WEAK UNCERTAINTY PRINCIPLES ON FRACTALS
KASSO A. OKOUDJOU AND ROBERT S. STRICHARTZ*

ABSTRACT. We use the analytic tools such as the energy, and the Laplacians de-
fined by Kigami for a class of post-critically finite (pcf) fractals which includes the
Sierpinski gasket (SG), to establish some uncertainty relations for functions de-
fined on these fractals. Although the existence of localized eigenfunctions on some
of these fractals precludes an uncertainty principle in the vein of Heisenberg’s in-
equality, we prove in this paper that a function that is localized in space must have
high energy, and hence have high frequency components. We also extend our result
to functions defined on products of pcf fractals, thereby obtaining an uncertainty
principle on a particular type of non-pcf fractal.

1. INTRODUCTION

The uncertainty principle in harmonic analysis can be seen as a manifestation of
the fact that it is impossible for a nonzero function and its Fourier transform to both
be sharply localized. More precisely, defining the Fourier transform of a function
f € LY(R) (with the usual extension to L?(R) functions) by

fA(é—) — Af(x) e—27riz§ dﬂ'),

a quantitative statement of the above fact is the classical Heisenberg’s inequality
which asserts that for all f € L?(R)

O ([ e-wr@ra) p( [E-vriiere) > L2

a€R b - 1671'2

Moreover, equality holds in (1) if and only if f(z) = C e2™®* ¢=7(#=9)” for some con-
stants C' € C and v > 0. We refer to [4] and the references therein for a survey of
uncertainty principles and related results. To see how the above inequality relates
to localization properties of functions, note that if f € L*(R) with ||f||2 = 1 then
by Plancherel’s equality | f(z)|? dz and | f(€)|? d¢ may be thought as probability mea-
sures on R . Thus, Var(|f|*) = [o(z — pg)?|f(2)|? dz, where py is the mean of the
probability measure |f(x)[? dz, achieves the first infimum on the left-hand side of (1),
and measures the concentration of f around its mean. Similarly, Var(|f[?) achieves
the second infimum on the left-hand side of (1) and measures the concentration of f
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around its mean. Therefore, it is clear that a function and its Fourier transform can-
not both be highly concentrated around any points, since (1) prevents Var(|f|?) and
Var(|f|?) to both be arbitrarily small. Other variant of the Heisenberg’s inequality
have been obtained by different authors, see [20, 11, 12].

A non symmetric version of (1) exists on the interval [0, 27], where the role of the
Fourier transform is replaced by the Fourier series. More precisely, let u € L*([0, 27])
such that ||ull; = 1. Then u can be expand into its L? convergent Fourier series, i.e.,

ad . 1 2T )
u(z) = Zak cike where ap = — u(z) e g,
27 Jo
—0o0
and moreover, y .~ lag|? = ||ul|3.

Let u € L*([0,2n]) with [ju|ls = 1. Following [8] define the first trigonometric
moment of u by

1 2 . o
T(u) = %/0 e” |u(z)|? de = Z akQk41,

k=—00
its angle variance by
=) 1

Vara(u) := = 2
N O [N (SRR

_ 1,
and its frequency variance by

Varp(u) = /|2 + (W' u)> = 3 Kl - (Y klaf?)’,

k=—o00 k=—00

where we assume that u is smooth enough for the last definition to make sense.
In particular, this will be the case if we assume that u € L?([0,27]) is absolutely
continuous and that u' € L?([0, 27]). The following uncertainty principle for periodic
functions first appeared in [8]: For all u,u’ € L?([0, 27]) such that ||ul|s = 1 and such
that u is absolutely continuous,

(2) Vara(u) Varp(u) > %

Moreover, it was observed in [10] that the lower bound in (2) is not attained by any
function, but is the best possible. We refer to [3] for a physical interpretation of
the variances appearing in (2) and to [10, 8, 9, 13, 14] for more background on this
periodic uncertainty principle.

It is clear that the two versions of the uncertainty principle we have just stated
bear some resemblances despite the fact that the underlying spaces on which the
functions are defined are different.

In view of the recent interest that analysis on fractals has been drawing, it is
quite natural to ask how much of the “classical” analysis on Euclidean spaces can be
extended to the fractal setting. Our goal in this paper is to show to what extent an
uncertainty principle of the above type holds for functions defined on certain fractals.
However, Fukushima and Shima [5], and Barlow and Kigami [2] have shown that on
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SG and other pcf fractals, there exist localized eigenfunctions, i.e., eigenfunctions
that are completely localized in frequency and highly localized in space. This clearly
indicates that inequalities analogous to (1) and (2) cannot hold in this fractal setting.
Nevertheless, we prove some uncertainty relations for functions defined on pcf fractals
—of which the Sierpinski gasket will be our model— on which analytic tools such as
the energy, the Laplacian, and harmonic functions have been defined and extensively
studied. In particular, we will show that a slightly weaker uncertainty estimate holds:
if a function defined on a pcf fractal is localized in space then there must be very
high frequencies involved. We call this phenomenon a weak uncertainty principle.

