Final Exam

Do any 5 of the following 8 problems, and indicate clearly which 5 you have chosen. You may use any result proved in class, in the assigned reading, or in the homework, unless the problem asks you to prove such a result.

1. True or false. Justify each answer with a proof or counterexample.

- (a) If X is a simply connected space and A is a path connected subspace, then A is simply connected.
- (b) If $\alpha: I \to X$ is a path in a Hausdorff space X, then the image of α is a closed subset of X.
- (c) Let X be a topological space and A a subspace, and let $i: A \hookrightarrow X$ be the inclusion map. Then the induced homomorphism $i_*: \pi_1(A, a_0) \to \pi_1(X, a_0)$ is injective for any choice of basepoint $a_0 \in A$.
- (d) If U and V are path connected open subsets of a space X, then their intersection is path connected.

2. Let $p: \widetilde{X} \to X$ be a covering map. Let \widetilde{x}_0 be a basepoint in \widetilde{X} , and let $x_0 := p(\widetilde{x}_0)$. Suppose the following condition holds: For any closed curve α in X at x_0 such that $[\alpha]$ is nontrivial in $\pi_1(X, x_0)$, its lift $\widetilde{\alpha}$ starting at \widetilde{x}_0 is not closed. Show that the group $\pi_1(\widetilde{X}, \widetilde{x}_0)$ is trivial.

3. Given a topological space X, we define the *connected components* of X to be the equivalence classes determined by the following relation: $x \sim y$ if and only if there is a connected subset of X containing both x and y.

- (a) Prove that this relation is in fact an equivalence relation.
- (b) Prove that every connected component is connected.

4. Let $q: X \to Y$ be a quotient map. State and prove a universal mapping property that characterizes continuous maps from Y to an arbitrary space Z.

5. Let X be a locally compact Hausdorff space whose one-point compactification is metrizable. Show that X is the union of an increasing sequence of compact subsets $K_1 \subseteq K_2 \subseteq K_3 \subseteq \cdots$.

- 6. (a) What does it mean to say that a topological space is regular?
- (b) What does it mean to say that a topological space is normal?
- (c) State Urysohn's lemma and Tietze's extension theorem.
- (d) Let X be a metric space and let $(x_n)_{n\geq 1}$ be an infinite sequence in X such that $d(x_i, x_j) \geq 1$ for $i \neq j$. Prove that there is a continuous map $f: X \to \mathbb{R}$ such that $f(x_n) = n$ for all n.
- 7. (a) Define covering map.
- (b) Suppose $p: \widetilde{X} \to X$ is a covering map with \widetilde{X} and X path connected. If X is simply connected, show that p is a homeomorphism.
- 8. (a) State the Seifert–van Kampen theorem, with hypotheses and conclusion spelled out precisely.
- (b) Give an example of a space whose fundamental group is a free group on 3 generators. Justify your answer as completely as you can; in particular, spell out explicitly three closed curves that represent the 3 generators.