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Summary

My research interests lie in the general area of harmonic analysis, with a particular em-
phasis on time-frequency analysis, frame theory, pseudodifferential operators, and analysis
on fractals. My work to date has proceeded in several distinct but related directions.

e Time-frequency analysis of function spaces. First, I am interested in a compre-
hensive study of various Banach spaces of functions, or distributions. More specifically, I
seek to understand the interplay between regularity and time-frequency concentration of
distributions. This is usually achieved via embedding relations between certain function
spaces. In particular, I proved embeddings between Banach spaces of functions character-
ized by their regularity (e.g., the Besov, Sobolev spaces) and a class of Banach spaces of
functions, called modulation spaces, defined by means of their time-frequency content. The
modulation spaces play also key roles in recent developments of pseudodifferential opera-
tors as well as Gabor analysis. However, these spaces have a rather implicit definition, thus
my embedding results give useful sufficient conditions for membership in the modulation
spaces.

e Discrete characterization of function spaces. A second aspect of my work which is
related to the previous one is concerned with a thorough understanding of the fine prop-
erties of distributions, e.g., time-frequency concentration, or regularity using frame theory.
Frames are basis-like objects used in particular to characterize various functions spaces.
Such characterizations are very important in approximation theory, and are also widely
used in signal processing. In particular, I used Gabor frames to characterize a class of func-
tion spaces known as the Wiener amalgam spaces which play important roles in sampling
theory as well as in time frequency analysis. I am also interested in the theory of finite
frames which has many applications in engineering, where different applications require
construction of frames with specific structures. For example, I gave a complete characteri-
zation of finite tight frames with a convolutional structure. Such frames are related to filter
banks and thus can be implemented using fast algorithms.

e Time-frequency of operators. Another aspect of my research deals with a time-
frequency analysis of multilinear pseudodifferential operators and Fourier multipliers in the
realm of the modulation spaces. These spaces arise again naturally in many applications
such as mobile communications, seismic data image processing, and appear as substitutes to
settle continuity properties of certain operators that are known to be unbounded on other
classical spaces. In my work I have shown such results for a class of Fourier multipliers which
are generally unbounded on the Lebesgue spaces. Additionally, I have been investigating
continuity properties of multilinear pseudodifferential operators on modulation spaces, for
which I formulated and proved some multilinear Calderén-Vaillancourt-type theorems.

e Analysis on fractals. The last aspect of my research is centered around the developing
area of analysis on fractals. In particular, I am interested in investigating the analogue
of certain results from classical analysis in the fractal setting. For example, I formulated
and proved an analogue of Heisenberg’s uncertainty principle on a large class of fractals,
including the Sierpinski gasket, and the Sierpinski Carpet.
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What follows is a more detailed discussion on several specific problems I work on, progress
to date, and plans for the future.

General notations

e Modulation spaces. For z,w, and t € R?, let T, f(t) = f(t — z) and M,f(t) =
™t £(¢). The short time Fourier transform (STFT) of f € S’ with respect to a window
g € S is the function V; f which provides local frequency information of f and is defined by

Vif(@w) = (. ML) = [ FOTE=D e e (o,0) € R

For a, 3 > 0 and g € L? the family G(g, , B) = {Mp,Tom@}mnezad, is a Gabor frame for
L? ([19], [37]) if there exist A, B > 0 such that

(1) Alfl72 < D [fs MpnTamg)l> < BIfl7.  Vf €L

m,nezd

It follows from (1) that there exists a dual Gabor frame G(§, o, ) such that every f € L?
has the following L?-convergent series expansion

(2) f: Z <faM,3nTamg>MﬂnTamg-

n,meZ4

Given 1 < p,q < o0, the modulation space MP¢ introduced by Feichtinger [23], is the
Banach space of all f € S'(R%) such that

q/p 1/q
laara = ([ ([ Wt i) )~ < e,

with usual adjustments when p, or ¢ is infinite. Moreover, Feichtinger and Gréchenig showed
that every f € MP9(R?) has a Gabor expansion (2) with convergence in the MP? norm,

and, moreover, Al|f|lmra < (X ,ez¢(Xmeza [{f, ManTamg) |p)q/p) 1/q < B||f||mp-a, for some
0< A< B < oo |26, 27].