We briefly describe here the pcf fractals that will be considered in the sequel, and
we refer to [1, 6, 19] and the references there for more background on analysis on
fractals.

The fractal K to be considered below, is a pcf self-similar set with boundary Vj,
self-similar measure u, and self-similar energy £€. Moreover, assuming that K is
embedded in some Euclidean space, K can be shown to be the invariant set for a
contractive linear iterated function system (ifs) {F;}1°;. Let ¢; denote the fixed point
of F; and let Vy = {¢;}; for some n; < ng. The pcf condition is that K is connected
and

FEKNF,K C F,VonNE;V for i # .
F,K is referred to as a cell of level 1. If we let w = (wy,...,wy,) be a word of length
|w| = m, and F, = F, o...0F, , then F,K is said to be a cell of level m. We
also note that the self-similar probability measure p is determined by the choice of
probability weight {y;}7°; by

no no
w= Z i [ o F;_l or equivalently / fdu= Z i / foF;du.
i=1 K i=1 K

We can also define K as the limit of graphs I',,, with vertices in V;,, and edge relation
T ~y,, y defined inductively as follows: T’y is the complete graph V4, and V,, =
U FiVi—1 and x ~,, y if and only if z and y belong to the same cell F,K of level
m.
For i =0,1,...,n0, let 7; > 0 be given, and denote 7, = 7,7y, . .. Tw,, for a word
w of length m. Assume that for a function v defined on V; we are given the energy
form

(3) Eolu,u) =Y ey (u(gs) — u(gy))?,
i<j
where the coefficients ¢;; are nonnegative, and are such that &(u,u) = 0 if and only

if v is constant on V. We can now define an energy form for functions u defined on
Vi (graph energy at level m) by

(4) Em(u,u) = Z r & (uo Fy,uoF,).
|w]=m

If u is defined on Vj, we call 4 the harmonic extension to V,, if it minimizes &,,. The
main assumption is that &,(%, 1) = & (u, u), which holds once we check it for m = 1.
In this case, (&, {r;}) is called a harmonic structure. Moreover, if 0 < r; < 1 for
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all 7 then (&, {r;}) is called a regular harmonic structure. See [6] for more details.
Consequently, it can be easily seen that the sequence {&,(u,u)}n is an increasing
sequence of nonnegative real numbers for any u defined on K. Thus

(5) E(u,u) = n{gr;o Em(u, u)

exists as an extended real number. We define dom& to be the set of all continuous
functions on K for which the above limit is finite. It can be shown that dom&
modulo the constant functions is a Hilbert spaces with norm & (u,u)l/ 2 and with
corresponding inner product given by £(u,v) = lim, 0o Em(u, v), for u,v € domé&.
The energy also satisfies the following self-similarity relation

(6) Ew,u) =Y 1, E(uoF,uoF,),

|w|=m

where the sum is taken over all words of length m. It should be noted that the
existence of regular harmonic structures is a difficult problem. Nevertheless there are
a lot of known examples.

With the energy comes a distance, which, in a sense, is intrinsic to the fractal, called
the effective resistance metric on K, and defined by

(7) dr(z,y) = (min{g(u, u) :u(z) = 0and u(y) = 1}>_ z,y € K;

we refer again to [6] for more details about this metric. It is worth noticing that in
the effective resistance metric, the cell F,K has diameter equivalent to .

Harmonic functions form an n;-dimensional space Hy, and are obtained by as-
signing values in Vj, and taking the minimum energy extension at each level, and
extending from V, = U_,V,, to K by continuity. Moreover, &,(u, u) is independent
of m if u is harmonic.

Finally we can define a Laplacian A with domain domA as follows: u € domA
with Au = f for u € dom& and f € C(K) if

—E&(u,v) :/ fvdp for all v e domy&,
K

where domy€ denotes the subspace of dom& of functions vanishing on the boundary
Vy. Equivalently, the Laplacian A can be defined pointwise as follows
Au= lim Apu, on Vi=Up>Vn

m—00

where the limit is uniform in a precise sense, and where A,, is a graph Laplacian
defined by

Auate) = ( [ du) ST 2 (ule) — uly)),

T~mYy

where z/Jg(gm) is the piecewise harmonic function of level m equal to 1 at  and 0 at all
other vertices in V,,.

