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Preface

For years I have heard about buildings and their applications to group
theory. I finally decided to try to learn something about the subject by
teaching a graduate course on it at Cornell University in Spring 1987. This
book is based on the notes from that course.

The course started from scratch and proceeded at a leisurely pace. The
book therefore does not get very far. Indeed, the definition of the term

. “building” doesn’t even appear until Chapter IV. My hope, however, is
that the book gets far enough to enable the reader to tackle the literature
on buildings, some of which can seem very forbidding.

Most of the results in this book are due to J. Tits, who originated the the-
ory of buildings. The main exceptions are Chapter I (which presents some
classical material), Chapter VI (which presents joint work of F. Bruhat
and Tits), and Chapter VII (which surveys some applications, due to var-
ious people). It has been a pleasure studying Tits’s work; I only hope my
exposition does it justice.

A number of people read parts of a preliminary version of this book and
made helpful comments. In particular, I would like to thank H. Abels,
R. Alperin, A. Borel, F. Buekenhout, G. Mess, M. Ronan, J-P. Serre,
C. Squier, M. Stein, J. Thévenaz, J. Tits, and W. Waterhouse. I would

also like to acknowledge the partial support of the National Science Foun-
dation.
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I

Finite Reflection Groups

This book is about connections between groups and geometry. We begin
by considering groups of isometries of Euclidean space generated by hy-
perplane reflections. In order to avoid technicalities in this introductory
chapter, we confine our attention to finite groups and we require our re-
flections to be with respect to linear hyperplanes (i.e., hyperplanes passing
through the origin). We will generalize this in Chapter VI, replacing “finite”
by “discrete” and “linear” by “affine”.

1 Definitions

Let V be a Euclidean space, i.e., a finite-dimensional real vector space with
an inner product. By a hyperplane in V we mean a subspace H C V of
codimension 1. The reflection with respect to H is the linear transforma-
tion sy : V — V which is the identity on H and is multiplication by —1
on the (one-dimensional) orthogonal complement H+ of H. A finite reflec-
tion group is a finite group W of linear transformations of V generated by
reflections sg, where H ranges over a set H of hyperplanes. We will also
sometimes refer to the pair (W, V) as a finite reflection group when it is
necessary to emphasize the vector space V on which W is acting.

The requirement that W be finite is a very strong one. Suppose, for
instance, that dim V' = 2 and that W is generated by two reflections s = sy
and s’ = sgs. Then the rotation ss’ € W has infinite order (and hence W is
infinite) unless the angle between the lines H and H' is a rational multiple
of .

The following criterion is often useful for verifying that a given group
generated by reflections is finite:

Proposition. Let R be a finite set of non-zero vectors in V', and let H be
the set of hyperplanes of the form ot for some o € R. Let W be the group
generated by the reflections sy (H € H). If R is invariant under the action
of W, then W 1is finite.

Proor: We will show that W is isomorphic to a group of permutations of
the finite set R. Let-V} be the subspace of V spanned by R, and let Vj be
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its orthogonal complement. Then

o= (et = (] A,

a€R HeH

so Vj is the fixed-point set VW = {v € V : wv = v for all w € W }. In view
of the orthogonal decomposition V = V, @ V;, it follows that an element

of W is completely determined by its action on V; and hence by its action
on R. O

It will be convenient to have some terminology for describing the sort of
decomposition of V' that arose in the proof. Let W be a group generated
by reflections sy (H € H), where H is an arbitrary set of hyperplanes. Let
Vo be the fixed-point set '

v =) &

HeH
We will call V the inessential part of V, and we will call its orthogonal
complement V; the essential part of V. The pair (W,V) will be called
essential if Vi = V, or, equivalently, if V = 0.

The study of a general (W,V) is easily reduced to the essential case.
Indeed, V; is W-invariant since V} is, and clearly (V1) = 0; so we have an
orthogonal decomposition V = V @ V;, where the action of W is trivial on
the first summand and essential on the second. We may therefore identify W
with a group acting on Vj, and, as such, W is essential (and still generated
by reflections).

2 Examples

There are two classical sources of examples of finite reflection groups:

(1) The theory of root systems, which arose historically from the study of
Lie groups and Lie algebras. The precise definition of “root system” can be
found in Bourbaki [16], but we will not need to know it. For our purposes,
it suffices to know that a root system in a Euclidean space V is a finite
subset R C V — {0} and that it satisfies the hypothesis of the proposition
above. Consequently, there is an associated finite reflection group W. It is
called the Weyl group of R. [This explains why it has become customary
to use the letter “W” for a reflection group.]

(ii) The theory of regular solids (also called regular convex polytopes), in
any dimension > 1. Every regular solid X has an associated finite reflection
group W, which is the group of symmetries of X, i.e., the group of isometries
of the ambient Euclidean space which leave X invariant. [We should assume
here that X is centered at the origin, so that the symmetries will be linear
transformations.]
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We will not assume that the reader knows anything about either of these
two subjects. But it will be convenient to use the language of (i) and (ii)
informally as we discuss examples. It is a fact that all examples of finite
reflection groups can be explained in terms of (i) and/or (ii); we will return
to this in the next section.

We proceed now with examples.

1. The group W of order 2 generated by a single reflection is a finite
reflection group. Regardless of the dimension of V, this example is “essen-
tially” 1-dimensional, in the sense that dim V3 = 1, where V} is the essential
part of V as in §1. Thus we can (and should) think of W as the group {£1}
acting on R by multiplication. Note that, in this 1-dimensional setting, W
is the group of symmetries of the regular solid [—1, 1] in R. It also happens
to be the Weyl group of the root system R = {£1} C R, which is called
the root system of type A;.

2. Let V be 2-dimensional, and choose two hyperplanes (lines) which
intersect at an angle of 7/m for some integer m > 2. Let s and ¢ be
the corresponding reflections and let W be the group (s,t) they generate.
[Here and throughout this book we use angle brackets to denote the group
generated by a given set.] Then the product p = st is a rotation through
an angle of 2r/m and hence is of order m. Moreover, s conjugates p to
s(st)s = ts = p~! and similarly for t, so the cyclic subgroup C' = (p) of
order m is normal in W. Finally, the quotient W/C is easily seen to be of
order 2; hence W is indeed a finite reflection group, of order 2m.

This group W is called the dihedral group of order 2m, and we will
denote it by Ds,,. [ Warning: Some mathematicians, following the standard
notation of crystallography, write D,, instead of Dy,,.] If m > 3, one can
check that W is the group of symmetries of a 2-dimensional solid, namely, a
regular m-gon together with its interior. If m = 3, 4, or 6, then W can also
be described as the Weyl group of a root system. For example, the dihedral
group of order 12 is the Weyl group of a root system R C R?, called the
root system of type G, which is defined as follows: Identify R? with C,
and let R consist of the six 6th roots of unity ¢/ (¢ = €*™/%,j =0,...,5)
together with the six vectors ¢ 4 ¢(7+1.

3. Let V = R™*! with its standard inner product, where n > 1, and let
W be the symmetric group on n + 1 letters, acting on V' by permuting the
coordinates. Then W is generated by the transpositions s;; (1 < ¢,j < n+1,
i # j), where s;; interchanges 7 and j. Now s;; acts on V as the reflection
with respect to the hyperplane H;; defined by z; = z;, so W is indeed
a finite reflection group, of order (n + 1)!. But it is not essential. In fact,
VW = ﬂi’j H;; is the line ; = £ = -+ = 41, which is spanned by the
vector e = (1,1,...,1). Thus the subspace V; C V on which W is essential
is the n-dimensional subspace et defined by Y"H! z; = 0.

The interested reader can verify that W is the group of symmetries of a
regular n-simplex in V. [HINT: The convex hull ¢ of ey, . . ., €541 is aregular
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n-simplex in the affine hyperplane ) z; = 1, which is parallel to V;. The
desired regular simplex in V; is now obtained from ¢ via the translation
z +— z — b, where b is the barycenter of o.] W is also the Weyl group of
a root system in Vi, called the root system of type A,,. It consists of the
n(n + 1) vectors e; —ej (i # j), where {e1,...,en41} is the standard basis
of R+,

When n = 1, this example reduces to Example 1; when n = 2, it reduces
to Example 2 with m = 3, 1.e., W is dihedral of order 6.

4. Now let V = R"™ (n > 1), again with its standard inner product, and
let W be the group of “signed permutations” of n letters, i.e., the group
of linear transformations of V' leaving invariant the set {+e;} of standard
basis vectors and their negatives. In terms of matrices, W can be viewed as
the group of nx n monomial matrices whose non-zero entries are +1. [Recall
that a monomial matriz is one with exactly one non-zero element in every
row and every column.] The group W is generated by transpositions s;; as
above, together with reflections t,, .. .,t,, where ¢; changes the sign of the
ith coordinate (i.e., t; is the reflection in the hyperplane z; = 0). Hence W
is a finite reflection group of order 2”n!, and this time it is essential.

Once again, the interested reader is invited to verify that W is the group
of symmetries of a regular solid in V', which one can take to be the n-cube
[-1,1]". Or, if you prefer, take the solid to be the convex hull of the 2n
vectors {ze;}; this is a “hyperoctahedron”. [The hyperoctahedron is the
dual of the cube, which means that it is the convex hull of the barycenters
of the faces of the cube. Since a solid and its dual have the same symmetry
group, it makes no difference which one we choose. We did not mention this
in our previous examples because the dual of a regular m-gon is again a
regular m-gon, and the dual of a regular simplex is again a regular simplex.]

And, once again, W is the Weyl group of a root system, called the root
system of type B,,. Alternatively, W can be described as the Weyl group
of the root system of type C,. [Every root system R has a “dual”, whose
Weyl group is isomorphic to that of R. The dual of the root system of type
B,, is called the root system of type C,,. The root systems mentioned in
Examples 1-3, like the regular solids, are self-dual ]

When n = 1, this example reduces to Example 1; when n = 2 it reduces
to Example 2 with m = 4, i.e., W is dihedral of order 8.

We close this section by mentioning an uninteresting way of constructing
new examples of finite reflection groups from given ones:

EXERCISE

Given finite reflection groups (W', V') and (W",V"), show that the direct prod-
uct W = W’ x W”, can be realized as a finite reflection group acting on the
orthogonal direct sum V =V’ @ V",

A finite reflection group (W, V) is called reducible if it decomposes as in
the exercise, with V/ and V' non-trivial, and it is called irreducible oth-
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erwise. We will see later that an essential finite reflection group always
admits a canonical decomposition into “irreducible components” (cf. exer-
cise in §5E below).

3 Classification

Finite reflection groups (W, V) have been completely classified up to iso-
morphism. In this section we list them briefly, with little explanation; see
Bourbaki [16] or Grove-Benson [31] for more details. (The notation below
is that of [16], which is slightly different from that of [31].) We will confine
ourselves to the reflection groups which are essential and irreducible; all
others are obtained from these by taking direct sums and, possibly, adding
an extra summand on which the group acts trivially.
First, we list three infinite families of reflection groups:

e Type A, (n > 1): Here W is the symmetric group on n + 1 letters,
acting as in Example 3 above on a certain n-dimensional subspace of R"+1.
This group is the group of symmetries of a regular n-simplex, and it can
also be described as the Weyl group of the root system of type'A,.

e Type B, (n > 2), also known as type C,: This is the group W of
signed permutations acting on R” as in Example 4 above. (We require
n > 2 because Example 4 with n = 1 gives the group of type A; again.)
The group W is the group of symmetries of the n-cube (or n-dimensional
hyperoctahedron); it is also the Weyl group of the root system of type B,
(or type C,).

e Type D,, (n > 4): This is not one that we saw in §2. It is the Weyl
group of a root system, called the root system of type Dy, but it does not
correspond to any regular solid. It also happens to be a subgroup of index
2 of the reflection group of type B, (or C,).

Next, there are seven exceptional groups:

e Type E, (n = 6,7,8): This is the Weyl group of the root system of
the same name. It does not correspond to any regular solid.

e Type F4: This is the Weyl group of the root system of the same name;
it is also the group of symmetries of a certain self-dual 24-sided regular
solid in R* whose (3-dimensional) faces are solid octahedra.

e Type Gj: This is the Weyl group of the root system of the same name.
As we saw in Example 2 above, W is dihedral of order 12, so we can also
describe it as the group of symmetries of a hexagon.

e Type H,, (n = 3,4): This does not correspond to any root system,
but it is the symmetry group of a regular solid X. When n = 3, X is the
dodecahedron (which has 12 pentagonal faces) or, dually, the icosahedron
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(which has 20 triangular faces). When n = 4, X is a 120-sided solid in R*
(with dodecahedral faces) or, dually, a 600-sided solid (with tetrahedral
faces).

Finally, we have the dihedral groups Da,, (not to be confused with the
groups of type D, listed above!). If m = 2, the group is reducible (it is
{£1} x {£1} acting on R®R). The cases m = 3,4 correspond, respectively,
to the groups of type A, and B,. And the case m = 6 corresponds to the
group of type Ga. This leaves:

e Type Iy(m) (m = 5 or m > 7): The group W is the dihedral group
of order 2m. It is the symmetry group of a regular m-gon, but it does not
correspond to any root system.

Remarks

1. The subscript in the notation for each type indicates the dimension
of the vector space on which the group acts.

2. If you want to know more about the regular solids mentioned above,
there are many books which discuss them; see, for instance, Coxeter [26]
or Lyndon [36] or further references cited therein.

4 Cell Decomposition

Let (W,V) be an essential finite reflection group. The hyperplanes H with
sg € W cut V into polyhedral pieces, which turn out to be cones over
simplices. One obtains in this way a simplicial complex ¥ which triangulates
the unit sphere in V. These assertions will be proved in §5. The purpose
of the present section is to lay the groundwork for §5 by studying the
polyhedral decomposition of Euclidean space induced by an arbitrary finite
.set ‘H of hyperplanes.

This section is somewhat long because it develops from scratch some
basic facts about polyhedral geometry. If you are already familiar with
these facts, or if you are willing to accept them as “intuitively obvious”,
then you can read much of the section quickly, just to get the notation and
terminology.

Throughout §4, V will denote a real vector space of finite dimension n,
and H = {H,,...,H} will denote an arbitrary finite set of linear hyper-
planes in V.

4A Definition and properties of the cells

Foreachi =1,...,k,let f; : V — R be a non-zero linear function such that
H; is described by the homogeneous linear equation f; = 0. The function f;
is uniquely determined by H;, up to multiplication by a non-zero scalar. A
cellin V with respect to H is a non-empty set A obtained by choosing for
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each i a sign o; € {4+, —,0} and specifying f; = o;. [Here “f; = +” means
“fi > 0”, and similarly for “f; = —”.] Thus A is defined by ¥ homogeneous
linear equalities or strict inequalities, one for each hyperplane. In more
geometric language, we have A = ﬂf___l U;, where Uj; is either H; or one of
the open half-spaces of V' determined by H;.

Note that we can recover the sign choices o; by looking at f;(x) for any
z € A. So we have a right to talk about the description of A by conditions
fi = oy.

The cells A form a partition of V into disjoint convex cones, where a
cone is a subset closed under multiplication by positive scalars. The picture
below shows a simple example, with dimV = 2 and k¥ = 3. The three lines
partition the plane into 13 cells (6 open sectors, 6 open rays, and the cell
consisting of the origin), even though there are actually 27 possible sign
choices (0;)1<i<3. This is typical—it simply means that many of the sign
choices are inconsistent (i.e., they define the empty set). Note, for instance,
that the inequalities f; > 0, fo > 0, and f3 < 0 are inconsistent; for the
first two of them define one of the sectors shown in the picture, and f3
happens to be positive on that sector.

fs=0 fo=0

fi=0

The support of a cell A is the linear subspace L defined by the equalities
fi = 0 that occur in the description of A. [If there are no such equalities,
then L = V.] Note that A, as a subset of L, is defined by strict inequalities,
hence it is an open subset of L. In particular, it follows that L is the linear
span of A. For example, the support of each of the rays in the picture above
is the line spanned by the ray, and the support of each of the open sectors
is the whole space V.

A cell B is called a face of A if its description is obtained from that of A
by replacing zero or more inequalities by equalities. We write B < A in
this case. For example, each sector in the picture above has four faces: the
sector itself, two rays, and the origin.
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Let A be the set obtained by replacing the strict inequalities f; > 0 or
f; < 0in the description of A by the corresponding weak inequalities f; > 0
or f; < 0. We call A the closed cell associated to A. [The cell A itself, by
contrast, will often be called an open cell, even though it is not in general
an open subset of V. It is, of course, open in its support L and hence open
in fi.] For example, the closed cell corresponding to each of the open sectors
above is the corresponding closed sector.

It is immediate from the definitions that

A= U B.
B<A

Since the open cells are disjoint, it follows that the face relation can be
characterized in terms of the closed cells:

B<A < BCA.
This shows, in particular, that B = A if and only if B = A. Hence:

Proposition 1. The function A — A is a bijection from the open cells to
the closed cells. O

We will find it helpful to have a geometric description of the correspon-
dence between open cells and closed cells, which does not refer to H:

Proposition 2. Let A be an open cell.

