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1. Introduction

Tychonoff’s theorem asserts that the product of an arbitrary family of compact
spaces is compact. This is proved in Chapter 5 of Munkres, but his proof is not
very straightforward. The proof I’ll give below follows a paper by David Wright
(Proceedings of the American Mathematical Society 120 (1994), 985–987). As a
warmup, let’s start with two factors.

2. The Baby Tychonoff Theorem

Theorem. If X and Y are compact, then so is X × Y .

Note that this immediately extends to arbitrary finite products by induction on
the number of factors. This yields:

Corollary. A subset of Rn is compact if and only if it closed and bounded.

Proof of the corollary. If X ⊆ Rn is compact, then it is closed and bounded by the
same proof we used in class when n = 1. Conversely, if X is closed and bounded,
then X is a closed subset of a rectangle R = I1× · · · × In, where each Ii is a closed
interval in R. Since each Ii is compact, so is the product R; the closed subset X
of R is therefore also compact. �

To prove a space X is compact, one usually proves that if U is a family of open
sets that covers X, then a finite subcollection covers X. Sometimes, however, it is
more convenient to prove the contrapositive: If U is a family of open sets such that
no finite subcollection covers X, then U does not cover X. This is what we will do
below.

Proof of the theorem. Let W be a collection of open subsets of X ×Y such that no
finite subcollection covers X × Y ; we will show that W does not cover X × Y .

Claim 1. There exists x0 ∈ X such that no open tube U ×Y with x0 ∈ U is finitely
covered by W.

Proof. If this is false, then every x ∈ X has a neighborhood Ux such that Ux×Y is
finitely covered. By compactness of X, finitely many of these sets Ux cover X, so
finitely many of the tubes Ux × Y cover X × Y . This contradicts the assumption
that X × Y is not finitely covered.

Claim 2. There exists y0 ∈ Y such that no open rectangle U×V containing (x0, y0)
is finitely covered by W.

Proof. If this is false, then for every y ∈ Y there is a finitely covered open rectangle
Uy × Vy containing (x0, y). By compactness of Y , there is a finite subset F ⊆ Y
such that Y =

⋃
y∈F Vy. Set U :=

⋂
y∈F Uy. Then U is a neighborhood of x0, and

the tube
U × Y =

⋃
y∈F

U × Vy ⊆
⋃
y∈F

Uy × Vy

is finitely covered, contradicting Claim 1.
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Claim 2 immediately implies the theorem. Indeed, we have a point z := (x0, y0)
such that no basic open set containing z is finitely covered by W. In particular, no
basic open set containing z can be contained in a set W ∈ W, so z /∈

⋃
W∈WW .

This shows that W does not cover X × Y . �

Remark. We did not have to use the contrapositive of the condition for compactness.
In fact, it is more straightforward to just use the original definition, and to base the
proof on the tube lemma; see Munkres, pp. 167–168. (The tube lemma asserts that
in a product X × Y with Y compact, any neighborhood of a slice x × Y contains
a tube U × Y , where U is a neighborhood of x; the proof of this is very similar to
the proof of Claim 2.) The advantage of our convoluted proof, however, is that it
extends easily to infinitely many factors.

3. Countably Many Factors

In preparation for treating infinitely many factors, we record a slight generaliza-
tion of the argument used in the proof of Claim 2 above.

Lemma. Let W be a family of open sets in a product X×Y ×Z. Assume there is a
point x0 ∈ X such that no open set U ×Y ×Z with x0 ∈ U is finitely covered by W.
If Y is compact, then there is a point y0 ∈ Y such that no open set U ×V ×Z with
(x0, y0) ∈ U × V is finitely covered by W.