Our paper is organized as follows. In Section 2 we introduce all the measures of
localization that will be used to state and prove our results. Moreover, we will prove
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a lemma which suggests why a weak uncertainty principle must hold on pcf fractals.
In Section 3 we prove our first main result which establishes a “weak” uncertainty
principle on (finite) pcf fractals. Additionally, we will extend this result to finite
and infinite blowups of pcf fractals. Finally, in Section 4, we use the results of the
previous sections to formulate and prove an uncertainty principle on products of pcf
fractals. Since the product is a self-similar fractal which is not pcf, our result in this
setting may be seen as a first attempt to generalize our weak uncertainty principles
to non-pcf fractal. However, it remains to be seen whether our results generalized to
“genuine” non-pcf fractals such as the Sierpinski carpet.

2. PRELIMINARIES AND MOTIVATIONS

The following expression of the energy function will play a key role in stating
and proving our uncertainty principles. Remember that V; is the boundary of our
pcf fractal K. Let u € L?(K) with ||ul|; = 1 and assume that u vanishes on Vj.
Let {u;}52, be a complete set of orthonormal Dirichlet eigenfunctions with (strictly
positive) eigenvalues {A;}22, arranged in an increasing order. More precisely,

—A’U,j = /\juj
ujly, = 0.
Then

u= Z a;(u) u; with aj(u) = /K wujdp.
j=1

Moreover, »~°, |a;(u)|* = 1 and in [15, Theorem 3.7.d] it was shown that
(8) E(u,u) =Y Ajla;(u)l.
j=1

Note that by considering {|a;(u)[*};2, as a probability measure on Z7, (8) is exactly
the average frequency in the expansion of u. Thus, if £(u, u) is large this implies that
u has significant high frequency components.

We now propose a measure of spatial concentration for functions defined on a pcf
fractal K. Observe that if du is a probability measure on R, then its variance is

Var(u) = [ (x— / ydu(y)>2du(w)
— [ duto)- ( xdu(x)>2

— % //RXR(x - y);jlu(x) du(y).

Since (z —y)? = |z — y|? is the Euclidean distance between two random points x and
y, we are tempted to use the last equality to define the measure of spatial localization
for a function on K, with the Euclidean metric replaced by the effective resistance
metric dg. However, we also need to adjust the power on the distance as shown in
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Lemma 1 below. Thus we define the variance of a function v € L?(K) with ||u|ls = 1
by

©) Varalu?) = [ duto. ) u(@) [u(y)* dutz) du(s),

where d is the Hausdorff dimension of K with respect to the resistance metric (note
that this is not the same as the Hausdorff dimension with respect to the Euclidean
metric).

Remark 1. Note that it easy to see that for all u € L*(K) with [juljs =1,

inf / dn(z, 1) [u(@) 2 dz < Varg(|ul?).
K

yeK

Moreover, let m = infyex [, dr(z,y)*™" |u(z)[*dz. Then for all € > 0 there exists
Yo € K such that

/ dr(z, o) |u(z) P dz < m +e.
K
Note also that there exists C' > 0 such that
dR(xa y)d+1 S C(dR(x: yO)d+1 + dR(y07 y)d+1) V~T7 y e K.
Consequently, it is straightforward to show that
Varyg(lu*) < Cm = C inf / dr(z, ) |u(z)| d.
yeK K
Thus, for u € L2(K) with ||u|lys =1

Vara(luf’) ~ inf. | de(e,p)** ju(o) P do

and we will use either of these expressions as measure of spatial localization. This will
be particularly useful when proving the uncertainty principle on products of fractals.

Remark 2. Note that if v € L?(K) with ||ul|s = 1, then
Varg(Ju?) < diam(K),

where diam(K) is the diameter of K in the resistance metric.

The next lemma can be seen as a first quantitative formulation of the fact that
if a function is highly localized in space, then there must be very high frequencies
involved.

Lemma 1. a. If u is a function supported in a cell F,,K such that ||ullo =1 then
Twtw€ (U, u) > Ar,

with equality if and only if u = +uy, and where \; is the first Dirichlet eigenvalue of
the Laplacian.
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b. If u is a function supported on two adjacent cells F, K and F,,K such that
l|ulla =1 then

Tt (U, u) > A,

with equality if and only if u = +u, and where A1 is the first Dirichlet eigenvalue of
the Laplacian on the union of two copies of K glued together at a boundary point.