(1) A is the closure of A in V (m the sense of point-set topology)
(2) Let L be the linear span of A. Then A is the interior of A in L, i.e.,
the largest open subset of L contained in A.

ProoF: (1) Clearly A is closed in V, so it contains the closure of A. Con-
versely, given y € A, choose z € A and consider the closed line segment
from z to y, denoted [z, y]. Each equality in the description of A holds on
the whole line segment; and each strict inequality holds on the half-open
segment [z,y). So [z,y) C A and hence y is in the closure of A.

(2) Note first that L is simply the support of A. For the support of A
contains A and is spanned by A, so it is also spanned by A. We therefore
have A C intz(A) (= the interior of A in L) since A is open in its support.
Conversely, suppose y € A — A and consider the segment [z,y] again.
Since y ¢ A, there must be an inequality in the description of A, say
fi > 0, such that f;(y) = 0. So if the line segment is continued past y, we
immediately have f; < 0, which means we have left A (but stayed in L).
Hence y ¢ inty (A). O

Our next observation is that we can give a direct definition of what it
means to be a closed cell, independent of the notion of “open cell”. Recall
that a closed cell is defined by k equalities or weak inequalities, one for
each i. Conversely, suppose X is an arbitrary set defined by specifying for
each i the equality f; = 0 or one of the weak inequalities f; > 0 or f; < 0;
we will show that X is a closed cell:
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Proposition 3. Let X be a set defined by k equalities or weak inequalities
as above. Then X is a closed cell with respect to H.

ProoF: Let o; be 0if f; = 0 on X. Otherwise either f; > 0on X or f; <0
on X, and we take o; to be 4+ or —, accordingly. [Caution: It is possible
that our original description of X involved an inequality, say f; > 0, but
that nevertheless f; = 0 on X; so o; is 0 in this case.] Let A be the set
defined by the signs ;. If A is non-empty, then it is a cell and X = A.
To prove A # @, choose for each ¢ with o; € {+,—} a vector z; € X with
Ji(zi) # 0. Let = be the sum of these vectors (or 0 if there are none). Then
z € A. O

Corollary. An intersection of closed cells is a closed cell. O

We turn, finally, to the geometric meaning of the face relation. If you
visualize a cell in dimension 2 or 3, you certainly have no trouble seeing
what its faces are, without knowing the particular system of equalities and
inequalities by which A was defined. Roughly speaking, the faces are the flat
pieces into which the boundary of A decomposes. The following proposition
states this precisely:

Proposition 4. Let A be a cell. Then two distinct points y, z € A lie in
the same face of A if and only if there is an open line segment containing
both y and z and lying entirely in A. Consequently, the partition of A
into faces depends only on A as a subset of V, and not on the set H of
hyperplanes.

PROOF: Suppose y and z are in the same face B < A. For each condition
fi = o; in the description of B, we can extend the segment [y, 2] slightly
in both directions without violating the condition. Since there are only
finitely many such conditions, it follows that B contains an open segment
containing y and z, hence so does A. Conversely, suppose y and z are in
different faces of A. Then there is some 7 such that y and z behave differently
with respect to f;, say fi(y) > 0 and fi(2) = 0. If we now continue the
segment [y, z] past z, we immediately have f; < 0, so we leave A; hence A
does not contain an open segment containing both y and z. 0

The significance of this for us is that if we want to understand the poly-
hedral structure of a particular cell A, then we can replace X by any other
finite set of hyperplanes for which A is still a cell. In practice, we will want
to take a minimal set of hyperplanes for a given A.

4B Chambers and walls

The cells defined by taking all o; € {+, —} are called chambers. They are
non-empty open convex sets which partition the complement V — Uf__zl H;,
so they are the connected components of that complement. They can also be
described as the cells whose support is V' and hence as the cells of maximal
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dimension (where the dimension of a cell is defined to be the dimension of
its support).

Fix a chamber C. We say that a subset H' C H defines C if C is defined
by the conditions f; = o;, where i ranges over the indices such that H; € H'.

Proposition 1. There is a unique minimal subset H' C M which defines

C. The elements of H' are precisely the supports of the codimension 1 faces
of C.

PROOF: Choose an arbitrary minimal H' C H defining C. This is possible
because H is finite. Renumber the H’s so that H' = {H,, ..., H,} for some
r < k. And choose the f; so that f; > O on C for i = 1,...,k. As we
noted above, we can use M’ instead of H to determine the faces of C. In
particular, any codimension 1 face of C has support H; for some i < r. [An
intersection of more than one H; has codimension at least 2.] It remains
to show that each H; for i < r supports a codimension 1 face, i.e., that
we get a non-empty set A by specifying f; = 0 and f; > 0 for j # ¢ (and
j < r). By the minimality of H’, the inequalities f; > 0 for j # i (j < r)
define a subset C’ strictly bigger than C. Take y € C'—C and z € C. Since
fi(z) > 0 and f;(y) < 0, there is a point z € (z,y] such that f;(z) = 0.
Then z € A. a

The elements of H’ are called the walls of C. The second sentence of
the proposition makes it clear that they are intrinsically associated to C
and do not depend on the original set H of hyperplanes. Here is a useful
characterization of them:

Proposition 2. Let H be a linear hyperplane in V. Then H is a wall of C
if and only if C lies on one side of H and C N H has non-empty interior
in H.

Proor: If H is the support of a codimension 1 face A of C, then certainly
C lies on one side of H and C N H contains A, which is a non-empty open
subset of H. Conversely, suppose H is a hyperplane such that C lies on one
side of H and C N H has non-empty interior in H. Then C is still a cell
with respect to Ht = H U {H}, so we can use H* to determine the faces
of C. By Proposition 3 of §4A, the set CN H is a closed cell A with respect
to H*, and clearly the corresponding open cell A is a face of C' (because
AC C'-). Since A is contained in H and has non-empty interior in H, the
support of A must be H. Thus A has codimension 1 and its support H is
therefore a wall of C. O

4C The structure of a chamber

We continue to denote by C' a fixed but arbitrary chamber and by H’ the
set of walls of C. For simplicity of notation we will assume, as in the proof
of Proposition 1 above, that the elements of 1’ are the hyperplanes f; = 0
for1<i<randthat f; >0onC for1 <:i<k.
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Let Vo = ﬂle H;. We will call H essential if Vi = 0. There is no loss of
generality in restricting attention to the essential case. For if V; = V/V},
then the linear functions f; pass to the quotient V; and define an essential
set of hyperplanes there. And the cells determined by these hyperplanes
in V; are in 1-1 correspondence with the cells in V. More precisely, the cells
in V are the inverse images in V of the cells in V;. [Geometrically, then, the
cells in V are simply the cells in V;, “fattened up” by a factor R?, where
d = dim Vo ]

Assume now that H is essential. Then we have ﬂ;':l H; = 0. For V is
the “smallest” cell (i.e., it is a face of every cell), hence it is certainly the
smallest face of C; but the smallest face of C can be determined by using H’
instead of M, so it is also equal to (), H;. In particular, the latter is 0 if
Vo = 0.

It follows that » > n = dimV. It is easy to visualize examples where
inequality holds (e.g., C could be the cone over the interior of a square, in
which case r =4 > 3 = dim V). We will now prove that equality holds if
and only if the cone C is stmplicial, by which we mean that, for some basis
€1,...,e, of V, C consists of the linear combinations Z?=1 A;e; with all
Ai > 0. [In other words, C is the interior of the cone over the simplex with
vertices €;,...,€en.]

Proposition. Assume that H is essential. Then the following conditions
on C are equivalent:

(1) C is a simplicial cone.

(2) C has exactly n codimension 1 faces, i.e., r = n.

(3) fi,..., fr are linearly independent.

(4) f1,...,fr form a basis for the dual space V* of V.

PrOOF: As we noted above, the assumption that H is essential implies
that (),_, Hi = 0, i.e., that the equations f; =0, ..., f, = 0 have only the
trivial solution. The equivalence of (2), (3), and (4) follows easily from this
by elementary linear algebra.

Suppose now that (2)-(4) hold, and let (e;)1<i<n be the basis of V' dual
to (fi;). Then the description “f; > 0 for 1 < i < n” of C implies that C
consists of the positive linear combinations of the e;, whence (1).

Conversely, (1) implies that C is defined by z; > 0 for 1 < ¢ < n, where
z; 1s the ith coordinate function with respect to some basis for V. We can
use this description of C to determine its walls, which are easily seen to be
the coordinate hyperplanes z; = 0; this proves (2)-(4). O

4D A sufficient condition for C to be simplicial

The result of this subsection will be used later to show that the chambers
associated to an essential finite reflection group are always simplicial cones.

Assume that V has an inner product (—, —). Then the linear function f; is
given by (e;, —) for a unique vector e;. Replacing f; by a scalar multiple, we
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may assume ||e;|| = 1; thus e; is one of the two unit vectors perpendicular
to H;. If there is a fixed chamber C under discussion, as there is at the
moment, then we can remove this ambiguity by requiring that e; point
toward the half-space bounded by H; containing C. This is equivalent to
requiring, as above, that f; > 0 on C.

In summary, then, we are now assuming that the chamber C is defined
by {e;,—) > 0 for 1 < i < k, where the e; are unit vectors, and that the
first » of these inequalities in fact suffice to define C. Moreover, no smaller
set of inequalities defines C.

Proposition. Assume H is essential. If (e;,e;) < 0 foreachi # j (i,j < r),
1.e., If the angle between e; and e; is not acute, then C is a simplicial cone.

Proor: We must show that ey, ...,e, are linearly independent. If not, then
I claim that there is a non-trivial linear relation among them with non-
negative coefficients. For let ) ._; A;e; = 0 be an arbitrary linear relation
(with the A; not all zero). If the non-zero A; all have the same sign, the
claim follows at once. Otherwise we can rewrite the relation in the form

D wiei =) pjej,

iel JjeJ
with I and J disjoint non-empty subsets of {1,...,r} and all coefficients
pi,pj > 0. Then the inner product of the left-hand side of this equation
with the right-hand side is < 0. But this is the inner product of a vector
with itself, so that vector must be 0. Thus both sides of the equation are 0,
and the claim is proved.

Note that what we have done so far applies to any set of vectors with
pairwise non-positive inner products. But now let’s add the additional in-
formation that the inequalities (e;,—) > 0 (¢ < r) define the (non-empty)
chamber C. This is clearly inconsistent with the existence of a non-trivial
non-negative linear relation among the e;, so we have reached a contradic-
tion. Thus e;,...,e, are indeed linearly independent. O

4E  Formal properties of the poset of cells

We return to the generality of §4A above, i.e., H is not necessarily essential
(although it might as well be) and V is not assumed to be equipped with
an inner product. Let £ be the partially ordered set (or poset) consisting
of the open cells, ordered by the face relation. Recall from §4A that X is
isomorphic to the set of closed cells, ordered by inclusion. Recall, also, that
any intersection of closed cells is a closed cell; consequently:

Proposition 1. Any two elements of ¥ have a greatest lower bound. [

We will denote by A N B the greatest lower bound of two open cells A
and B. It is, of course, not the set-theoretic intersection of A and B, this
intersection being empty unless A = B; it is, rather, the open cell whose
closure is the intersection of the closure of A and the closure of B.
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Proposition 2. Any cell A € X is a face of a chamber. If A has codimen-
sion 1, then it is a face of exactly two chambers.

PRrOOF: Let A be defined by the sign choices (7i)i1<i<k. Choose z € A

and y € V — Ule H;. [Such a y certainly exists: V is not the union of
finitely many hyperplanes.] For any ¢ with ; € {+, -}, set o; = 7;. For all
other 7, let o; be the sign of fi(y). Then all points of the half-open segment
(z,y] sufficiently close to z satisfy the conditions f; = o; for all 7, so these
conditions define a chamber C and A < C.

Suppose now that A has codimension 1. Then there is exactly one index 1,
say 1 = 1, such that 7; is 0. Hence there are at most two chambers C with
A < C, corresponding to the two possible signs o, for C. The proof in the
previous paragraph shows that we do get such a C by taking o; to be the
sign of f1(y). But the other choice of o1 works just as well, as one sees by
continuing the line from y to z a little past z and noting that f; changes
sign at z. O

We will call two chambers C and C’ adjacent if they have a common
codimension 1 face. Thus either C = C’ or else there is a codimension 1
cell A such that C and C’ are the two chambers having A as a face. In the
second case, it follows from the proof above that there is a unique 7 [which
we took to be 1 in the proof] such that C' and C’ are on opposite sides of H;.
This hyperplane H = H; is the support of A, and A is necessarily C N C".
[You can prove this last assertion by a dimension argument or simply by
checking the definition of C'N C’.] We will often say, in this situation, that
“C and C' are adjacent along the wall H”.

It is admittedly counter-intuitive to call a chamber C adjacent to itself,
as we have agreed to do, but this terminology will prove convenient later
when we study “chamber maps” and their effect on “galleries”.

A gallery is a sequence of chambers T’ = (Cy, ..., Cy) such that consec-
utive chambers C;_; and C; (i = 1,...,d) are adjacent. We will write
I: Co, ey Cd

and say that T is a gallery from Cy to Cjy, or that I' connects Cy and Cj.
The integer d is called the length of I'. Note that we allow the possibility
that C;_; = C; for some i; we say that ' stutters if this happens.

For any two chambers C, D, let [(C, D) be the number of H € H which
separate C from D, i.e., the number of indices i such that the sign choices
defining C and D differ.

Proposition 3. Any two chambers C, D € X can be connected by a gallery
of length I(C, D).

ProoF: We argue by induction on { = {((C, D). If C = D there is nothing
to prove, so assume C' # D. Then there must be a wall of C separating
C from D. For C is defined by inequalities corresponding to its walls;
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and if D also satisfied all these inequalities, then we would have D C C,
contradicting the fact that C' and D are disjoint.

So choose a wall H of C separating C from D, let A be the face of C
whose support is H, and let C’ be the chamber different from C having A
as a face. Then, as we noted above, H is the only element of H separating
C from C’, so I(C’, D) = Il — 1. By induction we can find a gallery I of
length I — 1 connecting C’ to D; the gallery (C,I") consisting of C followed
by IV therefore has length ! and connects C to D. O

The combinatorial distance between C and D, denoted d(C, D), is defined
to be the minimal length of a gallery connecting C to D. And any gallery
I' : C =0Cy,...,Cq = D which achieves this minimum will be called a
minimal gallery from C to D. Such a I is of course non-stuttering, so we
have a well-defined sequence Hy,...,Hq € H such that C;_; and C; are
adjacent along H;. [Warning: This notation has nothing to do with our
original numbering of the elements of H as H,,..., Hg; we will have no
further need for the older notation.] We will refer to the H; as the “walls
crossed” by I. Since H; is the only element of H which separates C;_;
from Cj, it is clear that Hy,..., Hy are the only elements of ‘H which can
possibly separate C from D. Consequently:

I(C,D) < card{H,,...,Hq} <d=d(C, D),

where “card” denotes the cardinality of a set. On the other hand, we have
d(C, D) < I(C, D) by Proposition 3. Hence all of the inequalities above are
actually equalities. This proves the first two parts of the following propo-
sition:

Proposition 4.
(1) d(C,D) =I(C, D).
(2) IfT is any minimal gallery connecting C to D, then T crosses exactly
once each element of H which separates C from D.
(3) If C and C’ are distinct adjacent chambers and D is an arbitrary
chamber, then d(C,D) = d(C’, D) £ 1. The sign is “+” if C' and D
are on the same side of the wall which separates C from C’.

Proor orF (3): If d(—, —) is replaced by I(—, —), then the assertion is easy
and was essentially proved in the proof of Proposition 3; statement (3)
therefore follows from (1). a

Remarks

1. A minimal gallery should be thought of as the combinatorial analogue
of a geodesic. The following restatement of (2) is consistent with this intu-
ition: Any minimal gallery from C to D crosses precisely the same elements
of H as a straight line segment joining a point of C to a point of D. [Of
course, the minimal gallery need not cross these walls in the same order as
the line segment.]
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2. At first glance, it may seem that the equality in (3) is immediate from
the definition of d(—, —). But this is not true. All that is obvious from the
definition is that d(C, D) differs from d(C’, D) by at most 1. Some further
argument is needed to show that d(C, D) # d(C’, D).

By the diameter of £ we mean the maximum distance d(C, D) between
two chambers C, D. In view of (1) of Proposition 4, it is clear that this
diameter is at most k = card(H). In fact, we have d(C,D) < k, with
equality if and only if C and D differ with respect to all k sign choices o;.
This proves:

Corollary. The diameter of ¥ is k = card(H). For any chamber C, there
is a unique chamber D with d(C, D) = k, namely, D = —C. O

EXERCISES
1. Given A,C € ¥ with C a chamber, consider galleries Cy,...,Cq = C with

A < Cy. Such a gallery will be said to connect A to C. Prove analogues of (1)
and (2) of Proposition 4 for the minimal length d(A, C) of such a gallery.

2. By a subcompler of ¥ we mean a subset A C ¥ which contains, for each
A € A, all the faces of A. Let A be a subcomplex containing at least one chamber,
and let X be the corresponding subset | Ach A C V. Prove that the following
conditions on A are equivalent:

(1) X is convex.