e Wiener amalgam spaces. For 1 < p,gq < oo, the Wiener amalgam spaces can
be intuitively thought as the spaces of functions that are locally LP and globally £9, and
were first used by Wiener [61] in his development of generalized harmonic analysis. More
specifically, let Q, = [0,@)? where a > 0 and denote by xg the characteristic function of
the set E. A measurable function on R? belongs to the Wiener amalgam space W(LP, £9)
if and only if

1 wizsen = (32 1F - Tanxaal3) ' < 0.
nezd
e Background on analysis on fractals. Analytical tools such as the energy, the
Laplacian, and harmonic functions were introduced by Kigami on the class of self-similar
post-critically finite (p.c.f.) fractals which includes the Sierpinski gasket [45]; see also [3, 54].
More precisely, Kigami’s theory is developed on certain fractals K, where K is p.c.f. self-
similar set with boundary Vj, self-similar measure y, and self-similar energy £. In particular,
assuming that K is embedded in some Euclidean space, K can be shown to be the invariant
set for a contractive linear iterated function system {F;}7'°,. Let ¢; denote the fixed point
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of F; and let Vo = {¢;};-, for some n; < ng. The p.c.f. condition is that K is connected
and F;K N F;K C F;Vy N F;V for @ # j.
Time-Frequency Analysis of Function Spaces

Characterization of functions spaces by bases or frames which are simply generated such
as Gabor or wavelet systems is essential in many applications as well as in approximation
theory [21, 42]. For example, the Besov and Triebel-Lizorkin spaces are naturally char-
acterized by wavelet bases [31], while as pointed out earlier, the modulation spaces are
completely described by Gabor frames. However, no comprehensive comparison between
time-scale and time-frequency analysis exists in the literature. More specifically, it is still
unknown in general, whether the Besov or Triebel-Lizorkin spaces can be characterized by
time-frequency methods or if the modulation spaces can be described by time-scale systems.
For example, the Lebesgue spaces LP which are examples of Triebel-Lizorkin spaces, are not
modulation spaces if p # 2 [28]. Therefore, their characterization by Gabor frames was not
expected. Nevertheless, in a joint work with K. Grochenig, C. Heil, we proved that, by
reinterpreting (2) as an iterated series, one could characterize the Wiener amalgam spaces
of which the Lebesgue spaces are particular cases, by Gabor frames [41]. However, func-
tions in these spaces are no longer characterized solely by the magnitude of their Gabor
coefficients, but, rather, the phases of these coefficients are now important. As corollaries,
we recover and extend results which were obtained in [2, 35, 40]. Amalgam spaces serve
as the appropriate mathematical tool in sampling theory [1, 24] and play important role in
the theory of Gabor frames [37].

While frame theory has numerous applications in engineering, it also generates some
interesting questions in pure mathematics. For example, Feichtinger conjectured that any
bounded (Gabor) frame can be decomposed into finite union of Riesz basic sequences. This
conjecture is still unsolved and has been shown to be equivalent to the 1959 outstanding
Kadison-Singer problem [14]. However, as mentioned earlier, it is the finite frames that
one really implements in applications. Furthermore, the pioneering work of Benedetto
and Fickus [6] in which normalized tight frames (i.e., finite frames of unit vectors) were
completely characterized, ignited new investigations on finite frames. In general, for different
applications in signal processing, or coding theory [12, 13, 15], finite frames with additionally
structure are sought. For example, in a joint work with M. Fickus, B. D. Johnson, and
K. Kornelson we completely characterized all (finite) tight frames with a convolutional
structure [29], by showing that they are exactly the minimizers of the frame potential.
Due to their connection with filter banks such frames have potential applications in signal
processing, where fast algorithms for their implementation are available.