Proof. a. Assume that u|y, = 0, then €(u,u) = Yo, Ax|ag|* where the sequence ay
is given by the expansion of u in the orthonormal basis of eigenvalues of the Dirichlet
Laplacian on K, i.e., u = 7 ayu, and thus by (8)

o0

E(u,u) > M Y laxl* = A

k=1

Assume now that u is supported on a cell F,K, then u o F, vanishes on Vj, and
thus by the above arguments £(uo F,,, uo F,)) > A\{||lu o F,||3. Using the self-similarity
of the energy function and of the measure p, the last inequality becomes

A A
ro€ (u,u) > =lul” = =,
which concludes the proof of a.
b. The proofis similar to the previous one and relies on the fact that the eigenvalues
of the Dirichlet Laplacian on the fractafolds obtained by gluing together two copies
of K at a boundary point, see [17], are strictly positive. a

Remark 3. It is natural to relate the resistance contraction factors r; and the mea-
sure contraction factors y; by the identity p; = r¢ where d is the unique number
determined by the condition Y /°, p; = Y"1 rd = 1; in fact d is just the Hausdorff
dimension K. Assuming this, then r,u, = rtl. Consequently, if u is supported
on F,K, Lemma 1 suggests that the variance of u must be r,u, = 74" and this
justifies the power d + 1 in (9).

From now on, we will assume that the resistance contraction factors r; and the
measure contraction factors are related through the identity p; = r¢ where d is

defined as above.

The next result will also play a key role in our proof. To get some intuition about
its meaning, we consider the case of the unit interval I = [0, 1]; harmonic functions are
just linear functions, and what the result says is that if f is a (continuous) function
on I with f(0) = a, and if | f(z)| < % for some x € I, then the energy in f is greater
than or equal to the energy of the harmonic function which assumes the same values
as f at 0 and z.

Lemma 2. Suppose u is a finite energy function on K with u(z) = a and such
that |u(y)| < dlal, for some z,y € K and § € (0,1). Then there exists a constant
C = C(d) > 0 such that &(u,u) > C a?.
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Proof. Let b = u(y), and note that £(u,u) = E(u — b,u — b). Moreover, |b— a| >
(1 —96)|al. Let v = “=2. Then
1 1 &(v,v)
. <
o W ST 2

However, because v(z) = 1 and v(y) = 0, it follows from the definition of the resis-
tance metric dg that £(v,v) > (dgr(z,y))~!. Consequently,

E(u,u) > (1—0)*(dr(z,y)) " a®

Because K has a finite diameter in the effective resistance metric, we conclude that
there exists C' > 0 (C = diam(K)~'(1 — §)?), such that &(u,u) > C a?. O

E(v,v) =

Remark 4. In the sequel, and for simplicity, we will use Lemma 2 with 6 = 1/2.

3. WEAK UNCERTAINTY PRINCIPLE ON PCF FRACTALS

3.1. Main result. Armed with the above lemmas, we can now state our first main
result, which we only prove for the Sierpinski gasket K = SG, as this will make the
proofs more transparent and thus less technical. In particular, we will choose r; = %
and y; = 3, for i = 1,2,3. Note that in this case d = log3/log(5/3). However,
nothing in the proofs is peculiar to SG and so they extend to all pcf fractals with
obvious modifications.

Since our goal is to show that if a function has a “small” concentration in space,
then there must be some large frequencies, we will assume that the variance of func-
tions under considerations are “small” enough. This will be made very precise below.

Theorem 1. There exists a positive constant C' such that for all v € dom& with

lullr2xy = 1 and Varg(|u?) < 3 we have
(10) Vara(u?) € (u,u) > C.
Proof. Let m be the smallest integer such that
3
(11) = Varg(|uf?) <r5™ < Vary(|uf?),

where w is a word of length m. The above inequalities are derived by decomposing
K into union of level 1 cells, i.e., F = U?_, F;K, and checking if (11) holds. If the
inequalities fail we iterate the decomposition until the inequalities hold. For general
pcf fractal we can use a “stopping time” argument to arrive at the result; however,
the lengths of w in the decomposition vary from cell to cell. Note that (11) implies
that Varg(Jul?) < 3rd+t.

Note that decomposmon (11) yields a decomposition of the fractal K into disjoint
cells of level m, i.e., K = Ugew,, Fi, K, where the union is taken over all words of

length m. This yields,

rwm—z/ W= 1,
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where I, = [}, , [u(z)[>dz. Let n = max, Is. We want to show that (11) imposes

a lower bound on 7.

Note that for each word w of length m there exists a unique cell F,, K of level
m —1 containing F,, K. For words w and w' of length m, write w’ ~ w if F,, K belongs
to the cell F,, | K of level m —1 containing F,, K, or if it belongs to one of the three
cells of level m — 1 that intersect F,, K. For a fixed wy there are at most 12 choices
of w' such that wy >~ w'. Thus

Z I, >1-12p,

w' 2w
and moreover, for w' # wy, z € F, K and y € F 4K we have dg(x,y) > Ar,, where
A = 5/3. This estimate follows from the definition of the relation ~, which implies

that there is at least one cell of diameter r; separating F,, K and F,,K, where @ is
a word of length m — 1. Consequently

g &> Varg(|ul?)