(2) Given A,C € A with C a chamber, A contains every minimal gallery

from A to C.

(3) Every A € A is a face of a chamber in A, and A contains every minimal

gallery joining two of its chambers.

(4) X is an intersection of closed half-spaces bounded by elements of M.
[This exercise takes some work, but it is well worth the effort. I will therefore not
spoil the fun by giving a hint, except to suggest that you prove the equivalence
in the usual circular fashion: (1) = (2) = (3) = (4) = (1)]

3. If A does not contain a chamber, show that (1) and (4) are still equivalent.
[HINT: Suppose (1) holds. Take a maximal A € A, let L = support(A), and

show that X C L. Then A is a chamber in L with respect to a suitable set of
hyperplanes, and you can now apply Exercise 2.]

5 The Associated Simplicial Complex

We return, finally, to the setup at the beginning of the chapter, where V
is assumed to have an inner product, W is a finite reflection group acting
on V, and H is a set of hyperplanes such that the reflections sy (H € H)
generate W. We assume further that M is W-invariant. [Such an H cer-
tainly exists. For example, we could take H to consist of all hyperplanes H
with sy € W, the W-invariance of this set follows from the easily veri-
fied identity s,z = wsgw~!.] Note that H is necessarily finite, so §4 is
applicable. Let ¥ be the poset of cells associated to H.
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5A The action of W on X

Since ¥ is defined in terms of M and the linear structure on V, it is clear
that W permutes the cells and preserves the face relation. In other words,
W acts on X as a group of poset automorphisms. Note that ¥ appears to
depend on the choice of H; but part (3) of the following theorem shows
that there is only one possible H, so X in fact depends only on (W, V).

Theorem.
(1) The action of W is simply-transitive on the set of chambers. In
particular, the number of chambers is equal to |W| (the order of W ).
(2) IfC is any fixed chamber, then W is generated by the reflections sy
such that H is a wall of C..
(3) M necessarily consists of all hyperplanes H in V with sy € W.

The proof will consist of a sequence of observations which will lead to
the statements (1)-(3), among other things.

(a) IfC is a chamber, H is a wall of C, and s is the reflection sy, then sC
is adjacent to C along H.

Proor: If A is the face of C supported by H, then sA is the face of sC
with support sH. But sA = A and sH = H,so C and sC (which are clearly
distinct since they are separated by H) have a common codimension 1 face
supported by H. O

Now fix a chamber C and let S be the set of reflections with respect to
the walls of C.

(b) For any w € W and s € S, wsC is adjacent to wC along the wall wH,
where s = sy.

Proor: This follows from (a) by applying the action of w. O

The following schematic diagram should help you remember the state-
ment of (b):

C | sC — wC | wsC
H wH
(¢) Given sy,...,84 € S, there is a non-stuttering gallery
C,5.C,815:C,...,8182--84C.

Conversely, any non-stuttering gallery starting at C has this form.
ProOF: The first assertion follows immediately from (b). Conversely, sup-
pose Cy, ..., Cyis an arbitrary non-stuttering gallery with Cy = C. Assume
inductively that sy, ..., s; have been constructed and that C; = w;C, where
w; = §1 ---8;. Then the wall along which C; and Cj4+, are adjacent must

have the form w; H for some wall H of C'. Letting s = sy, we now have the
following situation (cf. (b)):

C|sC = Ci|wsC
H H

wi



5. The Associated Simplicial Complex 17

It follows that C;41 = w;sC, so we can complete the induction by setting
Siy1 = 8. O

Let W’ be the subgroup (S) of W generated by S. (c) shows that W’ is
transitive on the chambers, since any chamber can be connected to C by a
gallery and hence has the form sy - - - s4C. In particular, W is transitive on
the chambers, which proves part of (1).

(d) W = W', in other words, (2) holds.

PRrRoOOF: It suffices to show that W’ contains the generators sy of W
(H € H). I claim, first, that any H € H is a wall of some chamber D. For
H cannot be the union of its proper subspaces H' NH (H' € H, H' # H).
So if we pick any ¢ € H not in this union, then the cell A containing x has
support equal to H. Hence H is a wall of either of the chambers D having
A as a face, as claimed.

Now we know that D = wC for some w € W', so that H = wH’ for
some wall H' of C. Letting s = sg/, we obtain sy = wsw=! € W'. O

To complete the proof of (1), we must show that the stabilizer of C in
W is trivial:

(e) If w is a non-trivial element of W, then wC # C.

PROOF: In view of (d), we can write w = s; --- 84, with 5; € S. Choose a
minimal such expression (i.e., one with minimal d) and consider the corre-
sponding gallery I' : (w;C)o<i<q from C to wC, where w; = s ---5;. If H;
is the wall of C fixed by s;, then the walls crossed by I' are the transforms
'w,-_lH,- (z = 1, e ,d):

Wi-1

C I S,'C — Ci_l | C,'
H; wi—1 H;
We will show that the first of these walls, Hy, separates C' from wC and
hence that wC # C. [In fact, we could just as easily prove that all of the
walls crossed by T separate C' from wC, but we won’t bother.]

To prove this, recall that the wall along which two consecutive chambers
of T' are adjacent is the unique element of H separating these chambers.
Thinking about the sign choices which define the chambers, one concludes
easily that H; must separate C from wC unless it is crossed more than once.

So suppose that w;_1H; = H, for some 7 > 1. Passing to the associated
reflections, we obtain

1
Wi-18{W; 1 = 81,
or
Wi-15;{ = S1Wji-1.
Now expand w;_; in terms of the s’s and cancel s? to get
818 =83°:-8_1.

Thus we can delete s; and s; from the expression w = s; -- - 84. This con-
tradicts the minimality of d and completes the proof of (e). O
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The final step is to prove (3):
(f) If H is a hyperplane in V with sy € W, then H € H.

PROOF: Suppose, to the contrary, that H ¢ H. Then H € Upieq H,
since otherwise H would be a finite union of proper subspaces H N H'. So
H must meet a chamber D. Since the element w = sy of W fixes H, it
follows that wD meets D and hence that wD = D, contradicting (¢). O

Remarks

1. The form of the contradiction which we obtained in the proof of (e) is
rather remarkable, in that we were able to shorten the word s; - - - s4 simply
by deleting two of its letters. We will explore the consequences of this in
Chapter II, in a more general setting,.

2. It follows from (c) and (e) that minimal expressions for w as a word
81 -+ -84 are in 1-1 correspondence with minimal galleries from C to wC'. In
particular, we now know that the gallery T' considered in the proof of (e)
is minimal, and hence that all the walls crossed by I' do in fact separate C
from wC by Proposition 4 in §4E.

5B Ezamples

1. Suppose that (W, V) is essential and that dimV = 2. One could simply
give a direct analysis of this situation, but it will be instructive to see
what the theorem says about it. Let m = card(H). Then m > 2, and
the m lines in ‘H divide the plane V into 2m chambers, each of which
is a sector determined by two rays. The transitivity of W on the set of
sectors implies that they are all congruent, so each sector must have angle
27/2m = w/m. In view of (2), then, W is generated by two reflections in
lines L; and L, which intersect at an angle of w/m. In other words, W is
dihedral of order 2m and (W, V') looks exactly like Example 2 of §2.

Let us also record, for future reference, the following fact about this
example: Let L; and Ly be the walls of one of the chambers C, and let e;
be the unit normal to L; (i = 1,2) pointing to the side of L; containing C.
Then the inner product of e; and e; is given by

w
(e1,e2) = —cos —

[If the minus sign surprises you, draw a picture; you will see that the angle
between e; and —e; is 7/m.]

2. This is a trivial generalization of Example 1, but it will be useful
to have it on record. Instead of assuming that dimV = 2, we will only
assume that (W, V) is essentially 2-dimensional. In other words, if we write
V =Vo® Vi as in §1, then dimV; = 2. By Example 1 applied to (W, V1),
we have W = Dy, for some m > 2. Moreover, if C; is a chamber in V;
with walls L; and normals e; as above, then Vo x C; is a chamber in V
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with walls Vo @ L; and the same normals e;. In particular, it is still true
that a chamber C has two walls and that the corresponding unit normals
(pointing toward C) satisfy

T
(e1,e2) = —cos -

3. Let W be the symmetric group on n + 1 letters, acting on R**! as
in Example 3 of §2. Then we can take M to consist of the (";1) hyper-
planes H;; (¢ < j), where H;; is defined by z; = z;; this set is clearly
W-invariant. One chamber C is the set defined by the (";'1) inequalities
z; < z; for i < j. But these inequalities are redundant; C is actually defined
by the n inequalities '

1 <x2< - < Tp4i.

Thus C has n walls, the ith of which is given by the equation z; = z;4,
(i=1,...,n). [Note: n is the “right” number of walls, since this example is
essentially n-dimensional.] The reflection with respect to the ith wall is the
transposition s; = s; ;41 which interchanges ¢ and i + 1, so part (2) of the
theorem reduces to the well-known fact that these n “basic” transpositions
generate the symmetric group. And part (1) is also easy to verify directly:
There are exactly (n+ 1)! chambers, one for each possible way of imposing
a linear ordering on the n + 1 coordinates.

Let’s compute, now, the canonical unit vectors ey, . .., e, associated to C.
Let v1,...,v,41 be the standard orthonormal basis for V = R"*!. Then
the ith inequality defining C can be written (v;4+; — v;,z) > 0, so the unit
vector e; perpendicular to the ith wall and pointing toward C' is given by

Vig1 — Y

In particular, we can calculate the inner product

€ =

1 forj=1
(ei,ej) =< —1/2 forj=i+1
0 forj>i+1.

Note that 1 = —cos(m/1), —=1/2 = —cos(7/3), and 0 = — cos(7/2).
Hence the inner product calculation can be written in the more concise

form
T

(e ¢j) = —cos -,

where m;; is the order of s;s; (or, equivalently, 2m;; is the order of the
dihedral subgroup generated by s; and s;). This formula should not be
shocking, in view of Examples 1 and 2 above.

You might want to similarly analyze Example 4 of §2, where W is the
signed symmetric group.

4. This final example is presented to help you develop some geometric
intuition about the subject. A number of statements will be made without
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proof, and you are advised not to worry too much about this—just convince
yourself that the statements are intuitively plausible.

Let W be the reflection group of type Hs, i.e., the group of symmetries of
a regular dodecahedron in V = R3. It is convenient to restrict the action of
W to the unit sphere S? and to think of W as a group of isometries of this
sphere. As such, it is the group of symmetries of the regular tessellation of
the sphere obtained by radially projecting the faces of the dodecahedron
onto the sphere. Let P be one of the 12 spherical pentagons which occur
in this tessellation. It has interior spherical angles 27/3 since there are 3
pentagons at each vertex.

The planes of symmetry of the dodecahedron barycentrically subdivide
P, thereby cutting it into 10 spherical triangles. A typical such triangle T
has angles /2, /3, and n/5. [The angle 7 /5 = 27/10 occurs at the center
of P; the angle w/3, which is half of the interior angle 27/3 of P, occurs at
a vertex of P; and the angle 7/2 occurs at the midpoint of an edge of P,
where the line from the center of P perpendicularly bisects that edge.]

Finally, a typical chamber C in V is simply the cone over such a trian-
gle T. There are 12 - 10 = 120 such chambers, so part (1) of the theorem
implies that |W| = 120. Thus the dodecahedral group W is a group of
order 120 generated by 3 reflections. The calculation of the angles of T
above makes it easy to compute the orders of the pairwise products of the
generating reflections. One has, for a suitable numbering s1, s2, s3 of these
reflections,

(s152)° = (s283)° = (s183)% = 1.

5C The structure of a chamber

Let (W, V) be a finite reflection group. Fix a chamber C and let its walls
be Hy, ..., H,, with corresponding unit normals e;,...,e,, where e; points
to the side of H; containing C. Let s; be the reflection sy, with respect to
the ¢th wall. Thus S = {s1,...,s,} is the set of generators of W described
in the last theorem.

The reader who has worked through the examples above will not be
surprised by the following result:

Theorem. With the notation above, we have

s
e, €;) = — cos —
(eis€j) mi;
for 1 < i,j < r, where m;; is the order of s;s;. In particular, (e;,e;) < 0
for i # j. Consequently, C is a simplicial cone if (W, V') is essential.

PrOOF: The last assertion follows from the criterion for a chamber to be
simplicial given in §4D above, so we need only prove the first assertion.
We may assume i # j and, to simplify notation, s = 1 and j = 2. Let W’
be the subgroup of W generated by s; and s;. Then (W', V) is a finite
reflection group with V%' = H; N Hy = (Rey @ Reg)t. Hence (W', V) is
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essentially 2-dimensional. In view of Example 2 above, the desired inner
product formula will follow if we show that e; and e, are the canonical
unit vectors associated to some W’-chamber C’ in V. :

Let H' C H be the set of hyperplanes of the form v’ H;, with ¢ = 1 or 2
and w' € W’. Then H' is W'-invariant, and the reflections with respect
to the elements of M’ are in W’ and generate it. Hence H’ is the set of
W'-walls, i.e., the set of hyperplanes which define the W’-cells. Since C is
convex and is disjoint from all the elements of H’, it is contained in a W'-
chamber C’. Moreover, H; and H; are walls of C’ by Proposition 2 of §4B.
[Note that C' N H; 2 C'N H;, which has non-empty interior in H;.] Finally,
since (e;,—) > 0on C C C' for i = 1,2, e; is indeed the unit normal to H;
pointing toward C’. O

5D The Cozeter malriz

We continue with the notation above, but we assume, in addition, that
(W, V) is essential. Then r = n = dim V' by the theorem [since the simplicial
cone C has exactly n walls], and e, ...,e, form a basis for V. This fact,
together with the inner product formula of the theorem, has the following
important consequence:

Corollary. Assume that (W,V) is essential. Then (W,V) is completely
determined, up to isomorphism, by the n X n matrix M = (m;;).

ProoF: Given M, we can recover (W,V) as follows: V is isomorphic to
R", endowed with the inner product whose matrix is A = (a;;), where
a;; = —cos(m/m;;). [This means that the inner products of the standard
basis vectors e; of R™ are given by (ei,e;) = aij.] And W can be identified

with the group of automorphisms of R” generated by sy,...,s,, where s;
is the orthogonal reflection with respect to the hyperplane ;. O

The matrix M is called the Cozeter matriz associated to W. More pre-
cisely, it is associated to W together with a choice of “fundamental cham-
ber” C and a numbering of the n walls of C. ‘

EXERCISE

What happens if you change the choice of C? [HINT: W acts simply-transitively
on the chambers.]

For future reference, let’s record the following explicit formula for s; in
terms of the inner product (and hence in terms of the Coxeter matrix):
sit = — 2(e;, z)e;.

If you haven’t seen this before, it simply says that you reflect  with respect
to e;+ by subtracting off twice the component of z in the direction of e;,
thereby changing the sign of that component.
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Remark. The Coxeter matrix has the following formal properties: It is a
symmetric matrix of integers m;;, with m;; = 1 and m;; > 2 for i # j.
But not every such matrix can be the Coxeter matrix of a finite reflection
group. A further necessary (and, as it turns out, sufficient) condition is
that the associated matrix A defined in the proof above must be positive
definite; for it is the matrix of a (positive definite) inner product. This fact,
together with the corollary above, is the basis for the classification result
stated in §3. If you look at the proof of that result in Bourbaki [16] or
Grove-Benson [31], you’ll see that it consists of analyzing the possibilities
for M, given that A is positive definite.

From the examples given in §5B above, we can easily write down some
Coxeter matrices. For example, if W is of type A, (symmetric group on
n + 1 letters), then m; ;41 = 3 and m;y; = 2 if j > i + 1. [Everything else
is determined by the formal properties mentioned above.] Or if W is of
type Hs (dodecahedral group), then my; = 3, mag = 5, and my3 = 2.

EXERCISE

Work out the Coxeter matrix of the reflection group of type B, (signed symmetric
group).

SE The Cozeter diagram

Instead of working directly with the matrix M, one usually works with
a picture called the Cozeter diagram, which encodes all the information
in M. This diagram is a graph, with vertices and edges, defined as follows:
There are n vertices, one for each index ¢ = 1,...,n, and the vertices
corresponding to ¢ and j are connected by an edge if and only if m;; > 3. If
m;; > 4, then there is more than one convention in the literature as to how
to indicate this in the diagram; the one we will follow is simply to label the
edge with the number m;; in this case. In summary, a labelled edge (with
label necessarily at least 4) indicates the value of the corresponding m;;;
an unlabelled edge indicates that m;; = 3; and the lack of an edge joining
i and j indicates that m;; = 2.

The diagrams for all of the irreducible finite reflection groups are shown
below. Based on the examples we have given, you should be able to check
that the diagrams are correct for the cases A,, B,, G2, Hz, and I2(m).

