Very Brief Solutions to Final Exam

- 1. (a) False.
- (b) True.
- (c) False.
- (d) False.
- 2. See the take-home prelim.
- **3.** (a) Reflexivity and symmetry are obvious. Transitivity follows from the fact that the union of two connected sets with nonempty intersection is connected.
- (b) The connected component containing x is the union of all the connected sets containing x.
- 4. See Munkres.
- 5. The point at infinity has a countable neighborhood base.
- 6. (a) See Munkres.
- (b) See Munkres.
- (c) See Munkres.
- (d) The set $A := \{x_1, x_2, ...\}$ is closed and has the discrete topology. Apply the Tietze extension theorem to the continuous map $f : A \to \mathbb{R}$ given by $f(x_n) := n$.
- 7. (a) See Munkres.
- (b) p is an open surjection, so it suffices to prove that it's injective. If $p(\tilde{x}_1) = p(\tilde{x}_2)$, choose a path $\tilde{\alpha}$ from \tilde{x}_1 to \tilde{x}_2 . Its image $\alpha := p(\tilde{\alpha})$ is path homotopic to a constant path, whose lifts are closed, so the lift $\tilde{\alpha}$ is also closed. Thus $\tilde{x}_1 = \tilde{x}_2$.
- 8. (a) See Munkres.
- (b) See additional problem 1 on assignment 13. Or consider a rose with three petals.