S dnea) ™ ) ? o) s dy

2 Ad+1 z Ti+1 Iw le.
w' pw
So Ad+1 Zw’ﬁw Iw le S g
Fixing w and summing over w’ with w' % w gives
> 1,1, > (1-12p)L,
w' 2w
Summing now over all w and recalling that ) I, =1 yields
5 d+1 d+1
5> A ij%ll > AT (1 - 127),

hence n > L (1 -2 A4-(@+)) = L (1 - (2)?) > 0. Therefore, one can find a word w of
length m such that

1 3
(12 1=lo= [ @Pde> =5 0- ()9,
K 12 5
Now let u; be the function defined as follow:
urlp,x = UlRkK,
u1|p,,x = the harmonic function with boundary values (a;, 0, 0),
up = 0 elsewhere,

where {a;} are the boundary values of u on F, K.
Note that u; is supported on a cell of level m — 2, or on the union on two such
cells, but at any rate we can use Lemma 1 to get

Cy
(13 Eusyun) > -2 s
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where Cy = 25 and A; is a Dirichlet eigenvalue of the Laplacian operator.
Using the definition of the energy along with inequalities (12) and (13) we obtain

Cy Oy

d+1 °
Tw

3
1 2
(14) —E(UOFw,quw)—i-—ZafZ

T T
v v oi=1

Observe that we really need to control the second term of the left-hand side in the
last inequality to conclude our proof. We will do this by examining different cases.

e Case I:
It - Z a? < Clﬁ%, then (14) immediately implies that

i1=1 a;
C1Cy
Eé‘(quw,qu) 2

Hence, by (11) we obtain that &(u,u) >
in this case.
e Case II:
If - Z a? > Clﬁ%, or equivalently p, S0 a? > Gl (

=1 "% =1 """t

W which concludes the proof

we have used the

fact that rdtl = p, rw), then because harmonic functlons minimize the energy
among all functions with the same boundary value, we have the following
estimate

g(UOFw,UOF ) (a1 _CLQ) +(a1 —a3)2+(a2—a3)2.
If minlai < 1/9 (note that 1/2 can be replaced with any o € (0,1) with-

max |a;|
out affecting the arguments given below, except for an adjustment of the

constants), then there exits C3 > 0 such that

3
Za? < Cs ((a1 —a2)? + (a1 —a3)? + (ag — a3)2) < Cs3&(uoF,uokF,).
i=1
Using this last inequality in (14) immediately yields the proof of our result in
this case.
If instead — min |“:‘ > 1/2 then |a;| are of comparable size for ¢ = 1,2, 3. More
precisely the followmg estimates hold

w

3
1 4
(15) EEjafgc@gg a ¥V j=1,2,3.

Our goal now is to estimate a? (or equivalently Z?:1 a? by the previous obser-
vation) in terms of the energy of u on the cells F,, K. We achieve this using
Lemma 2. More precisely, if there exists i (¢ = 1,2, 3) such that u o F,,, takes
on a value less than or equal to |a;|/2 at some point y € K, then Lemma 2 im-
plies that £(uo F,,,,uoF,,) > Csa?. Combining this last estimate, with (15),
and (14) yield the result.

However, if for all i, and for all x € K we have |uo F, ()| > |a;|/2
then Lemma 2 is no longer applicable. We will show that by involving more
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neighboring cells we can derive a contradiction to the initial estimate on the
variance (11). More precisely, if |u oF, ( )| > |a;|/2 Vz € K then

> Ci10y 1
4 = 4 48
where we have used (15) in the last inequality. Choose two cells that have
a positive separation, i.e., choose 4, j such that F,, K N F,, K = ¢, and such

that d(x,y) > r, for all x € F, K, y € F,,, K. We can estimate the variance
of u as follow

Vara(|u?) / / A, )™ Ju(@) ? July) P do dy

/w / y) ™ u(@)? [uy)[? d dy

0102
> d+1 —
=Tw ( 48 ) 12

We can now continue in this fashion to get the desired contradiction. In
particular, it is easy to see that if (uo F,, (z)| > |a;|/2 Vi=1,2,3, z €K,
then |u| > |a;|/2 at the three corners (boundary points) of the cell of level
m — 2 containing F,, K; otherwise we may appeal to Lemma 2 to conclude
the proof. Consider now the cell of level m — 2 containing F,, K and denote
it by F;K, see Figure 1 below. Let the boundary values of v on that cell
be b;,i = 1,2,3 where |b;| > |a;|/2, and let us look at the values of u at the
neighboring cells (of level m — 2) as in the last case.