A, 0——0—o0— -+ —0—0 (n > 1 vertices)
B,/C, o—o——o—--. o4, (n > 2 vertices)
D, O OO+ -+ -o——<:< (n>4 ’vertices)
E¢ o—o 0——0

o—0
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E7 o o I o OO

Es o0—o I OO O———0

F4 o o 4 o0——0

Go L D

Hj o— o025

Hy o—o0—029 o

I(m) oo (m=5orm>T7)
Remarks

1. Note that the diagrams which occur in this list are very special. For
example, the graphs are all trees; there is very little branching in these
trees; and the edge labels are rarely necessary (i.e., the numbers m;; are
rarely bigger than 3). One does not need the full force of the classification
theorem in order to know these properties; in fact, these properties are the
first few observations which occur in the proof of the classification theorem,
as given in [16] or [31].

2. If you are familiar with the “Dynkin diagrams” which occur in Lie
theory (cf. [16]), you will note that they are similar to Coxeter diagrams.
But a Dynkin diagram contains slightly more information; in particular,
it contains enough information to distinguish the root system of type B,
from that of type C,, even though these root systems have the same Weyl
group.

EXERCISE

Show that the essential finite reflection group (W, V) is irreducible if and only if

the graph underlying its Coxeter diagram is connected. Deduce, in the reducible
case, a canonical decomposition

W, V) (Wi x--x W, i@ @ V)

into “irreducible components”, one for each connected component of the Coxeter
diagram.

S5F Fundamental domain and stabilizers

When studying the action of a group on a set, one wants to know how many
orbits there are and what the stabilizers are at typical points of these orbits.
Both of these questions have extremely simple answers in the case of W
acting on V:



24 I. Finite Reflection Groups

Theorem. Let (W,V) be a finite reflection group, C a chamber, and S
the set of reflections with respect to the walls of C. Then C is a set of
representatives for the W-orbits in V. Moreover, the stabilizer W, of a
point z € C is the subgroup (S;) generated by S, = {s€ S:sz ==z}. In
particular, W, fixes every point of A, where A is the cell containing z.

PROOF: Since W is transitive on the chambers, it is clear that every point
of V is W-equivalent to a point of C. Everything else in the theorem will
follow if we prove: For z,y € C and w € W, if wz = y then ¢ = y and
w € (S;). We argue by induction on the smallest integer d such that w can
be expressed as a word s; - - - s4 of length d in the generating set S of W.

If d = 0 there is nothing to prove, so assume d > 0 and choose an
expression w = §; -- - §4 of minimal length. As we showed in the proof of
the theorem in §5A above, C and wC are separated by the wall H; fixed
by s1. We therefore have

wx:yeaﬂwag H,.
So if we apply s; to both sides of the equation wz = y, we obtain
w'r=s1y=y,

where w' = s;w = s3---s4. By the induction hypothesis, it follows that
z = y [whence s; € S;] and that v’ € (S;). So w = s;v' is also in (S;),
and the proof is complete. O

5G The poset ¥ as a simplicial complez

Assume that (W,V) is essential. Since the chambers are simplicial cones,
one expects (i) that ¥ is the poset of simplices of a simplicial complex;
and (ii) that this simplicial complex triangulates the unit sphere in V. [We
expect (i) because our conical “cells” are in 1-1 correspondence with their
intersections with the sphere, and a simplicial cone intersects the sphere
in a subset homeomorphic to a simplex.] The assertions (i) and (ii) are
Propositions 1 and 2 below. Before proceeding to these, however, the reader
might find it helpful to look at the first few paragraphs of the appendix,
where we explain our conventions regarding simplicial complexes.

Proposition 1. The poset ¥ is a simplicial complex.

PROOF: According to the appendix, we must check two conditions, (a)
and (b). Condition (a), that ¥ have greatest lower bounds, has already
been proved in §4E. As to Condition (b), concerning the poset X<, of
faces of a cell A € X, we know that A is a face of a chamber, so it suffices
to consider the case where A is a chamber, But it is a trivial matter to
compute the poset of faces of a simplicial cone, and this poset is indeed
isomorphic to the set of subsets of {1,...,n}. O
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I chose to give this somewhat abstract proof of the proposition because
I wanted to introduce the unorthodox terminology that I will be using re-
garding simplicial complexes. But it is easy to chase through the discussion
in the appendix in order to describe in more conventional terms how X can
be identified with an abstract simplicial complex (in which the simplices
are certain finite subsets of a set of “vertices”):

Every 1-dimensional cell A € ¥ is a ray R} v, where R} is the set of
positive reals and v is a unit vector; the unit vectors v which arise in this
way are the vertices of our simplicial complex. For each (g + 1)-dimensional
cell A € X (g > —1), there is a g-simplez {vo, ..., vy} in our complex, where
the v; are the unit vectors on the 1-dimensional faces of A. It should be
clear that we do indeed obtain a simplicial complex in this way and that
Y can be identified with the poset of simplices of this complex. Notice
that we have allowed ¢ = —1 above. The cell A is {0} in this case, and
it corresponds to the empty set of vertices. [Recall from the appendix our
convention that the empty set is always included as a simplex of an abstract
simplicial complex.]

Proposition 2. The geometric realization |X| is canonically homeomor-
phic to the unit sphere S*~1 C V.

ProOF: Recall [cf. Appendix] that |X| consists of certain convex combi-
nations ), A,v, where v ranges over the vertices of X, viewed as basis
vectors of an abstract vector space. Now the vertices vg,...,v, of any
A € X can also be viewed as unit vectors in V, and, as such, they are
linearly independent. Hence we have a map |£| — V — {0}, given by
Y Ayv = > Ayv. Composing this with radial projection, we obtain a
continuous map ¢ : |X| — S"~1. Since ¢ takes |A| C |X| bijectively to
ANS™~1 C V, it is bijective and therefore a homeomorphism (by compact-
ness of |X}). a

EXERCISE

Suppose W is the group of symmetries of a regular solid X. Make an intelligent
guess [and prove it, if you can] as to how to describe X directly in terms of X.
[HINT: The boundary of X is a topological sphere, decomposed into cells which
are not necessarily simplices.]

SH A group-theoretic description of

We close this chapter with one last observation, which will have far-reaching
consequences. For simplicity, (W, V') will still be assumed essential.

We started the chapter with a “concrete” group W, given to us as a group
of linear transformations (or, if you prefer to think more geometrically, as
a group of isometries of Euclidean space, or, even better, as a group of
isometries of a sphere). The geometry gave us (after we chose a chamber C),
a set S of generators of W. The geometry also gave us a simplicial complex
Y, constructed by means of hyperplanes and half-spaces. We will prove
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below, however, that if we forget the geometry and just view W as an
abstract group (with a given set S of generators), then we can reconstruct
¥ by pure group theory.

Let’s look first at the subcomplex ¥<c consisting of the faces of C. To
every face A < C, we associate its stabilizer Wy = {w € W : wA = A}.
In view of the theorem in §5F above, W4 can also be described as the
stabilizer of any point 2 € A, and, moreover, it fixes A pointwise. That
theorem also says that W, is generated by a subset of our given generating
set S. We will call a subgroup of W special if it is generated by a subset
of S. :

Thus we have a function ¢ from X <c to the set of special subgroups
of W, and we will show that ¢ is a bijection. In fact, we can construct the
inverse 1 of ¢ by taking fixed-point sets: Let W’ be a special subgroup
of W, generated by a set S’ C S; then the fixed-point set of W’ in C
is obtained by intersecting C with the walls of C corresponding to the
reflections in S’. So this fixed-point set is equal to A for some A < C, and
we can set ¥(W’) = A. Using the stabilizer calculation in §5F, one can
easily check that 1 is inverse to ¢.

Note next that ¢ and its inverse i are order-reversing. For 1, this is
immediate from the definition. In the case of ¢, the assertion follows from
the fact that W, fixes A pointwise and hence stabilizes every face of A.

Thus we have a poset isomorphism

Y<c ~ (special subgroups)°P,

where “op” indicates that we are using the opposite of the usual order on
the set of special subgroups. The picture below illustrates this isomorphism
when n = 3. Here C is the cone over a triangle, and we have drawn a slice T’
of C (or, if you prefer, the intersection of C' with the unit sphere). Almost
every face of T' has been labelled with its stabilizer, the one exception
being the empty face (which is hard to see in the picture). The empty face
corresponds to the cell A = {0}, which would appear in the picture if we
drew the whole chamber C instead of just T'. It is the smallest face of T,
and its stabilizer is the largest special subgroup of W, namely, W itself.
Similarly, the largest face is T itself, whose stabilizer is the smallest special
subgroup (generated by § C S).

Returning now to the general case, we can use the W-action to extend
our isomorphism to one from the whole poset ¥ to the set of special cosets
in W, i.e., the cosets wW' of special subgroups. Indeed, we can send a
typical element wA € ¥ (w € W, A < C) to the coset wiW,4. It is a routine
matter to deduce the following result from what we did above for L<¢:

Theorem. There is a poset isomorphism
¥ =~ (special cosets)°P

which is compatible with the W -action, where W acts on the special cosets
by left-translation. O
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(s1,52)

(31,83) (82,83)

EXERCISE

Let W be the symmetric group on n + 1 letters and let S be the set {s1,...,3n}
of basic transpositions, where s; interchanges ¢ and i + 1. If you have done the
exercise at the end of §5G, then you know (or at least suspect) that the complex
¥ associated to W is the barycentric subdivision of the boundary of an n-simplex.
Deduce this fact from the theorem above. [HINT: First figure out what the special
subgroups are. Then look at the barycentric subdivision A of the boundary of
an n-simplex. Its simplices are the “flags® Ip C --- C I; of non-empty proper
subsets of {1,...,n + 1}, cf. Appendix, §B. Let o be the simplex

{1}c{1,2}c---c{1,2,...,n}

of A. There is an obvious action of W on 4, and the stabilizers of the faces of o
are precisely the special subgroups of W.]

Appendix. Abstract Simplicial Complexes

A Definitions

Recall that a simplicial complex with vertex set V is a collection A of finite
subsets of V (called simplices) such that every singleton {v} is a simplex and
every subset of a simplex A is a simplex (called a face of A). The cardinality
r of A is called the rank of A, and r — 1 is called the dimension of A. We
include the empty set as a simplex; it has rank 0 and dimension —1. A
subcomplez of A is a subset A’ which contains, for each of its elements A,
all the faces of A; thus A’ is a simplicial complex in its own right, with
vertex set equal to some subset of V.

Note that A is a poset, ordered by the face relation. As a poset, it has
the following formal properties:

(a) Any two elements A, B € A have a greatest lower bound A N B.
(b) For any A € A, the poset A< 4 of faces of A is isomorphic to the poset
of subsets of {1,...,r} for some r > 0.

Conversely, any poset A satisfying (a) and (b) can be identified with the
poset of simplices of a simplicial complex. Namely, take the vertex set V to
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be the set of rank 1 elements of A [where the rank of A is defined to be the
unique integer r such that (b) holds]; then we can associate to each A € A
the set A’ = {v €V :v < A}. It is easy to check that A — A’ defines a
poset isomorphism of A onto a simplicial complex with vertex set V.

We will therefore extend the previous terminology and call any poset A
satisfying (a) and (b) a simplicial complez. The elements of A will be called
simplices, and those of rank 1 will be called wvertices.

We visualize a simplex A of rank r as a geometric (r — 1)-simplex, the
convex hull of its r vertices. One makes this precise by forming the geometric
realization |A] of A, which is a topological space partitioned into (open)
simplices |A|, one for each non-empty A € A. To construct this topological
space, start with an abstract real vector space with V as a basis. Let |A]|
be the interior of the simplex in this vector space spanned by the vertices
of 4, i.e., |A| consists of the linear combinations ) . , Ayv with A, > 0 for
all v and ), 4 Ay = 1. We then set

INERGAYE
A€A
If A is finite, then all of this is going on in R", where N is the number
of vertices of A, and we simply topologize |A| as a subspace of RY. The
question of how to topologize |A| in the general case is more subtle, and
we will not need to deal with it.

The purpose of the remainder of this appendix is to call attention to
three special properties of the simplicial complex ¥ associated to a reflec-
tion group: (i) ¥ is a flag complex; (ii) ¥ can be labelled; and (iii) X is
determined by its associated chamber system. You can read it now (at
least to find out what the terminology means), or you can wait and refer
back to it when you need to.

B Flag complezes

Let P be a set with a binary relation called “incidence”, which is reflexive
and symmetric. For example, P might consist of the points, lines, planes,
etc., of a geometry (affine, projective, Euclidean, ... ), with the usual
notion of incidence. Or P might be a poset, with z and y incident if they
are comparable (i.e., if z < y or y < ). An important special case of this
is the poset of cells of a cell complex (possibly simplicial), ordered by the
face relation.

A flag in P is a set of pairwise incident elements of P; if P is a poset,
this is the same as a chain, i.e., a linearly ordered subset. The flag complez
associated to P is the simplicial complex A(P) with P as vertex set and the
finite flags as simplices. One example of this construction appears naturally
in the foundations of the theory of simplicial complexes: If P is the poset of
simplices of a simplicial complex, then A(P) is the barycentric subdivision
of P. (We won’t make any use of this fact, except for motivational pur-
poses. If you haven’t seen it before, you should draw some low dimensional
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pictures to convince yourself that it’s plausible.) The requirement that P
be simplicial is not necessary here; P could just as easily be the poset of
cells of a cube, or dodecahedron, or ... .

Not all simplicial complexes are flag complexes. For example, the bound-
ary of a triangle is not a flag complex. [If it were, then the three vertices
would be pairwise incident, hence would form a flag, hence would be the
vertices of a simplex of the complex.] The following proposition character-
izes the flag complexes. A family of simplices in a simplicial complex A is
called joinable if it has an upper bound in A; in this case it has a least
upper bound, which is just the set-theoretic union when A is viewed as a
set of subsets of its vertex set.

Proposition. The following conditions on a simplicial complex A are
equivalent:

(1) A is a flag complex.

(2) Every finite set of pairwise joinable simplices is joinable.
(3) Every set of 3 pairwise joinable simplices is joinable.

(4) Every finite set of pairwise joinable vertices is joinable.

ProoF: It is immediate that (1) = (2) = (4) = (1) and that
(2) = (3). The proof that (3) = (2) is a straightforward induction
and is left as an exercise. O

‘We can now prove that the complex ¥ associated to a reflection group
is a flag complex. [This shouldn’t be shocking, since every specific exam-
ple we’ve worked out has in fact been a barycentric subdivision.] More
generally, we will prove:

Proposition. Let X be the poset of cells associated to a finite set ‘H of
linear hyperplanes. Then ¥ satisfies condition (2) above, I.e., every set of
pairwise joinable elements of ¥ is joinable.

Proor: No H € H can strictly separate two joinable cells. So if we are
given a family of pairwise joinable cells, then we can find for each H € H
a closed half-space Uy bounded by H which contains all the cells of the
given family. Then (¢4 Un is a closed cell which contains all the given
cells (cf. §4A, Proposition 3). Hence the corresponding open cell is an upper
bound for the family. O

C Labelled chamber complezes

Let A be a finite-dimensional simplicial complex. We will say that A is
a chamber complez if all maximal simplices have the same dimension and
any two can be connected by a gallery. [As before, a gallery is a sequence
of maximal simplices in which any two consecutive ones are adjacent, i.e.,
have a common codimension 1 face.] The maximal simplices will then be
called chambers.
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A labelling of the chamber complex A by a set I is a function which
assigns to each vertex an element of I, in such a way that the vertices of
every chamber are mapped bijectively onto I. If A can be labelled, then
the labelling is essentially unique: Any two labellings (say by sets I and I')
differ by a bijection I = I'. (To see this, just note that if the labelling is
known on a chamber C, then it is determined on any chamber adjacent
to C.) You might find it helpful to think of a labelling as a “coloring” of
the vertices. The number of colors used is required to be the rank of A (i.e.,
the number of vertices of any chamber), and joinable vertices are required
to have different colors.

If A is a chamber complex which is a barycentric subdivision, then it
can be labelled: Every vertex v of A corresponds to a cell of the original
complex, and we may label v by the dimension of that cell. Similarly, if
the chamber complex A is the flag complex of a geometry, then we can
label its vertices by their type (point, line, ... ). But not every chamber
complex can be labelled. For example, the boundary of a triangle is a rank 2
chamber complex which cannot be labelled. More generally, the boundary
of an m-gon can be labelled if and only if m is even.

It is useful to characterize labellability in terms of chamber maps. Recall
first that a simplicial map from a simplicial complex A to a simplicial
complex A’ is a function ¢ from the vertices of A to those of A’ which
takes simplices to simplices. If the image ¢(A) of a simplex A always has
the same dimension as A, then ¢ is called non-degenerate. A non-degenerate
simplicial map is the same as a poset map ¢ : A — A’ such that ¢ maps
A< 4 isomorphically to A’S 6(4) for every A € A. Finally, if A and A’ are
chamber complexes of the same dimension, then a simplicial map ¢ is non-
degenerate if and only if it takes chambers to chambers; in this case ¢ will
be called a chamber map.

[Note that a chamber map takes adjacent chambers to adjacent chambers
and hence galleries to galleries. This would not be true if, in our definition
of “adjacent”, we had required adjacent chambers to be distinct.]