Regularity versus Time-Frequency Concentration

A distribution belongs to a modulation space if it has certain joint decay in time and in
frequency. However, it is rather difficult to assert this from the definition of the modulation
spaces. One can then ask how other properties of a distribution such as regularity, relate
to its time-frequency content, and thus imply its membership into a particular modulation
space. Consequently, it is of fundamental importance to investigate embeddings between
Banach spaces of tempered distributions that measure regularity and the modulation spaces.
Moreover, embeddings between modulation spaces and Besov and Sobolev spaces are not
only also extremely important in studying Schatten properties of linear pseudodifferential
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operators [57], but they have also been used to formulate and prove new uncertainty relations
[37]. We formulated and proved in [49], that certain Besov and Triebel-Lizorkin spaces
([53, 58]) embed into modulation spaces. The proofs of my results rely on a delicate use
of the various equivalent norms defining the Besov and Triebel-Lizorkin spaces as well as a
careful exploitation of the algebraic structure of the STFT. Two special cases of my results
deserve specific mention. First, we gave a new proof of the embedding C*(R?) ¢ M (R?)
for s > d which was first proved in [43]. The interest in the modulation space, M !
—also known as the Sjostrand’s algebra [52]— stems from the important role it has been
playing in recent developments involving pseudodifferential operators on modulation spaces
[39, 43, 56, 57]. Second, we also proved a conjecture of Feichtinger that the Sobolev space
Li(R) is contained in M!(R). This last embedding is particularly useful due to the critical
role that the Feichtinger algebra M plays in the theory of Gabor frames, as it gives a fairly
easy sufficient condition for membership in M*(R).

Time-Frequency Analysis of Fourier Multipliers

The pseudodifferential operator with a symbol o € S'(R??) is defined by the Kohn-
Nirenberg correspondence as the operator K, mapping S into S', such that for f € S,

®) Kof (@) = [ o@,6) f©) @7 .

These operators arise naturally not only in PDEs [30, 34, 53], but also in mobile commu-
nications [55], as well as in seismic image processing [33] . A basic but important question
is to find conditions on the symbol ¢ so that the corresponding operator is bounded on
certain function spaces. For instance, Caldéron-Vaillancourt [16] proved that if o belongs
to the Hormander class S(()),o i.e., if o satisfies the following estimates

(4) 0200 0(2,6)| < Cap, Vo, B0,

then K, is bounded on L?. However, this condition does not guarantee the boundedness
of K, on L? for p # 2 [5]. Recently, the modulation space M°®! has been introduced as class
of non-smooth symbols that yield bounded pseudodifferential operators on MP¢ for 1 <
p,q < 00, and, hence on L? [39, 43, 52, 56]. Notice that 58,0(]1{2‘1) C C*(R??) C Mo (R2)
if s > 2d, and so the last boundedness result recovers and extends Caldéron-Vaillancourt
theorem. Furthermore M ! is a Banach algebra under the so-called twisted convolution,
and moreover, if ¢ € M°>! is such that K, is invertible on L?(R?) then K, ! = K for some
& € M°>! [38, 52]. Additionally, for applications in signal processing or in seismic image
data processing, it is more natural to impose time-frequency concentration conditions on
the symbols of the pseudodifferential operators. These are some of the reasons why the
modulation spaces are natural setting to study these operators.

A special case of pseudodifferential operator occurs when the symbol takes the form
o(z,€) = m(£). In this case, K, = H,, is a Fourier multiplier with symbol m € S'(R%)
and (3) reads I?w;‘ (&) = m(€) f(€). These operators are typical models of filters or equiva-
lently linear time invariant systems in signal processing. The complete characterization of
the Fourier multipliers for the Lebesgue spaces is only known for L', L2, and L>. Nonethe-