If for some i = 1,2,3 |uo F(z)| < |b;|/2 for some z € K, then Lemma 2
applies again to give us the desired result. Otherwise, if |uo Fj| > |b;|/2 on
K and for all 7, then we can again estimate the variance of u to obtain

C10y\” 3

1% ) >pdtt (222 T

araljuP) > rd (S2) S
By proceeding in this way, either we encounter a favorable case (i.e., a case
where Lemma 2 can be applied), or we go a few steps further using the above

process to obtain a lower bound on Varg(|u|?). More precisely, one can get
to a cell F, K of level m — n, where n = 2k such that

32 010y’
2 d+1 102
Varg(|ul®) > 7§ Py ( 13 ) .

puollu o Full5 > o

We can now use (16) and (11) to write

2n
3— <C102> d+1 < Vard(|u| )

OOIOT
E

22n+8 \ 48 i
From this last inequality we obtain that

i (% (")
== N().

Inb

n <
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Hence, the assumption of Lemma 2 is satisfied for n > Ny , from which the
result follows. Note that we have implicitly assumed that m > Ny, which is
the case since for Varg(|u|?) small, we can actually show that the integer m
that appears in (11) is large enough so that m > Nj.

g

Cell

FIGURE 1. Cell = level m cell of the Sierpinski Gasket on which u is
mostly concentrated, i.e., Cell = F,K with [, = 7.

Remark 5. a. In the hypothesis Varq(|u[?) < 1 of Theorem 1, we could have replaced
1/2 by any number « € (0, 1) without affecting the proof.

b. Obviously, (10) cannot hold for constant functions defined on K. However, the
conditions [lull> = 1 and Vary(|u/?) < 5 imply that u is not constant.

c. If in the hypotheses of Theorem 1 we remove the restriction that Vary(|u|?) < 3,
we can get a weaker estimate. More precisely, there exists a positive constant C' such
that for all w € L*(K) with [Ju|z2(x) = 1 and &(u, u) < oo, the following inequality
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holds
(17) Varg(lul?) (€(u,u) +1) > C.
d. More generally, if u € dom&, with Vary(|ul?) < 3 ||ul|3 then

Vara(|ul*) €(u, u) > Clluls.

3.2. Weak uncertainty principle on blowups of pcf fractals. Let K be a pcf
fractal which is the invariant set of the ifs { F;}7'°; of similarity transformations with

similarity ratios ¢; € (0,1). Given any sequence F,,, F,, ... from the ifs, set
-1 -1 -1
K;=F, oF, o...onj K.

Then it is immediate to see that Fy = F C F; C F;, C ..., and we say that K is a
blowup of K if K is the union of K;. Moreover, for any integer N let Fiy be defined
by Fy = FyyFun_,---Fuy, and let Ky = Fy'K = UY | K;. We will call Ky a finite
blowup of K. We refer to [18, 21| for more about blowups of fractals.

For a function u defined on Ky let onyu be the function defined on K by

onu(r) = u(Fy'z), =€ K.
Note that

/KN u(z) p(dr) = ,uz_vl/ onu(z) p(dzx),

K

where p is the Hausdorff measure on K normalized such that, u(K) =1, and uy =
M = Py M, - - - Bwy, fOr a word w of length N. In fact Ky is just a rescaled version
of K.

Using Theorem 1 we can prove a similar uncertainty principle for functions define
of finite blowup Ky of pcf fractals. In particular, the following result holds.

Corollary 1. Let ry =Ty, Tw, - - -Twy- Lhere exists a positive constant C, such that

for all u € dom&x,, with ||ul|2(xy)y = 1 and Vargn(|ul?) < %T?Vd% we have

Vargn(Jul®) Exy (u,u) > C.
Moreover, C s independent of N.

Proof. For v € L?*(Ky) and using the notations adopted at the beginning of this
subsection we easily obtain that

onu € L*(K) with ||U||%2(KN) = MEIHUNU”%?(K),
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and that &g (u,u) = ry E(onu, onu), where 7y = 71, = Ty T, - - - Twy for a word w
of length N. Moreover,

Varg(lowul?) = / / dn(z, )™ |onu(z) [ joyu(y)? dz dy
KxK
=i [ e ) o) o) s dy
KnXKn

< 1 rd / / Az, )™ (@) July) P do dy
KNXKN

= iy ry Varan (lul),
where we have used the fact that dr(Fyz, Fny) < rydg(z,y). Thus the theorem
follows from the following estimates:

Vard,N(|u|2) Exy(u,u) > ,u]_\f Varq(lonu?)E(onu, oyu)

TN ——
i

_ 1
> CMNQ N —41 ||UN“||6L?(K)
N

_ 1
> Cpy’ry mﬂ?v ||U||%2(KN)
'n
> C,

where we have used again the fact that 7%, = puy in the last step. O

Remark 6. Similarly to Remark 5 c., by removing the fact that Vargn (|u|?) < 3 =,
N

and just assuming that ||u||z2(x,) = 1, and that £k, (u,u) < oo, it can be shown
that there exists a positive constant C' such that

(18) VCLTd,N(|U|2) (SKN(U,U) + 1) Z C.