An important special case which will arise fairly often in this book is the
case where A’ is a subcomplex of A and ¢ is the identity on A’; a chamber
map of this type is called a retraction of A onto A’

Returning now to the question of labellability, let I be a set of cardinal-
ity n, where n is the rank of A, and let A(I) be the “simplex with vertex
set I” i.e., the complex consisting of all subsets of I. Then a labelling of A
by I is exactly the same as a chamber map A : A — A(I). Thus A is
labellable if and only if it admits a chamber map to A(I).

Given a labelling A : A — A(I), we will often call A(A) for A € A the
type of A; it is a subset of I. Note that the type of A is simply the set of
labels of the vertices of A.

For any chamber C of A, our labelling A maps the subcomplex A’ = A<¢
generated by C isomorphically onto A(I); hence we may compose A with
the inverse isomorphism to get a retraction ¢ : A — A’. In concrete terms,
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#(A) is simply the unique face of C having the same type as A. Conversely,
a retraction onto A’ can be viewed as a labelling of A, with the set I of
labels being the set of vertices of C'. Thus we have another characterization
of labellability: A is labellable if and only if it admits a retraction onto A<c.

Proposition. The chamber complex ¥ associated to a finite reflection
group is labellable.

ProoF: Choose a chamber C. Then we can define ¢ : £ — X< by letting
#(A) be the unique face of C' which is W-equivalent to A (cf. §5F). It is
easy to check that ¢ is a well-defined chamber map and a retraction. [J

D Chamber systems

We wish to show that if A is a sufficiently nice chamber complex, then A
is completely determined by the system consisting of its chambers together
with a suitable refinement of the adjacency relation. Thus we can forget
about the vertices and, indeed, all the non-maximal simplices, when it is
convenient to do so.

To refine the adjacency relation, we assume that A is labelled by a set I.
Then any codimension 1 simplex of A has type I — {i} for some i € I.
Given i € I, two chambers of A will be called i-adjacent if they have the
same face of type I — {i}. Note that this is an equivalence relation, unlike
the ordinary adjacency relation. The chamber system associated to A is the
set of chambers together with the relations of i-adjacency, one for each i.

In order to state conditions under which we can recover A from its cham-
ber system, we need to recall some more terminology. The link of a sim-
plex A, denoted lk A or lka A, is the subcomplex of A consisting of the
simplices B which are disjoint from A [i.e., AN B is the empty simplex]
and joinable to A. As a poset, Ik A is isomorphic to the subposet A5 4 C A
via B — B U A (B € lk A); this subposet, however, is not a subcomplex
(unless A is the empty simplex).

Note that the maximal simplices of 1k A are in 1-1 correspondence with
the chambers of A having A as a face. But lk A need not be a chamber
complex. For it might not be possible to connect two chambers in Ay 4 by
a gallery in Ay 4.

Proposition. Let A be a labelled chamber complex such that the link
of every vertex is again a chamber complex. Then A is determined up to
isomorphism by its chamber system.

PRroOF: Given J C I, call two chambers J-equivalent if they can be con-
nected by a gallery Cy,...,Cy such that any two consecutive chambers
Ck-1 and C} are j-adjacent for some j € J. This equivalence relation is
defined entirely in terms of the chamber system associated to A. We will
be interested in the case where J = I — {i} for some ¢ € I, in which case
our hypothesis on links gives the following interpretation of the equivalence
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relation: Two chambers are (I — {i})-equivalent if and only if they have the
same vertex of type 1.

It is now easy to reconstruct A from its chamber system: A has one vertex
of type i for each (I — {i})-equivalence class of chambers; a collection of
vertices forms a simplex if and only if the corresponding equivalence classes
have a non-empty intersection. O

This proposition applies to the chamber complex ¥ associated to a finite
reflection group in view of the following result:

Proposition. Let X be the poset of conical cells associated to a finite set of
hyperplanes. For any A € ¥ and any chambers C, D € X5 4, every minimal
gallery joining C to D lies entirely in X5 4. In particular, if ¥ is simplicial
(and hence a chamber complex), then lks; A is a chamber complex.

ProoF: Let I' : C = Cy,...,Cq = D be a minimal gallery. Then the walls
H,,...,H, crossed by I' separate C from D (cf. §4E, Proposition 4). For
eachi =1,...,d, it follows that A is contained in both closed half-spaces
bounded by H;, hence A C H;. Assuming inductively that A < C;_,, we
conclude that A C Ci_; N H; = C;_4 NC;, hence A < C;. O



II
Abstract Reflection Groups

The result of §1.56H above suggests the possibility of introducing geometry
into abstract group theory: Let W be a group, possibly infinite, generated
by a subset S consisting of elements of order 2. Define, as in Chapter I,
a special coset to be a coset w(S’) with w € W and S’ C S. Now define
Y = X(W,S) to be the poset of special cosets, ordered by the opposite of
the inclusion relation: B < A in ¥ if and only if B D A as subsets of W,
in which case we say that B is a face of A.

In case W is a finite reflection group and S is the set of reflections with
respect to the walls of some fixed chamber, we know that ¥ is actually a
simplicial complex, which triangulates a sphere of dimension n — 1 (where
n = card S). Moreover, X possesses a rich geometric theory, with walls,
half-spaces, etc., and the elements of S act on ¥ as reflections. This raises
some natural questions: In the general case, is ¥ simplicial? Does it contain
“walls” which divide it into “half-spaces”? Do the elements of S act on ¥
as “reflections”?

Two things will result from our attempts to answer these questions. First,
we will discover some facts about the combinatorial group theory of finite
reflection groups. Second, we will discover a much larger class of groups W
which deserve to be called “reflection groups”, namely, those groups for
which the questions above all have affirmative answers. The study of these
groups W and their associated complexes ¥ was initiated by Tits [51].
He called the groups “Coxeter groups” (and the complexes “Coxeter com-
plexes”) for historical reasons that we will explain in §4.

1 In Search of Axioms

Let W be a group which is generated by a subset S consisting of elements of
order 2, and let X be the poset defined above. Our strategy in this section is
very simple: We will attempt to define geometric notions, using Chapter I as
a guide. Eventually, we will run into difficulty and have to introduce some
hypotheses on (W, S). The present section, then, will consist essentially of a
list of definitions, culminating in an axiom (A) that (W, S) ought to satisfy
in order to deserve the name “reflection group”.

First, we need something to play the role of the set % of Chapter 1. We
will call an element of W a reflection if it is conjugate to an element of S.



34 II. Abstract Reflection Groups

[You should be able to convince yourself that this is the “right” definition
by looking at the proof of statement (d) in §1.5A.] Now let H be an abstract
set in 1-1 correspondence with the set of reflections, this correspondence
being denoted by H +— sy for H € H. The elements of H will be called
walls. Since W acts by conjugation on the set of reflections, we may use
our 1-1 correspondence to define an action of W on H. By definition, then,
we have

Swg = wsgw™! forw e W and H € H.

The maximal elements of X will be called chambers. They are the minimal
special cosets, i.e., the singletons {w} C W. Note that W acts on X by left
translation and that this action is simply-transitive on the chambers. We
will set C = {1} and call it the fundamental chamber. Thus a typical
chamber {w} can be written as wC.

The elements A € ¥ which are not chambers and which are maximal
among the non-chambers are said to have codimension 1. They are the
two-element special cosets w(s) = {w, ws}. Such an element A is a face of
precisely two chambers, namely, {w} and {ws}.

Two chambers {w}, {w'} will be called adjacent if they have a common
codimension 1 face. If w # v/, this is the same as saying that w’ = ws for
some s € S. [We note in passing that we can refine the notion of adjacency
by saying, for any s € S, that two chambers {w}, {w'} are s-adjacent if
w' = w or ws. The reader who has read about chamber systems in §D of
the appendix to Chapter I will not be surprised by the existence of a family
of adjacency relations, one for each s € S.]

Now that we have an adjacency relation, we can define the notions of
gallery and combinatorial distance exactly as in Chapter 1. It follows at
once that non-stuttering galleries (Ci)o<i<q With Co = C are in 1-1 corre-
spondence with sequences sy,...,s4 of elements of S, the correspondence
being given by C; = {w;}, where w; = s;---s;. Let H; be the wall such
that s; = sg,; then the walls w;_1H; (i =1,...,d) will be called the walls
crossed by the given gallery. The motivation for this can be found in the
proof of statement (e) in §I.5A.

It is clear from these remarks that d(C,wC) is the smallest integer d
such that w can be expressed as a word s; ---s4 in the generating set S.
This minimal d is called the length of w with respect to S and is denoted
[(w) or Is(w). Thus we have

d(C,wC) = I(w).

Since combinatorial distance is invariant under the W-action, we obtain
the following group-theoretic interpretation of the distance function:

d(wC,w'C) = d(C,w™'w'C) = l(w™'uw").

Encouraged by our success so far, we move on to half-spaces. For each
H € 'H we would like to partition the chambers into two “halves” U, (H)
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and U_(H), where U4 (H) is the half containing the fundamental cham-
ber C. Thus the set of “half-spaces” should be in 1-1 correspondence with
the set H x {£1}.

We expect the W-action to take half-spaces to half-spaces and hence to
induce an action of W on the set H x {£1}. This action should have the
form

w-(H,¢) = (wH,xe),

where the ambiguous sign is + if and only if wC € U, (wH). In other words,
the sign should be + if and only if wC and C are on the “same side” of
the wall wH. Applying the action of w™!, the condition for the sign to be
+ becomes: “C and w~1C are not separated by H”. Thus the action of W
on H x {£1} should satisfy:

w - (H,e) = (wH, —€) <= H separates C from w™!C. (*)

Apply this now to the case where w = s € S. We expect there to be
a unique H € H which separates C from sC, namely, the H such that
s = sy. Hence s should act on H x {£1} as the involution p, defined as
follows: (H,—¢) if

,—€) ifs=sy
ps(H,€) = { .
(sH,e) otherwise.

Thus we have arrived at an easily stated condition that (W, S) ought to sat-
isfy if it is to behave like a reflection group. We will call this condition (A)
for “action”:

(A) There is an action of W on the set H x {%1} such that, for every
s € S, s acts as the involution p, defined above.

It would be possible at this point to show that condition (A) is sufficient
to enable one to give a reasonable definition of the desired half-spaces
Uy (H). But I prefer to postpone this until the next chapter, when we will
have a conceptual definition of the notion of “half-space” in a simplicial
complex. I would like to prove something, however, to convince you that
the harmless-looking condition (A) is much more powerful than it appears.
The following theorem should serve this purpose. It says, roughly speaking,
that if (A) holds then the set of walls crossed by a gallery has the properties
that Chapter I has led us to expect.

Theorem. Suppose (W, S) satisfies (A). Then one can associate to each
w € W a finite subset H(w) C H with the following properties:
(1) card H(w) = d(C,wC) = l(w).
(2) IfT is a minimal gallery from C to wC, then the walls crossed by T’
are distinct and are precisely the elements of H(w).
(3) Let T be an arbitrary non-stuttering gallery from C to wC'. For any
H € H, one has H € H(w) if and only if H is crossed by T' an odd
number of times.
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ProoOF: It should be clear that H(w) is supposed to be the set of walls
which “separate C' from wC”. [The quotation marks are intended as a
reminder that the phrase they enclose only has intuitive meaning at the
moment, since we have not yet constructed the half-spaces.] Motivated
by (%), we define H(w) to be the set of H € M such that w™! - (H,1) =
(w™1H,-1).

Suppose now that w = s;---s4 with s; € S, and let T be the corre-
sponding gallery (w;C)o<i<a, Where w; = s; ---s;. Since wl =54 81,
we can compute w™! - (H, 1) by first applying s;, then applying s, etc. Af-
ter applying s1,..., 8i—1, we will have an element of the form (w;'_llH yE),
to which we must apply s;. In view of the definition of p,,, the application
of s; will change € to —¢ if and only if w,?‘_llH = H;, where H; is the wall
such that s; = sg,. Hence w™! - (H,1) = (w~'H,(-1)?), where p is the
number of ¢ such that H = w;_, H;.

By the definition of H(w), we have H € H(w) if and only if p is odd.
On the other hand, w;_1H; is (by definition again) the ith wall crossed
by T, so p is the number of times that I' crosses H. This proves (3). (1)
and (2) follow immediately from (3) and the following lemma, which does
not require condition (A):

Lemma. For any w € W and any minimal gallery T' from C to wC, the
walls crossed by I' are distinct.

ProOF: Let I correspond to a sequence of generators sy, ...,s4. Then the
minimality of I' implies that w = s; - -- sq4 has length d. Suppose that the
walls crossed by I are not distinct. Then we have, with the notation above,
w;i—1H; = wj_1 H; for some i < j. Passing to the associated reflections,
this becomes
w,-_ls,-w;'__ll = wj._lsjwj__ll,
or
wiwly = wiwily,

or
-‘—1

1
Wy

1Wj-1 = W wj.

In terms of the s’s, this last equation says
Si...Sj_l =Si+1...8j,

which implies that

~ ~

w:sl...sd:sl...si...Sj...sd’

where the hats indicate deleted letters. This contradicts the fact that d =
i(w). O

As a corollary of this proof, we can deduce an incredible consequence of
condition (A), which we alluded to in the case of finite reflection groups
in a remark at the end of §I.5A. In order to state it, we introduce a second
condition which a general pair (W,S) may or may not satisfy:
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(D) Ifw = sy ---sq with d > l(w), then there are indices i < j such that
w=31"‘~§i"'§j"'sd-

We will call this the “deletion condition”. As a corollary of the theorem
and the proof of the lemma, we have:

Corollary. If (W,S) satisfies (A), then it satisfies (D).

PROOF: Suppose w = sy - -84 with d > I(w), and consider the correspond-
ing gallery T’ from C to wC. Then I' cannot cross d distinct walls, since
this would imply (by part (3) of the theorem) card H(w) = d, contradicting
part (1). Hence there must be repetition among the walls crossed by I'; the
proof of the lemma now shows that we can delete two letters s;, s;. O

Remark. You wouldn’t know it from the roundabout proof of the corol-
lary, but condition (D) actually has a direct geometric interpretation in
terms of galleries. We will see this in the next chapter (§III.4B, state-
ment (d) and its proof).

2 Examples

2A Finite reflection groups

It is essentially obvious that a finite reflection group as in Chapter I satis-
fies (A) (where S is the set of reflections in the walls of some fixed chamber).
Indeed, we arrived at the formulation of (A) by writing down properties
which finite reflection groups were known to satisfy.

Conversely, it is true (but not obvious) that every finite group satisfying
(A) is a finite reflection group. We will prove this in §5 below. In view of
this fact, our remaining examples will necessarily be infinite groups.

2B The infinite dihedral group

Let W be the infinite dihedral group D.,. By definition, this is the group
defined by the presentation

W:(s,t;szztzzl).

(In case you are not familiar with this notation for group presentations, it
simply means that you start with the free group F' = F(s,t) on two gener-
ators s,t and then divide out by the smallest normal subgroup containing
s? and t2.) Note that the finite dihedral groups Dy, are quotients of W. It
follows that the images of s and ¢ in W are distinct and non-trivial, so no
confusion will result if we denote these images by s and t. It also follows
that st has infinite order and hence that W is infinite.

Let S = {s,t} C W. We will explain from three different points of view
why (W, S) satisfies (A).
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(i) Combinatorial group theory. The definition of W via the presentation
above makes it easy to define homomorphisms from W to another group.
One need only specify two elements of the target group whose squares
are trivial, and there is then a homomorphism taking s and ¢t to these
elements. In particular, if we want W to act on some set, it suffices to
specify involutions p, and p; of that set, and then we can make s and t act
as p, and p;, respectively. Condition (A) is now evident.

(ii) Euclidean geometry. We make W act as a group of isometries of
the real line L by letting s act as the reflection about 0 (¢ — —=z) and ¢
act as the reflection about 1 (z — 2 — z). Note, then, that W acts as a
group of affine transformations z — ax + b. This action has an associated
“chamber geometry”, entirely analogous to what we saw in Chapter I for
finite (linear) reflection groups. It is illustrated in the following picture,
where C denotes the open unit interval:

stC sC C tC tsC

-O L O & O ®

The vertices in the picture are the integers. They are shown in two “colors”,
o and e, to indicate the two orbits under the action of W.

It is now easy to identify our abstract set H with the set of integers and
to identify our abstract H x {#1} with the set of half-lines whose endpoint
is an integer. The action of W on L induces an action of W on this set of
half-lines, and condition (A) follows easily.