less, for p # 1,2, 00, a few sufficient conditions for boundedness of Fourier multipliers are
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known. For example, the Homander multiplier theorem [34, 44, 53], is a typical result on
the boundedness of Fourier multipliers on Lebesgue spaces. In view of the increasing role
the modulation spaces play in time-frequency analysis and signal processing, it is not only
important to characterize their Fourier multipliers, but also to understand the differences
between their Fourier multipliers and those of other function spaces such as the Lebesgue
space. In particular, in a joint work with A. Bényi, L. Grafakos, and K. Grochenig we
proved the boundedness on the modulation spaces of a class of Fourier multipliers that are
generally unbounded on Lebesgue spaces and whose symbols are not in M°>! [11]. More
specifically, using the atomic decomposition of modulation spaces by Gabor frames, we
showed that the continuity of this class of Fourier multipliers reduces to the boundedness
of the discrete Hilbert transform. As a byproduct of our results, we show that the Hilbert
transform is bounded on all modulation spaces MP4(R) with 1 < p < gand 1 < g < 0.
Moreover, in an ongoing work with A. Bényi, K. Grochenig, and L. Rogers, we are inves-
tigating the continuity of Fourier multipliers related to certain evolution equations such as
the Schrodinger and the wave equations, as well as the problem of the ball multiplier on the
modulation spaces. More precisely, we are interested in the family of Fourier multipliers
whose symbols are given by mq(€) = €'¢l”,¢ € R%, and a > 0. The cases @ = 1 and 2 are
the multipliers corresponding to the wave and Schrédinger equations, respectively, and are
known to be unbounded on Lebesgue spaces except when p = 2 or d = 1 [44, 47]. Similarly,
Fefferman showed that if m = x5 where B is the unit ball in R¢, then H,, is unbounded
on LP if p # 2 and d > 2 [22]. Preliminary results indicate that for certain range of «,
mq € M 1(R?), in which case the boundedness result is easily established. However, this
is not a necessary condition. New insight about the Sjostrand algebra is emerging from our
investigation.

Time-Frequency Analysis of Multilinear Pseudodifferential Operators

An m-linear pseudodifferential operator with symbol o € S'(R(™+1)4) is the mapping K,
from S(R?) x .-+ x S(R?) into S/(R?) given by

Ka(fla .- afm)(x)
(5) - / 0@, €1y €m) Fu(€1) -+ fin(Em) 7O dey - dey,
(Rd)m

for fi,...,fm € S(RY). The trivial case ¢ = 1 corresponds to the pointwise product
f1-++ fm, and Holder’s inequality regulates its boundedness on Lebesgue spaces.

Multilinear pseudodifferential operators are being extensively investigated not only due to
their many applications to linear and non-linear partial differential equations, but also due
to the deep result of Lacey and Thiele on the boundedness of the bilinear Hilbert transform
[18, 36, 46, 48]. Finding conditions on the symbols of such operators that guarantee their
boundedness on products of certain Banach spaces is still being thoroughly investigated.
In particular, assume that m = 2 and that the symbol ¢ of the bilinear pseudodifferential
operator belongs to the (bilinear) Hérmander class 58,0, ie.,

(6) 0200 o(2,€,1m)| < Capryr Yo, B,7>0.
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It was shown in [8] that (6) does not imply the boundedness of the corresponding operator
from L? x L? into L', unless additional size conditions are imposed on o. However, as
mentioned earlier for the linear case (m = 1), condition (6) (or equivalently condition (4))
implies that the symbol o € M°!(R?¢) which is sufficient for the boundedness of K, on
all modulation spaces. In a joint work with A. Bényi, we introduced the modulation spaces
as class of symbols for bilinear pseudodifferential operators. In particular, using the atomic
decomposition of modulation spaces via Gabor frames, we proved in [7] that the Feichtinger
algebra M! is a class of non-smooth symbols that yield bounded bilinear pseudodifferential
operators. Moreover, A. Bényi, K. Grochenig, C. Heil, and I proved Calderén-Vaillancourt-
type theorems for multilinear pseudodifferential operators with non-smooth symbols on
modulation spaces [10]. In particular, we showed that symbols satisfying (6) map L2 x L?
into a modulation-like space slightly larger than L'. Further extensions were obtained in
my joint work with A. Bényi [9]. Moreover, in a recent work, E. Cordero and I gave various
examples of multilinear pseudodifferential operators with non-smooth symbols in M°:! [17].
In addition, we proved that for a large class of multilinear pseudodifferential operators, the
condition that their symbols ¢ belong to M°! is not only sufficient for their boundedness,
but it is also a necessary condition.