Since the constant C' appearing in Corollary 1 is independent of N we immediately
have the following result, which yields a weak uncertainty principle for function de-
fined of the (infinite) blowup K of K. Note that the condition Vargy([ul?) < § —zer

N

disappears in the limit. In fact, on I the variance may be infinite, but we are only
interested in the finite variance case.

Theorem 2. There exists a positive constant C such that for all u € dom&x, with
|ul|L2(c)y = 1 we have

Vard,oo(|u|2) Ex,(u,u) > C.

Remark 7. Tt is likely that weak uncertainty principles similar to Corollary 1 and
Theorem 2 can be stated on other self-similar fractals, e.g., the blowup fractals con-
sidered in [7].
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4. WEAK UNCERTAINTY PRINCIPLE ON PRODUCT OF FRACTALS

Let u(z',z") be a function defined on the product K of two pcf fractals K', K.
We wish in this section to establish a weak uncertainty principle of the same flavor as
the one we derived in the previous section. This is a small step toward formulating
an weak uncertainty principle on non-pcf fractals. We adopt the same notation as
in [16], where more background on analysis on product of fractals can be found. In
particular, we use ’ for variable defined on the first factor of the product K = K'x K",
and ” for any variable related to the second factor. Moreover, we will assume in the
sequel that d' = d"” = d, or make the stronger assumption that K’ = K".

We begin with the following estimate obtained by applying the result of the last
sections to the functions obtained by freezing one of the variables z’' or z” of the
function u defined on K = K' x K".

3
< lu(z', z")|? dx') < CEu(-z"),ul-,z"))x
KI
// le(m/’yl)d-i—l ‘u(m/,xn)‘Z |u(y/’ .I”)‘Q dac' dy'.
K'xK'

By raising to power 1/3, integrating over z”, and applying Hélder’s inequality with
p=3/2 and p' = 3 we obtain

1/2 2/3
||U||§ S C </ (// le(xI’yl)d—H ‘U,(.Q?I,.’L'”)P \u(y',x")|2 dﬂ?l dy') d.’L’”) X
K" K'x K’

(/ € (u("f”")’“('afv”))dm") 1/3’

or equivalently (after raising both sides to the power 3) we have that

lull§ < C ( Sl(u(.,x”),u(.,x"))d:r"> X
KII

1/2 2
(/ (// d'R(x',y')dH |u(.’L‘I,$”)|2 |u(y',x”)\2 d.’L" dy') d:v") ]
K" K'xK'

A similar estimate can be obtained by freezing z' instead of z”. Now the energy
on K can be defined as

Ew,u) = [ &, ),u, ) de' + [ & (u(-,z"),u(-,z")) dz";

Kl KII

see [16] for more details about analysis on product of fractals. We also define the
variance of a function u € L?(K) with ||u|ls = 1 as follow

Vara(u?) = [ [ flda(@ )™ e dia, )™ ) fule' ) Plutyf, o) P de’ da” dy' '
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However, by Remark 1 one can easily see that an equivalent definition of the variance
in the product setting is given by

(19) Varg(ul?) = inf // (e, o)™ + iy, y") ) Ju(!, o) do da”.
(v y")EK
All we now need to prove the weak uncertainty principle on K is to establish the

following lemma:

Lemma 3. There egists a constant C > 0 such that for allu € L*(K) with ||u|ls = 1,
then the following estimate holds

1/2 2
Vara(lu?) > ( / ( JI ety et o ) i dy') dx") ;
K” IxKI
1/2 2
(/ <// dl]{z(xl’yl)d+1 "U,(JJI,.I”)P \u(x',y")|2 dml! dy"> dx') .
K/ K”XK”

Proof. One can prove directly the above estimate, by showing that it holds for the
class of piecewise pluri-harmonic functions (PPH), see [16], which are dense in L?(K).
However, we prefer giving a shorter proof based on the equivalent definition of the
variance given by (19). Let

— inf // d/ .’L' y d+1 d//( / )d+1)|u(x',x")|2 d:v' déE”,

(y'y")eK

1/2 2
my = (/K” <y}g£, /K' le(.T', y/)d-i—l |u($l’xu)|2 dx') dac")
1/2 2
e (/ : (y"i?i" / (2" (e o) d96"> dx'> |

Then by the preceding remarks m; + ms is equivalent to the right hand side of the

estimate in Lemma 3 while m is equivalent to Vary(|u|?). Thus we just have to show

that my +my < CVary(|ul?) for some positive constant C' to complete the proof.
Let € > 0, there exists (y),vy) € K such that

// (dp(2', yp) T + dp (2", o)) |u(2, ") 2 do’ do” < m + .