(iii) Linear algebra. There is a standard method for “linearizing” affine
things by embedding the affine space in question as an affine hyperplane
(i.e., a translate of a linear hyperplane) in a vector space of one higher
dimension. In the present case, we do this by identifying the line L above
with the affine line y = 1 in the plane V = R?2. The affine action of
W on L extends to a linear action of W on V. Explicitly, since we want
s(z,1) = (—z, 1), we can set s(z,y) = (—z, y); in other words, we can make

s act via the matrix
-1 0
0 1/°

Similarly, to make t(z,1) = (2 —z,1), we can set t(z,y) = (2y — z,y); thus
t acts via the matrix
-1 2
(o 1)

The picture of W acting on V is shown below. It is simply the cone
over the picture of W acting on L. (C now denotes the cone over the unit
interval in the line y = 1.) We may identify H with the set of walls of the
chambers shown in the picture; these walls are linear hyperplanes in V.
And we may identify H x {1} with the set of half-planes determined by
these walls. Condition (A) now follows easily from the action of W on these
half-planes.
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Before leaving this example, let’s compare this situation with that of
Chapter I. As in Chapter I, s and ¢ act as linear reflections on V, provided
we interpret this term suitably: If V' is a real vector space, not necessarily
endowed with an inner product, then a linear reflection on V is a linear map
which is the identity on some (linear) hyperplane H and is multiplication
by —1 on some complement of H, i.e.,some 1-dimensional subspace H' such
that V = H @ H'. The reflections considered in Chapter I, where V has
an inner product and H’' = H', will be called orthogonal reflections from
now on to distinguish them from the more general linear reflections that we
have just defined. Note that a linear reflection is not uniquely determined
by its hyperplane H of fixed-points.

In the present example it is still true, as in Chapter I, that W is generated
by linear reflections whose associated hyperplanes are the two walls of our
“fundamental chamber” C. And it is still true that C is a fundamental
domain for the action of W on U, e¢w wC. But this union is not the whole
vector space V. It is, rather, the convex cone consisting of the open upper
half-plane together with the origin.

Finally, we wish to consider the question of how we might have discovered
this representation of W as a “linear reflection group” if we had not had
the geometry provided by (ii) as a guide. Our discussion of this will be
long-winded and will require the results of the following exercise:

EXERCISE

(a) If s is a linear reflection on a 2-dimensional vector space V', show that the
only s-invariant affine lines not passing through the origin are those parallel to
the (—1)-eigenspace.

(b) Deduce that two linear reflections s,t of V have a common invariant line
not passing through the origin if and only if they have the same (—1)-eigenspace.

(c) Suppose s and ¢ have the same (+1)-eigenspace. Show that the induced
reflections s* and t* of V* = Hom(V,R) have the same (—1)-eigenspace.

Returning now to W = D, suppose we try to construct a linear rep-
resentation of it by imitating the procedure used in §1.5D. Thus we now
write s; and s9 instead of s and ¢, and we introduce the Coxeter matrix
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M = (myj), where m;; is the order of s;s;. The resulting matrix, then, is

=(w T);

The corresponding Coxeter diagram is o-22-0.

Even though some of the m;; are infinite, we can still make sense out
of the matrix A = (a;;j), where a;; = — cos(m/m;;); this is given in the

present case by
1 -1
A= (_1 1) .

Let B be the associated bilinear form on R? (with B(e;,e;) = a;j). For
reasons that will be clear shortly, we will write V' for R? endowed with
this bilinear form. Note that B is degenerate, by which we mean that its
matrix is singular. In particular, it cannot possibly be an inner product.
Nevertheless, we can still define reflections s,s%, on V'’ by imitating the
formula which we wrote down in §1.5D:

siz =z — 2B(e;, x)e;.

This is indeed a linear reflection. For it takes e; to —e; and it is the identity
on the hyperplane e;t = {z € V' : B(e;,z) =0}.

Finally, note that our two reflections have different (—1)-eigenspaces but
the same (+1)-eigenspace. In fact, the linear functions B(e;,—) for i = 1,2
are negatives of one another since the two columns of A are negatives of
one another, hence e;+ = eyt. In view of the exercise above, then, this
linear action of W is not the linearization of an affine action on a line. But
the exercise also shows that if we pass to the dual space V of V', then
the induced reflections s; = (s})* do have the same (—1)-eigenspace and
hence an invariant affine line L. It is not hard to continue the analysis and
show that the resulting W-action on V has a “chamber geometry” like that
pictured at the beginning of this discussion.

To summarize, we have a linear representation of W on a vector space V/,
in which there is a nice chamber decomposition not too different from
what we saw for finite reflection groups. And the dual representation (W
acting on V') has nice algebraic formulas not too different from what we
saw for finite reflection groups. As we will see in §5 below, this is the
typical situation for the “reflection groups” that we will be discussing. [You
might wonder why, if this is supposed to be typical, we did not notice it
in Chapter I. In that context, we had both the chamber geometry and the
algebraic formulas in the same vector space V. The answer, briefly, is that
we had a W-invariant non-degenerate bilinear form on V in Chapter I,
namely, the inner product (—,—); and one can identify V with its dual
whenever there is such a form.]

2C  The group PGLy(Z)
Let GL3(Z) be the group of 2 x 2 invertible matrices over the ring Z of
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integers. Let PGL2(Z) be the quotient of GLy(Z) by the central subgroup
of order two generated by —1 (= the negative of the identity matrix). Thus
PGL2(Z) is obtained from GL2(Z) by identifying a matrix with its negative.
We denote a typical element of GL2(Z) by

)
c ]

It is easy to check that the group W = PGL2(2Z) is generated by the set
S = {s1, 52,53} of elements of order 2 defined by

10 1 -1 1 -1 0
1=11 0 2=1 0 1 =10 1]
(You can see this by thinking about elementary row operations.) We will
now show that condition (A) is satisfied. We will use three different meth-
ods, analogous to those used for D,. In each of the three cases, however,
we will have to use one or more non-trivial facts that will be stated without

proof. If you are not familiar with these facts, you are advised to just read
the discussion casually, getting whatever you can out of it.

and its image in PGL2(Z) by

(i) Combinatorial group theory. A simple computation shows that the
products s1s2, s;s3, and sps3 have orders 3, 2, and oo, respectively. It is
also true (but not obvious) that W admits a presentation in which the
defining relations simply specify the orders of the pairwise products:

W= (31,32,33 ;52 =52 =53 = (5152)2 = (s183)% = 1) .
[Some readers will be familiar with the fact that W has a subgroup PSL2(Z)
of index 2 which admits a presentation (u,v sud =02 =1 ), cf. [46], §1.4.2,
or [35], §§IV.5H and VII.2F. It is not too hard to deduce the presentation
for W stated above from this presentation for PSL3(Z).]

To verify (A), now, we simply have to check that the involutions p; = p,;
which occur in the statement of (A) satisfy the defining relations for W.
Consider, for instance, the relation (p;p2)® = 1. Let S’ = {s1, 52} and let
W' be the dihedral group of order 6 generated by S’. The reflections in W'
(i.e., the W’-conjugates of s; and s;), form a subset of the reflections in W;
hence the set ‘H' of W'-walls is a subset of the set H of W-walls.

Suppose, now, that we apply (p1p2)3 to (H,£) € H x {£1}. Clearly the
only thing we have to worry about is the possibility of sign changes in the
second factor as we successively apply the p;. But no sign changes will ever
occur unless w’ H is in ‘H' for some w’ € W', in which case we have H € H'.
Thus we are reduced to showing that (p; p2)3 is the identity on H’ x {£1},
which follows from the fact that W’ is a finite reflection group and hence is
already known to satisfy (A). [Altérnatively, we could complete the proof
by doing an easy computation in the dihedral group Dg.]
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(i) Hyperbolic geometry. There is a famous tessellation of the hyperbolic
plane by ideal hyperbolic triangles (i.e., triangles having their vertices on
the circle at infinity). Figure 1 below shows this tessellation in the unit disk
model of the hyperbolic plane.

et
. :/ ";‘—t&','

——

Figure 1

The group of symmetries of this tessellation is a group of hyperbolic
isometries generated by reflections, and it is, in fact, precisely the group W.
In order to explain this in slightly more detail, we switch to the upper half-
plane model of the hyperbolic plane. This is shown in Figure 2, which is
a picture of the barycentric subdivision of the tessellation in Figure 1. In
order to relate the two models of the hyperbolic plane, you should think of
the vertices of the big triangle in Figure 1 as corresponding to the points
0, 1, and oo in Figure 2. The barycenter of this big triangle is shown as a
heavy dot in Figure 2.

The action of W on the upper half-plane is given by

[a b] -g—;rl’—f;l- ifad—be=1

c d = az+b . _
c-E_:-i—tH ifad — be = -1

where z is the complex conjugate of z. You may be familiar with this
action restricted to PSL2(Z), where, of course, complex conjugation does
not arise. Complex conjugation is necessary for the full group W, how-
ever, because elements of negative determinant acting by linear fractional
transformations interchange the upper and lower half-planes.

Now under this action, the generating set S of W is the set of reflections
in the three sides of one of the “chambers” C, as indicated in Figure 2.
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Figure 2

Moreover, it is known that C is a fundamental domain for the action of W.
A proof of this can be found in almost any book that discusses modular
forms. [Actually it is more likely that the analogous fact about PSLy(Z) is
proved: C'U s3C is a fundamental domain for this group. See, for instance,
[44], §VII.1.2, or [35], §IV.5H.]

If you have followed all of this, then you can probably complete the
geometric proof that (W, S) satisfies condition (A). Just identify H x {£1}
with the set of hyperbolic half-planes determined by the hyperbolic lines
in Figure 2, and use the action of W on these half-planes.

(iii) Linear algebra. As was the case with the group Do, the linear al-
gebra approach will take the longest to explain. But it is quite instructive
and worth at least reading through, even if you don’t check all the details.
It is based on a 3-dimensional linear representation of W which has been
studied extensively, starting with Gauss.

The vector space V on which W acts is the space of real quadratic forms ¢
in two variables, i.e., the space of functions ¢ : R? — R given by ¢(z) =
az? + 2bx x5 + cz3. Note that we can also write ¢(z) = 3(z, z), where 3 is
the bilinear form on R? with matrix

A:(Z ';)

Thus we can, when it is convenient, identify V' with the space of symmetric
bilinear forms on R?, or, equivalently, with the space of real symmetric
2 x 2 matrices.
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The group G = GLy(R) acts on V by

(9 - 9)(2) = q(=9)
for g € G, q € V, and £ € R?, where z is viewed as a row vector on
the right-hand side of the equation. This action is said to be by change
of variable, since g - ¢ is obtained from ¢ by replacing z; and x5 by linear
functions of z; and z, (with coefficients given by the columns of g). In
terms of the symmetric matrix A corresponding to ¢, the action of ¢ is
given by A +— gAg?, where g* is the transpose of g.

The elements ¢ € V fall into exactly six orbits under the action of G.
First, there are three types of non-degenerate forms: positive definite (G-
equivalent to z% + z2); negative definite (G-equivalent to —z% — z2); and
indefinite (G-equivalent to z? — z2). Next, there are the non-zero degener-
ate forms, which are either positive semi-definite (G-equivalent to z%) or
negative semi-definite (G-equivalent to —z?). And, finally, there is the zero
form.

It is easy to visualize this partition of V into G-orbits. Let Q : V — R
be given by

Q(g) = —det A = b? — ac,

where A is the matrix corresponding to q as above. (Thus @ is a quadratic
form on the 3-dimensional space V of quadratic forms.) Then the degener-
ate forms ¢ are the points of the quadric surface Q = 0 in V. If we introduce
new coordinates &,y,z in V by setting

b==z
a=z+4y
c=z-Y,

then @Q becomes z2 + y? — 22, so the quadric surface of degenerate forms is
the double cone 22 = 22 + y?. [Draw a picture!] The exterior of the cone is
given by @ > 0 and consists of the indefinite forms. And the interior Q < 0
has two components, the upper half (z > 0), consisting of the positive
definite forms, and the lower half, consisting of the negative definite forms.

The action of G on V is really an action of the quotient G/{x1}, so we
may restrict the action to W = PGL3(Z) C G/{+1}. This is the desired
3-dimensional representation of W. Here are the basic facts about this
representation:

First, the W-action leaves the form @ invariant, i.e., Q(wq) = Q(q) for
w € W and q € V. This follows from the fact that every ¢ € GL2(Z) has
det g = +£1, so that

det gAg' = det?g-det A = det A

for any symmetric 2 x 2 matrix A. So W also leaves invariant the symmetric
bilinear form B on V such that Q(q) = B(g, ¢). One can easily compute B
explicitly; in terms of symmetric matrices, we have

B(A,A’) = bb — %(ac' +a'c),
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_[a b r_[ad ¥V
A_(b c) and A—(b, c’)'

The next observation is that the generators s; of W act on V as linear
reflections. In fact, if you compute the (Z1)-eigenspaces of s;, you find that
s; has a 1-dimensional (—1)-eigenspace Re; and that s; fixes the hyperplane
H; = e;*+ (where ;" is defined with respect to our bilinear form B(—, —)).
One can take the e;, which are determined up to scalar multiplication, to
be the following symmetric matrices:

(1 0 _ (-1 -1 _ (01
‘1= 0 -1 2=\ \-1 o “@=\1 0/

And the fixed hyperplanes H; are given, respectively, by a = ¢, ¢ = 2b, and
b=0.

I chose the eigenvectors e; above so that they would satisfy Q(e;) = 1;
this determines them up to sign. It then follows as a formal consequence
that the reflections s; are given by the usual formula:

where

8iq = q — 2B(ei, ¢)ei;

for the map defined by this formula is the identity on e;+ and sends e; to
—&€;.

We now focus on the action of W on the cone P of positive definite forms,
and we look for a fundamental domain for this action. Concretely, this
means that we are looking for canonical forms for the positive definite ¢’s
under integral change of variable. Gauss found the following fundamental
domain. Let C be the simplicial cone in V defined by the inequalities a >
¢>2b> 0. Then C C P, and C is (more or less) a fundamental domain
for the action of W on P.

The “more or less” here refers to the fact that C touches the boundary
of P. For if you compute the vertices of C (i.e., the rays which are 1-
dimensional faces of C), you find that they are represented by the forms
22, 2?2 + 23, and z? + z,22 + 23, the first of which is degenerate. So the
correct statement is the following: Let U be the convex cone in V consisting
of the positive definite forms together with the forms A(az; + bz;)? with
A >0anda,b€Z. Then U = J,ew wC, and C is a fundamental domain
for the action of W on U; moreover, the open simplicial cones wC' are
disjoint from one another.

You have probably noticed that the walls of C are precisely the fixed
hyperplanes H; of the reflections s;. So we have, once again, the usual
sort of chamber geometry, and it is possible to verify condition (A) by
identifying 1 x {£1} with the half-spaces in V determined by the walls of
the chambers wC'. Details are omitted.

One final comment: I normalized the e; above so that we would have
B(e;,—) > 0 on C. In view of Chapter I and the infinite dihedral group
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example, it is therefore to be expected that

™
B(ei, e;5) cos —

where m;; is the order of s;s;. This is indeed the case, as direct computation
shows. Thus our representation of W acting on V' is what we should now
be ready to call the “canonical linear representation” of W. Note also, for
future reference, that the bilinear form B in this example is non-degenerate,
although not positive definite. Indeed, we showed above that @ could be
written as £2+y? — 22 after a change of coordinates in V', so B has signature
(2,1) [2 plus signs and 1 minus sign).

EXERCISE

What is the connection between the points of view in (ii) and (iii)? [HINT: The
upper sheet of the hyperboloid @ = —1 is one of the standard models of the
hyperbolic plane; it is contained in the positive definite cone P and it cuts across
the chambers wC'. Incidentally, the degenerate forms A(az; + b:z:z)2 which we
adjoined to P also appeared in the discussion (or at least the pictures) in (ii):
They correspond to the cusps in Figures 1 and 2.]

3 Consequences of the Deletion Condition

We return now to the general theory, which is much easier than the exam-
ples. Thus W is an arbitrary group with a set S of generators of order 2. We
saw at the end of §1 that if the “action condition” (A) holds then so does
the deletion condition (D). Now this deletion condition must certainly look
surprising to you if you have not seen it before, so we will spend a little time
exploring its consequences. We begin by giving a couple of reformulations
of it.

3A  FEquivalent forms of (D)

We will need to formalize the concept of “word”, which we have already
used informally. By a word in the generating set S we mean a sequence
s = (s1,...,84) of elements of S. We will often be less formal and simply
say that the “expression” s;---sq4 is a word; but we must distinguish a
word s from the element w = s, ---s4 € W that it represents. Whenever
there is danger of confusion, we will be more precise and revert to the
sequence notation (s1,...,84).

The word (s1,...,84) is called reduced if the corresponding element w =
s1--- 84 has length l(w) = d, i.e., if it cannot be represented by a shorter
word. We will also say, in this situation, that the given word is a reduced
decomposition of w, or, less formally, that the equation w = s, ---545 is a
reduced decomposition of w.

We can now state the first consequence of condition (D). It is called the
ezchange condition:
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(E) Given w € W, s € S, and any reduced decomposition w = s1---54
of w, either I(sw) = d + 1 or else there is an index i such that

The proof that (D) implies (E) is immediate. For if l(sw) < d + 1, then
(D) says that sw is equal to ss; - - - s¢ with two letters deleted; multiplying
by s (and remembering that l[(w) = d), we obtain w = ss; ---§; - - - s4.