Analysis on fractals

Some problems of classical analysis on Euclidean spaces such as differential equations
and Fourier series expansions have been considered extensively on p.c.f. fractals, see [20].
In particular, and similarly to Fourier series on the circle, the solutions {u;}32, of the
following eigenvalue problem

7 J e}
( ) { uj|V0 = 0,

form an orthonormal basis of Dirichlet eigenfunctions with eigenvalues {);}3°, of the Lapla-
cian on K. Consequently, any v € L?(K) has a Fourier series expansion. Moroever, the
structure of the spectrum of the Laplacian on the Sierpinski gasket (SG) and other pcf
fractals was completely described by Fukushima and Shima [32] (see also [60]) , who also
proved that certain of these eigenvalues have very high multiplicity. Another example of
a classical result of analysis which holds in the fractal setting is given in my joint work
with R. S. Strichartz [50]. More precisely, we established a weak analogue of Heisenberg’s
Uncertainty Principle for functions defined on the Sierpinski gasket. Although the existence
of localized eigenfunctions —these are eigenvalues which are highly localized in space and
in frequency— on the Sierpinski gasket ([4, 32]) precludes an uncertainty principle in the
vein of Heisenberg’s inequality, we nonetheless proved that a function that is localized in
space must have high energy, and hence have high frequency components. Moreover, in a
joint work with A. Teplyaev [51], we proved that such weak uncertainty principle extends
to a wide class of metric measure spaces, including p.c.f. and non p.c.f. fractals (such as the
Sierpinski carpet), as well as some finite and infinite graphs. Furthermore, as a byproduct
of our results we obtain a new proof of the classical Heisenberg’s uncertainty principle.

Future research

The characterization of function spaces by coherent states such as Gabor or wavelet
systems is essential in many applications. In particular, a lot of work has been done to
6



understand the properties of the Besov and Triebel-Lizorkin spaces using wavelet analysis
as well as the modulation spaces using Gabor analysis. However, it still unknown in general,
what summability properties the Gabor coefficients of functions in a Besov or Triebel-
Lizorkin space have, or in which sequence space lie the wavelet coefficients of functions in a
modulation space. In ongoing work I have started what I think is the first step in answering
such questions. More specifically, I am investigating a characterization of the Besov and
Triebel-Lizorkin spaces by Gabor frames, as well as a description of the modulation spaces
by wavelet bases.

I am also pursuing my work on the theory of finite frames. In particular, in ongoing work
with B. D. Johnson, we are investigating a characterization of finite tight frames over finite
groups by means of the frame potential. Such results will certainly have some applications
for which frames with certain geometric properties (such as frames generated by a set of
rotations matrices) are needed.

I also plan to work on issues related to the optimality of certain of the embedding results
I proved in my previous work. The techniques I have used to obtain those results rely on
the availability of various equivalent norms on the Triebel-Lizorkin and Besov spaces as
well as the algebraic properties of the STFT. However, I think any optimal result in this
direction must be stated in terms of sequence spaces associated to the function spaces under
consideration. Therefore, I plan on investigating these embeddings at the sequence space
level. This investigation would provide another comparison between time-frequency and
time-scale analysis.

The increasingly important role that the modulation spaces have been playing in the
analysis of (multilinear) pseudodifferential operators, suggests that one should investigate
their role in the theory of PDEs. This is further exemplified by our ongoing work on the
continuity of Fourier multipliers related to certain evolution PDEs on modulation spaces.
I plan on pursuing this investigation with the goal of analyzing PDEs in the realm of the
modulation spaces. Moreover, I seek to understand the coninuity properties of (multilinear)
singular integral operators in this setting. Furthermore, in ongoing joint work with A. Bényi,
K. Grochenig and L. Rogers, we are investigating the continuity properties of the ball
multiplier on modulation spaces. Our long term goal is to revisit the question of summation
of spherical Fourier series in the context of modulation spaces.

Finally, I plan on pursuing my work on issues related to certain differential equations
involving the Laplacian on fractals. I am currently investigating the possible use of some
techniques from finite frame theory to construct frames with good “time-frequency” local-
ization properties (i.e., frames whose grammian matrices have good off-diagonal decay) for
the eigenspaces corresponding to eigenvalues of high multiplicity. Constructing such frames
will lead to a better understand of sampling theory in the fractal setting. Additionally, in
ongoing work R. S. Strichartz and I are studying the asymptotic behavior of the spectrum
of certain Hamiltonian on the Sierpinski gasket. Finally, I plan to develop a theory of
pseudodifferential operators in this fractal setting.
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