)d

(vo,¥) cR(m+1)d

< |G * Fy %« % Fp||pe
m

< Gllg [T I1Fill e
i=1

<C ”g”Mpﬁ,qf) ||f1||MP11‘11 T ||fm||Mpm,qm,
the constant C' arising from the use of different windows to measure the modulation
space norms. ]

We can now prove our main result.

Proof of Theorem 38.1. Let f; € MP»% be given, and let ¢g, ¢y, ..., dn € S(RY) be
fixed so that ||¢;||zz = 1 for each 7. Then, using the extended isometry property of
the STFT, Holder’s inequality, and Lemma 3.4, for any g € MPo% we may estimate
that

(T, f, 9)| = [(0, Winlg, F))]

= [(Wt60.9% YWint0.d) WV )]
< || m(¢0 ¢ 0-||Loo 1 ||V o ¢0 ¢ m(g, f)”Ll,oo

< Clloflpeen H | fill vawisas g oty -
i=1
If pj,q) < oo, then the duality properties of the modulation spaces implies that
T,f € MPo% with the norm estimate

m
I fllatsoao < Cllollagser [T £l atsai-
i=1
If either pl) = oo or ¢ = co or both, then we take g € M%%, MPo0 or MO instead.
Again the duality stated in Lemma 2.2 then implies that 7T, f € MP>%? with the
correct norm estimate, which completes the proof. 0

4. APPLICATIONS

In this final section we give some applications of Theorem 3.1.

First we consider that boundedness of T, from MP'P1 x ... x MPmPm into MPOPO,
The required conditions on the exponents p; and ¢; then imply that we must necessar-
ily have m = 1, since p; = ¢;. Thus we recover the following boundedness condition
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for linear pseudodifferential operators, which, as explained in the introduction, ex-
tends the classical result of Calderén and Vaillancourt.

Corollary 4.1. ([17, Theorem 1.1]) If 0 € M>1(R??), then T, extends to a bounded
operator from MPP into MPP for 1 < p < .

If instead we choose ¢; = p) for 1 < 7 < m, then the conditions of Theorem 3.1
yield ¢o = pj. Hence we have the following.

Corollary 4.2. If 0 € M} (R™D4) and 1 < pg, p1, - - -, P < 00 satisfy p% +

! / .
L = 1 then 7T, extends to a bounded operator from MP'P1 x ... x MPmPm into
DPm ,PO’
MPo:Po,

Using the embedding (c) from Section 2.2 of Besov spaces into the modulation
spaces, we obtain the following.

Corollary 4.3. Let 0 € M>HR™)4) "and let 1 < po, p1, - .., Pm < 00 be given so

that p% + .4 Ii = pio. If s; > z% for 1 < ¢ < m, then T, extends to a bounded

51 .« o S 1 pO:p’
operator from B! , X X Bym , into MPOPo.

It is tempting to seek a similar result for Lebesgue spaces by using the embedding
(a) from Section 2.2. However, in this case the embeddings and the conditions of
Theorem 3.1 do not seem to lead to interesting results.

Next we consider the multilinear Calderén—Vaillancourt class of symbols o defined
by the inequalities

02008 - 0™ 0 (2, €4, &m)| < Caoarn (9)

for all multiindices a;, 0 < i < m up to a certain order. It was shown in [1] that
condition (9) does not necessarily yield an operator T, that is bounded from L? x L?
into L', or more generally from LP x L7 into L" for 117 + % = 1. Here the use of
the modulation spaces clarifies the situation. In particular, by applying Theorem 3.1
with p; = po = ¢1 = ¢» and M?? = L2 we see by how much L? x L? fails to be

mapped into L.

Corollary 4.4. If 0 € M*1(R%®), then T, maps L? x L? into M>* (in fact, into
MI,O).

The relationship between M>>! and the Calderén-Vaillancourt class (9) is illumi-
nated by the following embeddings.

Corollary 4.5. A symbol o belongs to M>! under each of the following conditions:

(a) Equation (9) is satisfied for all a; such that Y 7" |oj| <m(d +1) + 1.

(b) Equation (9) is satisfied for all a; such that || <d+1for j=0,...,m.

(c) Equation (9) is satisfied for all a; such that a; € {0,1,2}%.

(d) o € C*(R™D?) with s > (m + 1)d.

In each of these cases, 1), extends to a bounded operator from MPL% x - . - x MPmdm

into MPo% when ﬁ*‘“‘*’,ﬁ:p%a q%+"'+qu:m_1+q%’ and 1 < p;, ¢ < o0
for 0 <i<m.
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Proof. The embeddings (a) and (d) are well-known, see, e.g., [15], [19], [23]. The
embeddings (b) and (c) are new, but their proofs are almost identical to the proof
of [15, Thm. 14.5.3]. O

Remark 4.6. Finally, we compare membership of the symbol in M®!(R3?) with the
requirement that o satisfy (4) and (5). These two conditions are distinct, in the sense
that neither implies the other. The condition presented in this paper is more general
in the variables ¢ and 7, but too strong in the z-variable. We can easily construct
examples satisfying one but not the other condition. For instance, consider a symbol

of the form
o(@,6m) =Y ag(w) mEEHN
kJlezd
with >, lan(z)| < oo for all z. Choosing the coefficients suitably, we can make
o € M>! but o obviously does not satisfy the Coifman-Meyer conditions.
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