In order to put (E) into perspective, note that, for general (W,S),
we have the following three possibilities for I(sw): (a) I(sw) = l(w) + 1;
this happens if and only if we can get a reduced decomposition of sw by
putting s in front of a reduced decomposition of w. (b) I(sw) = l(w) — 1;
this happens if and only if w admits a reduced decomposition starting
with s. (¢) I(sw) = l(w).

[Possibility (c) might seem counterintuitive at first, but easy examples
show that it can happen. It happens, for instance, if W is the direct product
of two groups of order 2 and S consists of the three non-trivial elements
of W]

The content of (E), then, is the following: First, possibility (c) is pro-
hibited. Second, if (b) holds then we can always find a reduced decompo-
sition of w starting with s by taking an arbitrary reduced decomposition
w = 81 - -- 84 and then “exchanging” a suitable letter s; for an s in front.

Note that (E) seems to be asymmetric, in that it involves only left mul-
tiplication by elements of S; but if (E) holds, then we can apply it to w™!
to deduce the analogous fact about right multiplication. We will use this
observation without comment whenever it is convenient.

Next we record a consequence of (E). It will be called the folding condi-

tion, because, as we will see shortly, it is closely related to the existence of
“foldings” of X.

(F) Given w € W and s,t € S such that l(sw) = l(w) + 1 and l(wt) =
l(w) + 1, either I(swt) = l(w) + 2 or else swt = w.

To see that (E) implies (F), take a reduced decomposition w = s; - - - s4.
Then the word s; - - - s4t is a reduced decomposition of wt. Applying (E)
to s and wt, we conclude that either [(swt) = d+ 2 or else we can exchange
one of the letters in s, - --s4t for an s in front. Now the letter exchanged
for s cannot be an s;, since that would contradict the assumption that
l(sw) = d + 1; so the letter must be the final {. Thus wt = sw, hence
swt = w.

Finally, we show that (F') implies (D), so that (D), (E), and (F) are in
fact all equivalent:

Suppose w = sy ---sq with d > l(w). Assuming (F), we will show by
induction on d that we can delete two letters. If either of the elements
§1+++84—1 Or Sg---Sq has length less than d — 1, then we are done by
the induction hypothesis. So suppose they both have length d — 1 and let
w' = s3---84-1. (This makes sense, because we necessarily have d > 2.)
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Then I(s;w') = l(w')+1 = l(w'sq) and I(s1w'sq) < I(w')+2; so (F) implies
that s;w’'sq = v/, i.e., that w = §;89---54-1584.

3B Construction of foldings

Although we are still not ready for a systematic treatment of the geometry
of half-spaces in X, we will show, as an illustration of (F), how to construct
maps which “fold” ¥ along a wall. Specifically, we wish to construct for a
fixed s = sy € S the map ¢ which, intuitively, folds X onto the half-space ®
determined by H which contains the fundamental chamber C.

In order to figure out how ¢ and ® should be defined, recall that there
are two possibilities for an element w € W: either I(sw) = I(w) — 1 or
l(sw) = l(w) + 1. In the first case, w admits a reduced decomposition
starting with s, so there is a minimal gallery of the form C,sC,... wC.
We therefore expect that H separates C from wC' in this case and hence
that wC ¢ ®. In the second case, there is a minimal gallery of the form
C,sC,...,swC. So we expect that swC is not in ® but that its “mirror
image” wC is in ®. These considerations motivate the following proposition
and its proof:

Proposition. Suppose that (W, S) satisfies the equivalent conditions (D),
(E), and (F). Fix s € S, and let C be the set of chambers of . Then there
is a function ¢ = ¢, : C — C with the following properties:

(1) ¢ is a retraction onto its image ®, which consists of the chambers
wC such that I(sw) = l(w) + 1.

(2) Each chamber in ® is the image under ¢ of exactly one chamber in
the complement ®' of ®.

(3) The action of s on C interchanges the sets ® and ¢'.

(4) ¢ takes adjacent chambers to adjacent chambers.

ProorF: It is clear how we should define ¢:

_f wC ifl(sw) =1(w)+1
(wC) = { swC if l(sw) = l(w) — 1.

And it is immediate from this definition that assertions (1)-(3) hold. The
crucial thing, then, is to verify (4), which is what makes it plausible that
we will eventually be able to extend ¢ to a map on all of ¥. We will
actually prove a more precise version of (4), namely, that ¢ takes t-adjacent
chambers to t-adjacent chambers for all £ € S. We may assume that the
t-adjacent chambers we start with are distinct, say wC and wtC. We may
also assume that I(wt) = I(w) + 1; for if this fails then we can replace w
by wt. We now have two cases to consider:

(a) I(sw) = l(w) + 1. Then ¢(wC) = wC. If I(swt) = l(wt) + 1, then
#(wtC) = wtC, which is t-adjacent to ¢(wC). Otherwise, (F) says that
swt = w; so we have ¢(wiC) = swtC = wC, which is equal to ¢(wC) and
hence t-adjacent to it.



3. Consequences of the Deletion Condition 49

(b) I(sw) = l(w) — 1. Then w admits a reduced decomposition starting
with s, so wt does also. Thus ¢(wtC) = swtC, which is t-adjacent to
swC = ¢(wC). a

3C The word problem

Now we give a purely algebraic consequence of the deletion condition.
Namely, we will show, following Tits [55], how it leads to a simple solu-
tion to the word problem for (W,S). The word problem is the following:
Given two S-words s = (s1,...,84) and t = ({1,...,t.), decide whether
they represent the same element of W. Let’s begin with the case of a di-
hedral group Ds,, generated by two elements s,¢ such that st has order m
(2<m< o0).

It 1s obvious, first of all, that we may confine our attention to the case
where s and t are alternating words, i.e., where they have no consecutive
s’s or t’s. Secondly, we may assume that both words have length at most m.
For the relation (st)™ = 1 (if m is finite) can be rewritten as

stst--- =1sts--- ,

where both sides have length m. So in any word of length > m, we can
take a subword (s,t,...) of length m and replace it by the word (¢,s,...)
of length m, thereby creating an (s, s) or (¢,t) that can be deleted. Finally,
the word problem for alternating words of length < m has the following
simple solution: The two alternating words of length m (if m is finite)
represent the same element of D,,,; all other pairs of distinct alternating
words of length < m represent different group elements. The proof is an
easy computation, which is left to the reader. [Alternatively, think about
what galleries look like when the plane is divided into 2m chambers by
m lines through the origin (if m is finite) or when the line is divided into
infinitely many intervals (if m is infinite).]
Returning now to an arbitrary (W, S), consider the Coxeter matrix

M= (m(s,t))s)tes

where m(s, ) is the order of st. By an elementary M-operation on a word
we mean an operation of one of the following two types:

(I) Delete a subword of the form (s, s).

(II) Given s,t € S with s # t and m(s,t) < oo, replace an alternating
subword (s,t,...) of length m = m(s,t) by the alternating word (t,s,...)
of length m.

Call a word M -reduced if it cannot be shortened by any finite sequence
of elementary M-operations. It is not hard to see that one can effectively
enumerate all possible words obtainable from a given one by elementary M-
operations. [You might want to try an example; see, for instance, Exercise 5
in §3D below.] In particular, one can decide whether a word is M-reduced.
Similarly, one can decide whether a word s can be converted to a given



50 ' II. Abstract Reflection Groups

word t by means of elementary M-operations. Consequently, the following
theorem of Tits [55] solves the word problem when (D) holds:

Theorem. Assume that (W, S) satisfies the deletion condition.

(1) A word is reduced if and only if it is M-reduced.

(2) If s and t are reduced, then they represent the same element of
W if and only if s can be transformed to t by the application of
elementary M-operations of type (II).

ProoF: We begin with (2). Suppose s = (s1,...,54) and t = (t1,...,tq)
are reduced words representing the same element w € W. We will show by
induction on d = l(w) that s can be changed to t by operations of type (II).
Let s = sy and t = t;. There are two possibilities:
(a) s = t. Then we can cancel the first letter from each side of the
equation
31"‘Sd=t1"‘td,

and we are done by the induction hypothesis.

(b) s # t. We will show, then, that m = m(s,t) is finite and that w
admits a third reduced decomposition u starting with the alternating word
(s,t,s,t,...) of length m. Assuming this for the moment, let u’ be the word
obtained from u by replacing this initial segment of length m by the word

(t,s,t,s,...) of length m. We can then get from s to t by

s—u—u —t,

where the first and third arrows are given by case (a) and the second is an
operation of type (II).

It remains, then, to prove the finiteness of m and the existence of u. We
do this by repeatedly applying the exchange condition: Since w admits a
reduced decomposition starting with ¢, we can find one by exchanging one
of the letters in (s, sg, ..., sq) for a t in front. Now the letter exchanged for
t cannot be the initial s, since we could then cancel s, ---s4 and conclude
that s = t. So it must be one of the others, and we obtain a reduced
decomposition of w starting with (¢, s). If m = 2, we are done [because the
(t,s) can be replaced by (s,t)]. Otherwise, m > 3 and we continue:

Since w admits a reduced decomposition starting with s, we can find one
by starting with the decomposition w = ts - - - just obtained and exchanging
one of the letters for an s in front. Now the exchanged letter cannot come
from the initial segment of length 2; for this would contradict our analysis
of the word problem in the dihedral subgroup of order 2m generated by s
and t. So it must come from a later part of the word. Hence d > 3, and we
have a reduced decomposition of w starting with (s,t,s). If m = 3, we are
done; otherwise, do an exchange on this most recent reduced decomposition
to get a t in front.

There is no obstruction to continuing this process as long as our initial
alternating segment has length < m. Since this length must always be < d,
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it follows that m < d < oo and that we can find an initial alternating
segment of length m, as claimed. This completes the proof of (2).
Turning now to (1), the non-trivial implication to prove is that if s =
(s1,-..,84) is not reduced, then it can be shortened by M-operations. We
argue by induction on d. If the subword s’ = (s2,...,54) is not reduced,
then we are done by the induction hypothesis. So assume that s’ is reduced
and let w' = sy---sq. Since, I(s1w’) < l(w') + 1, we can find a reduced
decomposition of w’ starting with s1, say t' = (s1,%1,...,t4-2). By part (2)
of the theorem, which we have already proved, we can transform s’ to t’ by
M-operations, hence we can transform s to (s1,s1,%1,...,t4-2). But this
can then be reduced to t = (¢;,...,t4-2) by an operation of type (I). O

Note that this solution of the word problem gives a complete description
of the elements of W in terms of the Coxeter matrix. Consequently, we
have the following generalization of a result which we already knew for
finite reflection groups:

Corollary 1. If (W,S) satisfies the deletion condition, then W is deter-
mined up to isomorphism by its Coxeter matrix M. O

We can make this more precise, in a way that gives us new information
even for finite reflection groups:

Corollary 2. If (W, S) satisfies the deletion condition, then W admits the
presentation

W= <S s (st)y™(t) = 1>,
where there is one relation for each pair s,t with m(s,t) < co.

PRrOOF: Let W be the abstract group defined by this presentation, and
consider the canonical surjection W —» W. An element & in the kernel can
be represented by a word s which is reducible to the empty word by M-
operations. But M-operations do not change the element of W represented
by a word, so w = 1. O

Corollary 3. Assume (W, S) satisfies the deletion condition. Then for any
w € W there is a subset S(w) C S such that all reduced decompositions
of w involve precisely the letters in S(w). Moreover, S(w) is the smallest
subset S’ C S such that w € (S').

ProoF: The first assertion is immediate from the theorem, since opera-
tions of type (II) do not change the set of letters which occur in a word
(although they can change the number of times a given letter occurs). Now
suppose S’ is an arbitrary subset of S with w € (S’). Then we can get a re-
duced decomposition of w by starting with an S’-word representing w and
repeatedly applying (D) until we get a reduced word; hence S(w) C §’. O
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3D Ezercises

Now it’s your turn to play with condition (D) a little. Exercises 1-3 give
some consequences of (D), and Exercise 4 should convince you that these
consequences are reasonable. The last two exercises are for people interested
in the word problem. Assume throughout the exercises that (W, S) satisfies

(D).

1. Let S’ be a subset of S and let W’ be the group (S’) generated by S’. Show
that the length of an element of W’ with respect to S’ is the same as its length
with respect to S.

2. With W' as in Exercise 1, show that every coset wW' has a unique repre-
sentative wo of minimal length and that l(wow') = I(wo) + I(w') for all w' € W'.

3. Suppose that W is finite. Show that W contains a unique element wo of
maximal length and that I(wo) = l(w)+1(w™  wo) for all w € W. [In other words,
you can find a reduced decomposition of wo that starts with any feasible initial
segment whatsoever.] Show further that wo is of order 2 and that H(wo) = H,
i.e., that the minimal galleries from C to woC cross every wall.

4. Try to give geometric interpretations of the results of Exercises 1-3.

5. Let W be the reflection group of type As [symmetric group on four letters].
Find all reduced decompositions of the element wo of maximal length, which is
818382918382. [List all words obtainable from the given word by M-operations.
There are 16 of them.]

6. Recall from the classification of irreducible finite reflection groups that their
Coxeter diagrams have a number of special properties, including the following:
The graph is a tree; it branches at at most one vertex, which is then necessarily of
order 3; if it branches, there are no labelled edges (i.e., there are no m;; > 3); if it
doesn’t branch, there is at most one labelled edge. As I mentioned in Chapter I,
these facts are proved in the course of proving the classification theorem. Show
that they all follow from Tits’s solution of the word problem. [For each of the
facts, assume it is false and then write down a word which represents an element

of infinite order, contradicting the hypothesis that the group is finite. Details can
be found in §3 of [55].]

4 Coxeter Groups

We return now to an arbitrary (W,S), where W is a group and S is a
set of generators of W of order 2. We have seen (§3C, Corollary 2) that
if (W, S) satisfies (D) then it admits a presentation in which the relations
simply specify the orders of the pairwise products of elements of S. Tits [51]
initiated the systematic study of groups with such a presentation. He called
them Cozeter groups, since Coxeter [25] had earlier studied finite groups
of this type. We will therefore call the following condition on (W,S) the
Cozeter condition:
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(C) W admits the presentation

(5;(styme =1),

where m(s,t) is the order of st and there is one relation for each pair s,t
with m(s,t) < oo.

We have now introduced five conditions on (W, S), which are related as
follows:

On the other hand, a Coxeter presentation as in (C) is precisely what we
used in §2 to give a proof by combinatorial group theory that PGL2(Z)

satisfies (A). This proof goes through with no change to show, in general,
that (C) implies (A). Thus we have come full circle:

Theorem. The five conditions (A), (C), (D), (E), and (F) are all equiv-
alent. O

It now seems safe to conclude that we have found the right class of groups
that deserve to be called “abstract reflection groups”. This terminology is
not standard, however, so we will follow Tits and say that W is a Cozeter
group (or, more precisely, that the pair (W, S) is a Cozeter system) if the
equivalent conditions of the theorem are satisfied.

5 Loose Ends

Before leaving combinatorial group theory and moving on to combinato-
rial geometry (i.e., the properties of ¥), we will comment briefly on some
natural questions which may have occurred to you:

(a) Which matrices M can occur as the Coxeter matrix of a Coxeter
group? [We saw in Chapter I that very few matrices can occur as the
Coxeter matrix of a finite reflection group, because an associated matrix A
has to be positive definite in that case. Are there conditions that A must
satisfy in the general case?)

(b) For which M can the corresponding group W = Wy, be represented
as a “geometric reflection group”? [The finite reflection groups of Chapter I
should be thought of as spherical reflection groups, since they act as isome-
tries of the sphere and the associated complex X triangulates the sphere.
And clearly the examples Do, and PGL2(Z) of §2 should be thought of as
Fuclidean and hyperbolic, respectively. Can all Coxeter groups be classified
as spherical, Euclidean, or hyperbolic?)

(c) For which M can the group Wjs be represented as a “linear reflec-
tion group”? [All examples we have seen have admitted a canonical linear
representation, with an associated chamber decomposition of some convex
cone in the corresponding vector space (or perhaps its dual). Is this always
true?)
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The remainder of this section, which may be omitted, is devoted to giving
partial answers to these questions.

Let I be an arbitrary index set and let M = (m;;)i jer be a matrix with
m;; € Z U {oo}. We will call M a Cozeter matriz if

mii =1 and 2< my; = my; <oofori#j.

This terminology is justified by the following theorem, which gives as nice
an answer to question (a) as one could hope for:

Theorem A. Every Coxeter matrix is the Coxeter matrix of a Coxeter
group.

Proor: There is no choice as to how to define the Coxeter group; if we
want (C) to hold, we must set

W = ((si)ier ; (sis;)™ = 1),

where, as usual, the relation occurs only if m;; < oo. I claim, first, that
the images in W of the s; are distinct and non-trivial. [This is not obvious;
and it is important, since otherwise I would not even be an appropriate
index set for the Coxeter matrix of W.] Accepting this for the moment,
we may identify s; with its image in W and we may introduce the set
S = {s;} C W. The next claim is that s;s; has order m;; in W. [Again,
this is not obvious; all we know is that the order of s;s; is a divisor of m;; ]
If we prove both claims, the theorem will follow at once.

