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1. Statement and first proof

Let X be a poset (partially ordered set). A chain in X is a totally ordered subset,
i.e., a subset in which any two elements are comparable. An element m ∈ X is called
maximal if there is no x ∈ X with x > m. Note that a maximal element is not
necessarily a largest element, which would be an element m such that x ≤ m for
all x ∈ X. Zorn’s lemma is the following result:

Theorem 1. Let X be a poset in which every chain has an upper bound. Then X
has at least one maximal element.

There is a very short, straightforward proof of Zorn’s lemma that uses ordinal
numbers. The ordinal numbers extend the natural numbers:

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω =: ω2, ω2 + 1, . . . , ω3, . . . , ω2, . . . .

They go on forever. More precisely, given any set of ordinals, there is an ordinal
bigger than all of them. In particular, there is no such thing as the set of all
ordinals. The ordinals are well-ordered: Any nonempty collection of ordinals has
a smallest element. This justifies proofs and definitions by induction, just as for
the natural numbers. See the separate handout The ordinal numbers for a more
detailed outline of the theory of ordinals.

To prove Zorn’s lemma, it will be convenient to assume that we have a a “suc-
cessor operation” on X, denoted x 7→ x+, such that x+ > x if x is not maximal,
and x+ = x if x is maximal. (The axiom of choice guarantees that there is indeed
such a function.) It will also be convenient to assume that we have a function that
associates a “canonical” upper bound to any chain. (Again, such a function always
exists by the axiom of choice. In many applications one has least upper bounds
and can use these instead of appealing to the axiom of choice.)

Now let X be as in the statement of Zorn’s lemma. We define inductively a
weakly increasing sequence (xα) in X, indexed by the ordinals. Suppose α is an
ordinal such that xβ has already been defined for β < α. If α has an immediate
predecessor β (i.e., α = β + 1), we take xα to be the successor x+β . Otherwise, we

take xα to be the canonical upper bound of the chain (xβ)β<α.
Note that the sequence xα is strictly increasing if and only if X has no maximal

element. But it can’t be strictly increasing, because then the ordinals would be in
1–1 correspondence with a subset of X, contradicting the fact that one cannot form
the set of all ordinals. This proves that X has a maximal element and completes
the proof of Zorn’s lemma.

The rest of this handout will describe an alternative proof of Zorn’s lemma that
doesn’t use ordinals but is longer and somewhat less intuitive. We begin with a
reformulation of Theorem 1.

2. The Hausdorff maximal principle

The Hausdorff maximal principle is the following result:

Theorem 2. Every poset contains a maximal chain (i.e., a chain that is not con-
tained in any bigger chain).
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This is an easy consequence of Zorn’s lemma. Indeed, let X be an arbitrary
poset and let X be the set of all chains in X, ordered by inclusion. Then X satisfies
the hypothesis of Zorn’s lemma because if C ⊆ X is a chain in X , then

⋃
C∈C C is

easily seen to be a chain in X and hence an upper bound for C in X .
Conversely, one can easily deduce Zorn’s lemma from Theorem 2: If X is as in

Theorem 1, let C be a maximal chain. Then C has an upper bound m ∈ X, and
maximality implies that m ∈ C and hence is the largest element of C. Another
application of the maximality of C now implies that m is a maximal element of X.

So we can prove either Theorem 1 or Theorem 2, whichever we choose.

3. Strategy of the proof

The proof of Zorn’s lemma that I will give is adapted from the proofs in Lang,
Real and Functional Analysis, and Halmos, Näıve Set Theory. The idea is to sur-
reptitiously construct the set M = {xα} (notation as in Section 1), without ever
mentioning ordinals. Thus instead of building M step by step, we will give an
abstract description of it. Consider subsets N ⊆ X with the following closure
properties:

(i) If x ∈ N , then x+ ∈ N .
(ii) For any chain C ⊆ N , the canonical upper bound of C is in N .

For brevity, call N closed if it satisfies (i) and (ii). Note that X itself is closed, for
example, but the empty set is not closed. [It doesn’t satisfy (ii).] Note also that
the intersection of any family of closed sets is closed. In particular, the intersection
of all closed sets is closed. Call it M ; it is then the smallest closed set, so it is
plausible that it is really the set {xα} described in Section 1. What we will do is
show that M is a chain, which is again plausible if M is in fact {xα}. By (ii), M
will have a largest element m. And by (i), this largest element will satisfy m+ = m,
so that it will be the desired maximal element of X.