Proof. Suppose no such y0 exists. Then for every y ∈ Y there is a finitely covered
open set Uy × Vy × Z with x0 ∈ Uy and y ∈ Vy. By compactness of Y , there is
a finite subset F ⊆ Y such that Y =

⋃
y∈F Vy. Set U :=

⋂
y∈F Uy. Then U is a

neighborhood of x0, and the set

U × Y × Z =
⋃
y∈F

U × Vy × Z ⊆
⋃
y∈F

Uy × Vy × Z

is finitely covered, contradicting the hypothesis. �

We can now easily generalize the “baby” argument to treat countably many
factors:

Theorem. Let X =
∏∞
i=1Xi, where each Xi is compact. Then X is compact.

Proof. Let W be a family of open sets that does not finitely cover X; we will
construct a point x = (x1, x2, . . . ) such that no neighborhood of x is finitely covered.
Note first that there is a point x1 ∈ X1 such that no open tube U ×X2 ×X3 × · · ·
with x1 ∈ U is finitely covered. The proof of this assertion is the same as the proof
of Claim 1 above, with X2 × X3 × · · · playing the role of Y . Next, we can find
x2 ∈ X2 such that no open rectangle U×V ×X3×X4×· · · with (x1, x2) ∈ U×V is
finitely covered. This follows from the lemma if we view X as X1×X2×(X3×· · · ).
Continuing in this way, we inductively define x1, x2, x3, . . . such that for each n, no
basic open set of the form U1×· · ·×Un×Xn+1×· · · , with xi ∈ Ui for i ≤ n, is finitely
covered. For the inductive step, view X as (X1× · · · ×Xn−1)×Xn× (Xn+1× · · · )
and apply the lemma.

We now have a point x = (x1, x2, . . . ) ∈ X such that no basic neighborhood of x
is finitely covered by W. Thus x /∈

⋃
W∈WW . �
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4. Grown-up Tychonoff

Finally, here is the full-fledged Tychonoff theorem:

Theorem. Given an arbitrary family (Xα)α∈J of compact spaces, their product
X :=

∏
α∈J Xα is compact.

Proof. Once again, we letW be a family of open sets that does not finitely cover X,
and we construct x = (xα)α∈J such that no neighborhood of x is finitely covered.
We may assume by the well-ordering theorem that the index set J is well-ordered,
and we construct xα by transfinite induction so that no basic open set of the form∏

β≤α

Uβ ×
∏
β>α

Xβ ,

with xβ ∈ Uβ for all β ≤ α, is finitely covered. For the inductive step, assume that
xβ has been defined with the desired property for all β < α, and apply the lemma,
viewing X as

(∏
β<αXβ

)
×Xα×

(∏
β>αXβ

)
. The details are essentially the same

as in the countable case. �

Remark. The proof used the axiom of choice, in the form of the well-ordering the-
orem. This is unavoidable. Indeed, logicians have shown that Tychonoff’s theorem
cannot be proved without the axiom of choice.

5. Application: Invariant Means

Having gone to all the trouble of proving the well-ordering theorem and the
general form of Tychonoff’s theorem, we now give a (somewhat weird) application
of it. As is typical of results that require the axiom of choice, it proves the existence
of something that one could never hope to actually construct concretely. We begin
with a näıve question:

Is there a sensible way of associating an average value to every bounded, doubly
infinite sequence of real numbers, such as

(1) . . . , 0, 1, 0, 1, 0, 1, . . .?

To phrase the question precisely, consider sequences a = (an)n∈Z, i.e., elements of
RZ. We denote by B the set of all such sequences that are bounded. It is a real
vector space. We will not make use of any topology on B, but we recall in passing
that there is a standard one, different from the product topology, that is useful in
analysis: One puts a norm on B by setting ‖a‖ = supn∈Z|an|, and this yields a
metric d(a, b) := ‖a− b‖ and hence a topology.

A mean on B is a linear map µ : B → R such that

inf
n
an ≤ µ(a) ≤ sup

n
an

for all a ∈ B. Means exist in great abundance. For example, we can take a finite
subset F ⊆ Z and define a mean by averaging over F :

µ(a) :=
1

|F |
∑
n∈F

an.