Note also that for all ' € K’ and for all z” € K", we have

inf/ d}z(ac',y')d“\u(ac',x")\de'S/ dp (2, o)™ [u(a’, 2™)|? da’,

y’EK’ K!

and

and
”inf”/ d/{_{l(x//’y//)d+1 |’U,(SEI,.T”)|2 d.T” S / d//( ,yo)d+1 |u(x',a:")|2 da:".
y'eK K" K"

Applying Hélder’s inequality immediately yields m; +my < m < CVarg(|u|?) which
completes the proof.
]
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Using the Lemma 3 and the observations made at the beginning of this section we
can now prove the weak uncertainty principle on K = K’ x K".

Theorem 3. There exists C > 0 such that for all u € dom& with ||ulls = 1 and
Vary(Jul?) < § we have:

Varg(|ul?)€(u,u) > C.

Proof. Follows easily from Lemma 3 and the observations made earlier. 0

REFERENCES

[1] M. T. Barlow, Diffusion on Fractals, in: Lectures Notes in Mathematics, Vol. 1690, Springer,
Berlin, 1998.
[2] M. T. Barlow and J. Kigami, Localized eigenfunctions of the Laplacian on p.c.f self-similar
sets, J. London Math. Soc., 56(2):320-332, 1997.
[3] E. Breitenberger, Uncertainty measures and uncertainty relations for angle observables, Found.
Phys., 15:353-364.
[4] G. B. Folland and A. Sitaram, The uncertainty principle:A mathematical survey, J. Fourier
Anal. Appl., 3(3):207-238, 1997.
[6] M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket, Potential Anal.,
1:1-35, 1992.
[6] J. Kigami, “Analysis on Fractals,” Cambridge University Press, New York, 2001.
[7] B. Kron and E. Teufl, Asymptotics of the transition probabilities of the simple random walk on
self-similar graph, Trans. Amer. Math. Soc., 356(1):393-414, 2003.
[8] F. J. Narcowich and J. D. Ward, Wavelets associated with periodic basis functions, Appl.
Comput. Harmon. Anal., 3:40-56, 1996.
[9] J. Prestin, E. Quak, H. Rauhunt and K. Selig, On the connection of the uncertainty principles
for functions on the circle and on the real line, J. Fourier Anal. Appl., 9(4):387-409, 2003.
[10] J. Prestin and E. Quak, Optimal functions for a periodic uncertainty principle and multireso-
lution analysis, Proc. Edinb. Math. Soc., 42:225-241, 1999.
[11] J. F. Price and P. C. Racki, Local uncertainty inequalities for Fourier series, Proc. Amer. Math.
Soc., 93:245-251, 1985.
[12] J. F. Price, Inequalities and local uncertainty principles, J. Math. Phys., 24:1711-1714, 1983.
[13] K. Selig, Trigonometric wavelets and uncertainty principles, in “Approximation Theory,”
M. W. Miiller, M. Felten, D. H. Mache, Eds, Akedemie Verlag, 293-304, 1995.

[14] K. Selig, Uncertainty principles revisited, Electron. Trans. Num. Anal., 14:165-177, 2002.

[15] R. S. Strichartz, Function spaces on fractals, J. Funct. Anal., 198:43-83, 2003.

[16] R. S. Strichartz, Analysis on products of fractals, Trans. Amer Math. Soc., to appear.

[17] R. S. Strichartz, Fractafolds based on the Sierpinski gasket and their spectra, Trans. Amer.

Math. Soc., 355(10):4019-4043, 2003.

[18] R. S. trlchartz, Fractals in large, Can. J. Math., 50(3):638-657, 1996.

[19] R. S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc., 46:1199-1208, 1999.

[20] R. S. Strichartz, Uncertainty principles in harmonic analysis, J. Funct Anal., 84:97-114, 1989.
] A.

[21 Teplyaev, Spectral analysis on infinite Sierpiniski gaskets, J. Funct. Ana.l 159:537-567,

1

O
OO

98.



18 K. A. OKOUDJOU AND R. S. STRICHARTZ

Kasso A. OKOUDJOU, DEPARTMENT OF MATHEMATICS, MALOTT HALL, CORNELL
UNIVERSITY, ITHACA, NY 14853-4201, USA
E-mail address: kasso@math.cornell.edu

ROBERT S. STRICHARTZ, DEPARTMENT OF MATHEMATICS, MALOTT HALL, CORNELL
UNIVERSITY, ITHACA, NY 14853-4201, USA
E-mail address: str@math.cornell.edu