4. The proof

As we noted in Section 2, it is enough to prove the special case of Zorn’s lemma
stated in Theorem 2. Thus we start with an arbitrary poset X, and we try to prove
that the poset X of chains in X has a maximal element. We will apply the strategy
described in Section 3 to X .

We need a successor operation. If C is a nonmaximal element of X , then there
is a chain in X bigger than C, so we can choose x ∈ X r C such that C ∪ {x} is
a chain; set C+ := C ∪ {x}. [Note: We have used the axiom of choice.] If C is
maximal, set C+ := C. We also need a canonical upper bound of any chain in X .
But this is easy, since the union of a chain in X is again a chain, as we saw in
the proof that Theorem 1 implies Theorem 2. Consider subsets N ⊆ X with the
following closure properties:

(i) If C ∈ N , then C+ ∈ N .
(ii) If C is a chain in N , then

⋃
C∈C C is in N .

Call N closed if it satisfies (i) and (ii). Note that X itself is closed, and the
intersection of any family of closed sets is closed. In particular, the intersection of
all closed subsets of X is closed. Call it M; it is then the smallest closed set.

As explained in the previous section, the theorem will follow if we can show that
M is a chain. Call an element C ∈ M comparable if it is comparable to every
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D ∈ M, i.e., D ⊆ C or C ⊆ D. To prove M is a chain, we must show that every
element of M is comparable. The following two lemmas are plausible in view of
the intuition about what M really is.

Lemma 1. Suppose C is comparable. If D ∈M and D $ C, then D+ ⊆ C.

Proof. Suppose not. Then C $ D+. But then D $ C $ D+, contradicting the fact
that D+ was constructed by adjoining a single element of X to D. �

Lemma 2. Suppose C is comparable. For every D ∈M, either D ⊆ C or D ⊇ C+.

Proof. let N := {D ∈M | D ⊆ C or D ⊇ C+}. We wish to show that N = M.
Since M is the smallest closed set, it suffices to show that N is closed. Given
D ∈ N , we have D $ C, D = C, or D ⊇ C+. In the first case, D+ ⊆ C by
Lemma 1, so D+ ∈ N ; in the other two cases, D+ ⊇ C+, so again D+ ∈ N .
This proves the first closure property. Next, suppose C is a chain in N , and let
E :=

⋃
D∈C D. If every D ∈ C is a subset of C, then E ⊆ C, so E ∈ N . Otherwise,

some D ∈ C contains C+; then E ⊇ C+, and again E ∈ N . This proves the second
closure property. �

Now consider the set of comparable elements of M. We will prove that this set
is closed, hence is all of M; this will complete the proof of the Hausdorff maximal
principle. If C is comparable and D ∈M, then we know from Lemma 2 that either
D ⊆ C or C+ ⊆ D. In either case D is comparable to C+, so C+ is a comparable
set. Next, suppose C is a chain of comparable sets, and let D :=

⋃
C∈C C. Given

E ∈ M, either C ⊆ E for all C ∈ C, in which case D ⊆ E, or else E ⊆ C for some
C ∈ C, in which case E ⊆ D. Thus D is comparable, so the set of comparable sets
is indeed closed.

The proof of the theorem is complete. As I’ve explicitly pointed out, the proof
made use of the axiom of choice. This was used to define the successor operation. I
mention this because the axiom of choice has been controversial historically. Nowa-
days, I think most mathematicians accept it but prefer to minimize its use because
of its nonconstructive nature. (It is the unique axiom of set theory that asserts the
existence of a set without describing the set explicitly.)

Exercises

1. If G is a finitely generated group and H is a proper subgroup, prove that H is
contained in a maximal proper subgroup. Give an example to show that “finitely
generated” cannot be deleted.

2. Show that one cannot eliminate the use of the axiom of choice in the proof of
Zorn’s lemma, because Zorn’s lemma in fact implies the axiom of choice. [Hint:
Consider partially defined choice functions suitably ordered, and use Zorn’s lemma
to prove the existence of a maximal one. Then show that this maximal one is in
fact globally defined.]
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