More generally, we can assign a weight wn ≥ 0 to each n ∈ Z, with
∑
n wn = 1,

and use the weighted average

µ(a) :=
∑
n

anwn.
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The shift operator a 7→ as on B is defined by (as)n = an+1. A mean is said to be
invariant, or shift-invariant, if µ(as) = µ(a) for all a ∈ B. It is reasonable to expect
a sensible averaging procedure to be shift-invariant; this just says that we can talk
about the average of a sequence like the one in (1) above, without having to choose
arbitrarily which element is considered to be in postion 0. But no one knows how
to construct an invariant mean. (In particular, the weighted averages above are
not invariant). The best we can do is to construct approximately invariant means
and then deduce, in a nonconstructive way, that invariant means exist. Here is the
constructive part:

Lemma. There is a sequence (µn)n≥1 of means such that for all a ∈ B,

lim
n→∞

|µn(as)− µn(a)| = 0.

Proof. Let µn(a) := (1/n)
∑n
i=1 ai. Then

|µn(as)− µn(a)| = |an+1 − a1|/n ≤ 2‖a‖/n,

which tends to 0 as n→∞. �

There are several known methods for doing the nonconstructive part of the proof
that invariant means exist. The one we will use is to topologize the set M of all
means in such a way that it becomes a compact space (via Tychonoff). It will then
follow that the approximately invariant sequence µn has a cluster point µ, which is
invariant. Here are the details.

View M as a subset of RB by identifying a mean µ with the indexed family
(µ(a))a∈B. We then give RB the product topology and M the subspace topology.
Thus our topology is cooked up to make the evaluation map µ 7→ µ(a) a continuous
map M → R for each a ∈ B. Note that the definition of “mean” actually makes
M a subset of a product of closed intervals:

M⊆
∏
a∈B

[m(a),M(a)],

where m(a) = infn an and M(a) = supn an.

Proposition. M is compact.

Proof. We know that X :=
∏
a∈B[m(a),M(a)] is compact, so it suffices to show

that M is a closed subset of X. Now an element µ ∈ X is a mean if and only if it
satisfies

µ(a+ b)− µ(a)− µ(b) = 0

for all a, b ∈ B and

µ(λa)− λµ(a) = 0

for all a ∈ B and λ ∈ R. This exhibits M as an intersection of sets of the form
F−1(0) for various continuous maps F : X → R, so M is closed. �

We now appeal to the “Bolzano–Weierstrass” property of compact spaces:

Proposition. If X is a compact space, then every sequence (xn)n≥1 in X has a
cluster point, i.e., there is a point x ∈ X such that every neighborhood of x contains
xn for infinitely many n.
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Proof. For each x that is not a cluster point, there is a neighborhood Ux of x that
contains xn for only finitely many n. Clearly no finite subcollection of the Ux can
cover X, so the family of all Ux does not cover X. Since

⋃
x Ux contains all points

that are not cluster points, it follows that there must exist at least one cluster
point. �

We can now prove our promised existence theorem:

Theorem. There exists an invariant mean µ : B → R.

Proof. Take a sequence (µn) as in the lemma, and let µ be a cluster point. To show
that µ is invariant, let a ∈ B be arbitrary. We will argue that for a suitable large n,

(2) µ(as) ≈ µn(as) ≈ µn(a) ≈ µ(a).

More precisely, fix ε > 0 and let

U :=
{
ν ∈M

∣∣ |ν(a)− µ(a)| < ε and |ν(as)− µ(as)| < ε
}
.

Then U is a neighborhood of µ in M. [In fact, it is a basic neighborhood, defined
by imposing conditions on two “coordinates” of a general ν.] We therefore have
µn ∈ U for infinitely many n. Take such an n large enough that |µn(as)−µn(a)| < ε.
Then the three approximations in (2) are all valid, with error less than ε, whence
|µ(as)− µ(a)| < 3ε. Since ε is arbitrary, it follows that µ(as) = µ(a). �


