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1. Natural numbers

All of modern mathematics is based on set theory. In the beginning, there is one
primitive undefined term (“set”), and one primitive undefined relation (“member-
ship”). There are then axioms that (we hope) conform with our intuition about
what sets are and how one can construct them. All mathematical objects have to
be built using these axioms. In particular, natural numbers have to be built in this
way.

Let’s start with 0. If 0 is to be a set, there is one and only one sensible definition:

0 := ∅.
Now how should we define 1? It has to be a set, and in order for it to be a reasonable
candidate for 1, it should be a singleton. Again, there is an obvious candidate:

1 := {0} .
We can similarly define

2 := {0, 1} , 3 := {0, 1, 2} ,
and so on. Each number n that we construct in this way is a set containing (in-
tuitively) exactly n elements. The axioms of set theory enable us make the phrase
“and so on” precise, and we obtain the set of natural numbers

N = {0, 1, 2, . . . } ,
with all the usual properties. Having done this, we can say that a natural num-
ber n is a specific set with exactly n elements, those elements being precisely the
predecessors of n:

n = {0, 1, . . . , n− 1} .

2. Properties of natural numbers

Numbers are sets. (Everything is a set!) If n is a natural number, then all
previous natural numbers are elements of n. In fact, n is the set of previous natural
numbers. Moreover, every previous natural number is a subset of n. Thus n is a
set with the property that each of its elements is simultaneously an element of n
and a subset of n. We can therefore use set-theoretic membership or set-theoretic
inclusion to characterize the standard order relation on N:

m < n ⇐⇒ m ∈ n ⇐⇒ m ⊂ n.
[Here and throughout this handout I use ⊂ for strict inclusion.] Note next that
there is a simple set-theoretic description of the successor operation n 7→ n+ 1:

n+ 1 = n ∪ {n} .
In words, we get the set n + 1 from the set n by adjoining a single new element,
that element being n itself. (If you think about it, this is the only sensible thing
we could add that isn’t already there.)

Finally, recall that the ordering on N is a well-ordering, so that one can give
proofs and definitions by induction.
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3. Ordinal numbers

By analogy with what we’ve done above, we wish to define ordinals in such a
way that they are well-ordered, with an order characterized by

(1) α < β ⇐⇒ α ∈ β ⇐⇒ α ⊂ β.
Moreover, each ordinal α should have a successor α+ 1, such that

(2) α+ 1 = α ∪ {α} .
We expect (again by analogy with the natural numbers) that every element of an
ordinal is again an ordinal. The content of the first equivalence in (1) is then that
every ordinal is the set of its predecessors, just as for natural numbers. These
considerations motivate the following definition.

Definition. An ordinal number is a well-ordered set α such that every element of
α is the set of its predecessors.

Note that the well-ordering on α does not have to be specified, since it is neces-
sarily given by the membership relation: Given x, y ∈ α, we have

x < y ⇐⇒ x ∈ y.
The finite ordinals (i.e., the ordinals that are finite sets) are precisely the natural
numbers. The first infinite ordinal is the set N. It is customary to use lowercase
Greek letters for ordinals, and we usually write ω for N when we want to think of
N as an ordinal.

It is not hard to verify that there is a well-ordering of the ordinals characterized
by (1). Moreover, every ordinal is equal to the set of its predecessor ordinals,
and every ordinal has a successor ordinal α + 1 defined by (2). Finally, nonempty
collections of ordinals have greatest lower bounds and least upper bounds, obtained
by taking intersections and unions. [Ordinals are sets, so it makes sense to take the
intersection and union of a collection of ordinals; one checks that these are again
ordinals.] All of these assertions are proved in virtually every book on set theory.
See, for example, Jech, Set theory, for a clear, concise presentation in just a few
pages. For a more leisurely treatment, see Halmos, Näıve set theory.

One last remark: The totality of all ordinals is not a set. (In some treatments of
set theory it is called a class.) If it were a set, it would have a least upper bound,
which would then be a largest ordinal. But that’s absurd, since every ordinal has
a successor.

4. Ordinals and the well-ordering theorem

As an illustration of the use of ordinals, we outline a very short proof of the well-
ordering theorem, which asserts that every setX admits a well-ordering. Since every
ordinal is a well-ordered set, it suffices to show that X is in 1–1 correspondence
with some ordinal. To this end we define by induction a 1–1 transfinite sequence
xα ∈ X, indexed by an initial segment of the ordinals. Assume inductively that α
is an ordinal such that xβ has been defined for β < α. If {xβ} is a proper subset
of X, choose xα arbitrarily in X r {xβ} [using the axiom of choice]. Since the
ordinals do not form a set, the sequence cannot be defined for all ordinals. Let α
be the first ordinal such that xα is not defined. Then we have a bijection between
X and {β | β < α} = α.