The proof of the claims will be based on a linear representation of W
which will look familiar (cf. §1.5D, as well as §2 of the present chapter). Let
V be a vector space with a basis (e;)ier. Let B be the bilinear form on V
such that B(e;,ej) = — cos(m/m;;), and let ; : V — V be the reflection
defined by the usual formula: o,z = z — 2B(e;, z)e;. It takes e; to —e; and
it fixes the hyperplane H; = ¢;* = {z € V : B(e;,z) =0}.

For any ¢ # j with m;; < oo, the bilinear form B is non-degenerate on
the subspace V; = Re; ® Re; C V. It follows by elementary linear algebra
that we have a decomposition V = V1 ®Vp, where V, = Vit = H;NH ;- This
decomposition is invariant under o; and o;, which generate a dihedral group
Dapm,;, acting in the canonical way on V; (and acting trivially on V5). In
particular, o;0; has order m;;. In view of the defining presentation of W, we
get a linear action of W on V with s; acting as o;. Since the o; are distinct
and non-trivial, it follows that the same is true of the s;. This proves the
first claim. And since o;0; has order precisely m;;, the order of s;s; cannot
be a proper divisor of m;;. This proves the second claim when m;; < co.

Finally, to prove that s;s; has infinite order when m;; = oo, note that o;
and o; still leave the plane V) invariant in this case; so it suffices to show
that their product has infinite order when restricted to V;. This can be done
by direct computation, or, better, by noting that V; (with the reflections o;
and o;) can be identified with the vector space called V' (with reflections
sy and s) in our discussion of Dy, in §2. The result now follows from the
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fact (stated in that discussion) that the duals of s§ and s generate an
infinite dihedral group acting on the dual of V. O

Note, as a result of this theorem, that you can now make up as many
examples as you want of “abstract reflection groups”—just write down an
arbitrary Coxeter matrix.

We turn next to question (c), since the proof of Theorem A has already
suggested the answer. If (W, S) is an arbitrary Coxeter system, then the
proof of Theorem A yields a vector space V on which W acts, with the
generators s € S acting as linear reflections. We will refer to this action as
the canonical linear representation of W. The following theorem is due to
Tits [51].

Theorem C. The canonical linear representation of W is faithful, i.e.,
the corresponding homomorphism from W to the group AutV of linear
automorphisms of V' is injective. Hence W is isomorphic to a group of
linear transformations generated by reflections.

ProOOF: We continue with the notation of the proof of Theorem A; in
particular, we write S = {s; : ¢ € I }. Let V* be the dual of V. Then W
acts on V*, with s; acting as o}. We will use “inner product notation” for
the canonical bilinear pairing between V and V*; thus (z,£) = £(z) for
z € V and £ € V*. Let C be the “fundamental chamber” in V* defined by
the inequalities (e;,—) > 0 for i € I. [We note, in passing, that it would
not be reasonable to try to avoid V* by defining C to be the subset of V
given by the inequalities B(e;,—) > 0; for the linear functions B(e;, —)
might be linearly dependent, as we already saw in the case of Do,. But if
B is non-degenerate, as in the case of finite reflection groups and the group
PGL2(Z), then there is no need to introduce V*; indeed, B then induces
an isomorphism V — V* (provided S is finite), given by  — B(z,—).]

To prove W acts faithfully on V', we will show that, under the action of
Won V* wCNC =0 for 1 # w € W. This follows from the lemma below,
whose statement should be no surprise, given the way we have learned to

think geometrically about (W,S). [See, in particular, the construction of
the folding ¢ in §3B above.]

Lemma. Fix s=s; €S and let U,(s) and U-(s) be the open half-spaces
in V* defined, respectively, by (e;,—) > 0 and (e;,—) < 0. Then for any
w € W we have wC C Ui(s) if l(sw) = l(w) + 1 and wC C U_(s) if
l(sw) = (w) - 1.

SKETCH OF THE PROOF: We argue by induction on {(w). If I(sw) < l(w),
then we may apply the induction hypothesis to the element sw to get
swC C U,(s); multiplying by s, we find wC C sUy(s) = U_(s), as re-
quired. Suppose now that I(sw) > I(w). We may assume w # 1, so there
is at € S (necessarily different from s) such that {(tw) < {(w). Rip off
from w a maximal factor w’ in the dihedral subgroup W’ generated by s
and t. In other words, write w = w'w” with w' € W', l(w) = I(v') + I(w"),
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I(sw"”) > l(w"), and I(tw") > l(w"). By the induction hypothesis, we have
w"’C C C' = U4 (s)NU4(t). Now C' is essentially the fundamental chamber
for the dual of the canonical representation of W’. More precisely, the dual
of the canonical representation of W’ is a 2-dimensional quotient of V*, and
C’ is the inverse image of the fundamental chamber. But we’ve studied the
canonical representation of W’ and its dual in detail, whether W’ is finite
or infinite, and we know that its chamber geometry behaves in the expected
way. In particular, since I(sw’) > l(w’), it follows that w'C’ C U, (s); hence
wC = w'vw'C Cw'C’ CUi(s). O

We can now easily prove that there is no difference between a finite
“abstract reflection group” and a finite reflection group:

Corollary. If W is a finite Coxeter group, then W can be faithfully rep-
resented as a finite reflection group, in the sense of Chapter L.

ProorF: This is immediate from the theorem, except for the requirement
in Chapter I that the reflections are supposed to be orthogonal with respect
to some inner product on V. But this is no problem, for the finite group W
acting on the vector space V of the theorem necessarily leaves an inner

product invariant—just take an arbitrary inner product (—,—) on V and
construct a W-invariant inner product (—, —) from it by “averaging”:
(z,9) = ) (wz,wy).
weW

For each s € S, the (+1)-eigenspaces of s are orthogonal to one another
with respect to our W-invariant inner product, so s indeed acts on V as an
orthogonal reflection. O

Remarks

1. Combining the corollary with the classification of finite reflection
groups (cf. §1.3), we recover Coxeter’s list [25] of the finite Coxeter groups.

2. With C as in the proof of the theorem, Tits [51] showed that the set
U=Upew wC is always a convex cone in V* and that C is a fundamen-
tal domain for the action of W on U. [But U is never all of V* unless W
is finite.] Published proofs can be found in Bourbaki [16] or Vinberg [62].
Vinberg’s paper is particularly recommended; it contains a general treat-

ment of linear reflection groups, which adds a great deal to what we have
sketched here.

We turn, finally, to question (b). I will not state a Theorem B which
answers the question precisely, since this would take us too far afield. In
particular, I would feel compelled to carefully define the terms “spherical
reflection group”, etc. Instead, I will give only the following brief indication;
see [16] and [62] for more information.

Let (W, S) be an irreducible Coxeter system with S finite. (“Irreducible”
means, as in Chapter I, that the Coxeter diagram is connected.) Let M be
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the Coxeter matrix and let B be the associated symmetric bilinear form,
as in the proof of Theorem A. Then (W, S) is spherical if and only if B
is positive definite, Euclidean if and only if B is positive semi-definite but
degenerate, and hyperbolic if and only if B has signature (n — 1,1), where
n = card S. [Warning: This characterization of the hyperbolic case is true
as stated only if we confine our attention to hyperbolic reflection groups
with a simplex as fundamental domain. But the fundamental domain of a
hyperbolic reflection group does not have to be a simplex. See [62] for a
characterization that covers the general case.]

This suggests that the geometric reflection groups (i.e., those associ-
ated to spherical, Euclidean, or hyperbolic geometry), are somewhat spe-
cial among Coxeter groups as a whole. In particular, it is not true that all
Coxeter groups are spherical, Euclidean, or hyperbolic.
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Coxeter Complexes

Assume throughout this chapter that (W,S) is a Coxeter system with S
finite. Let ¥ = X(W, S) be the poset which was defined at the beginning of
Chapter II. Following Tits, we will call ¥ the Cozeter complez associated
to (W, S). The word “complex” will be justified below, when we prove that
¥ is indeed a simplicial complex. The purpose of this chapter is to develop
the geometric properties of Coxeter complexes.

The assumption that S is finite is not really necessary, but we make it in
order to stay closer to the geometric intuition (where S is thought of as the
set of reflections in the walls of a chamber). Everything would go through
with no essential change if we dropped this assumption, but we would have
to deal with “simplicial complexes” in which a simplex can have infinitely
many vertices.

1 The Coxeter Complex is Simplicial

Lemma. The function S’ — (S’) is a poset isomorphism from the set of
subsets of S to the set of special subgroups of W.

Proor: We define a map in the other direction by W/ — W' N S. It is
clear that W' = (W’ N S) if W’ is a special subgroup. It is also clear that
S" € (S')N S for any S’ C S. To prove the opposite inclusion, suppose
s € (S’ N S. Then we can express s as an S’-word and repeatedly apply
the deletion condition until the word’s length has been reduced to 1; thus
s € S’. Hence S’ = (S')N .S, and our two maps are inverses of one another.

O

At this point, you may need to refer to the appendix to Chapter I for
the terminology regarding chamber complexes and labellings. Let’s add
one more bit of terminology: A chamber complex is called thin if every
codimension 1 simplex is a face of exactly two chambers.

Theorem. The poset ¥ is a simplicial complex. Moreover, it is a thin,
labellable chamber complex of rank n = card S, and the W-action on ¥ is
type-preserving.

[The last assertion means that A(wA) = A(A) for w € W and A € X, where
A is any labelling. In view of the essential uniqueness of A (cf. Appendix to
Chapter I), this is independent of the choice of A.]
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ProoF: To show that X is simplicial, there are two things we must verify
(cf. Appendix to Chapter I):

(a) Any two elements of ¥ have a greatest lower bound.

Using the W-action on X, we may assume that one of the two elements
is a face of the fundamental chamber C = {1}. What we must prove, then,
is that a special subgroup (S’) and a special coset w(S”) have a least
upper bound in the set of special cosets (with respect to the ordering by
inclusion). Now any special coset containing the two given ones contains the
identity and hence is a special subgroup. Moreover, it contains w and hence
also (S”) = w™lw(S"). So the upper bounds of our two special cosets are
the special subgroups containing S’, S”, and w. In view of Corollary 3 in
§11.3C, there is indeed a smallest upper bound, namely, the special subgroup
(S'US"U S(w)).

(b) For any A € X, the poset ¥<,4 is isomorphic to the set of subsets of
some finite set.

It suffices to prove this for A = C. In this case, X<¢ is the set of special
subgroups of W (ordered by the opposite of the inclusion relation). Using
the lemma, then, we obtain

Y<c ~ (subsets of S)°P ~ (subsets of S),

where the second isomorphism is given by S’ — S — S’. This proves (b)
and completes the proof that X is simplicial.

Next, all maximal simplices of ¥ have rank equal to card S since W acts
transitively on them. And the discussion at the beginning of Chapter II
implies that any two maximal simplices can be connected by a gallery and
that any codimension 1 simplex is a face of exactly two chambers. So X is
a thin chamber complex.

Finally, we can define a W-invariant labelling A of £, with S as the set
of labels, by setting A(w(S’)) =S - 5. O

We will continue to denote by A the labelling just constructed, and we
will call it the canonical labelling of .

EXERCISE

The canonical labelling yields a notion of s-adjacency for any s € S. On the other
hand, we gave an ad hoc definition of “s-adjacency” in Chapter II. Show that the
two definitions coincide.

2 Local Properties of Coxeter Complexes

By “local properties” we mean properties of the links of simplices. [See §D of
the appendix to Chapter I for the definition of “link”.] For example, it is of
interest to know whether these links are chamber complexes. The following
proposition shows that, in fact, these links are again Coxeter complexes.
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Proposition. Given A € ¥ = X(W,S), let S’ = S — A(A) and let W’ =
(S"). Then lkg A is isomorphic to the Coxeter complex X(W',S') associ-
ated to the Coxeter system (W', S'). In particular, this link is a chamber
complex.

[You should convince yourself, before proceeding to the proof, that (W’, S’)
is indeed a Coxeter system. This is easy if you use condition (A) as the
definition of “Coxeter system”. Alternatively, you can use (D) together
with Exercise 1 of §I1.3D ]

Proor: We may assume that A is a face of the fundamental chamber. Then
A is the special subgroup W’ defined in the statement of the proposition.
Recall now that there is a poset isomorphism lky A &~ X5 4; hence the link
of A is isomorphic to the set of special cosets in W that are contained
in W’ ordered by the opposite of the inclusion relation. But the special
cosets that are contained in W' are precisely the same as the special cosets
associated to the Coxeter system (W’,S’). Thus X34 = X(W’,5"). O

This proposition has a simple interpretation in terms of Coxeter matrices.
Recall, first, that the Coxeter system (W, S) is determined by its Coxeter
matrix M = (m(s,t)), tes. So we may think of ¥ as a simplicial complex
associated to M. Next, note that the rows and columns of M are indexed
by S, which is also the set of labels of £. What the proposition says, then,
is that 1k A is the Coxeter complex associated to the matrix M’ obtained
from M by deleting the rows and columns corresponding to the labels
s € A(A).

This becomes even easier to use if we translate it into the language of
Coxeter diagrams. Recall that the diagram of (W7, S) has one vertex for each
s € S, with s joined to t if m(s,t) > 3, and with a label over that edge if
m(s,t) > 4. The passage from M to M’ above, and hence the passage from
Y to lk A, corresponds to the following operation on the diagram: For each
s € A(A), delete the vertex s (and all edges touching s) from the diagram.

Consider, for example, the group W = PGL2(Z) studied in §I1.2C. Its
diagram is

o——o0-2Xo

The Coxeter complex ¥ has rank 3 (dimension 2), so there are three types
of vertices. Let’s compute the link of each type of vertex.

According to the recipe above, we must delete one vertex at a time from
the Coxeter diagram of W. This yields the Coxeter diagrams of the dihedral
groups Do, where m = o0, 2, and 3, respectively. Now it is easy to figure
out what the Coxeter complex associated to D, looks like, and, in fact,
we have already seen it in Chapters I and II. Namely, it is a 2m-gon, i.e.,
it is a triangulated circle with 2m edges if m < oo, and it is a triangulated
line if m = 0o. So our three links in this example are a line, a quadrilateral,
and a hexagon.
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EXERCISE

Look at Figure 2 in §I1.2C. Can you find the three types of links in the picture?
[HINT: To find lk v, locate all chambers having v as a vertex. The union of the
closures of these chambers (including the cusps) is the cone over lk v, with v as
cone point; so you can see lkv as the “boundary” of this union.]

This example illustrates a general principle, valid for all Coxeter com-
plexes: The link of a codimension 2 simplex of type S — {s,t} is a 2m-gon,
where m = m(s, t). This fact yields a geometric interpretation of the Cox-
eter matrix M:

Corollary 1. The Coxeter matrix M of (W,S) can be recovered from ¥
as follows: For any s,t € S with s # t, m(s,t) is the unique number m
(2 € m < o0) such that the link of a simplex of type S — {s,t} is a 2m-gon.

O

This shows, in particular, that the Coxeter group W is determined up to
isomorphism by X. We’ll see this again in the next section, from a different
point of view.

Remark. Note that a 2m-gon has diameter m, where the diameter of a
chamber complex is the supremum of the combinatorial distances between
its chambers. So we can also write the geometric interpretation of M as

m(s,t) = diam(lk A),

where A(A) = S— {s,t} as above. The result in this form is valid even when
s = t. [In this case the link has exactly two chambers, which are adjacent,
so the diameter is indeed 1 = m(s, s).]

We can use this corollary, together with Tits’s solution to the word prob-
lem for Coxeter groups, to give a simple answer to a question which might
seem, a priort, to be very difficult: How can one describe the totality of
minimal galleries connecting two given chambers? This is easy in the 1-
dimensional case, where ¥ is a 2m-gon: Minimal galleries are unique except
when the two given chambers C; and C3 are at maximum distance m from
each other; in this case m is necessarily finite, and there are exactly two
minimal galleries connecting C to the opposite chamber Cs.

Translating this result to the link of a simplex A of codimension 2 in an
arbitrary Coxeter complex, we obtain a similar description of the minimal
galleries in the subposet > 4. [Visualize, for example, the case where X is
2-dimensional and A is a vertex v whose link is finite. Then X5 4 contains
2m chambers for some m, which form a solid 2m-gon centered at v. The
only non-uniqueness of minimal galleries in this subposet arises from the
fact that there are two ways of going around the 2m-gon to get from a
given chamber to the opposite chamber.]

Since galleries correspond to words, we can use the solution to the word
problem (§I1.3C) to analyze the general case. The answer, stated in rough
form, is:
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Corollary 2. The non-uniqueness of minimal galleries in a Coxeter com-
plex can be explained entirely in terms of the obvious non-uniqueness that
occurs in links of codimension 2 simplices. O

I leave it as an exercise for you to restate this more precisely, in terms
of “elementary operations” on galleries. Similarly, you should be able to
state a method for using elementary operations to decide whether a given
gallery is minimal and, if it isn’t, to obtain a minimal gallery from it.

Finally, we can use our calculation of links to answer another question
that may have occurred to you, especially if you have some familiarity with
combinatorial topology: When is ¥ a manifold? This question arises natu-
rally because triangulated manifolds (without boundary) are the canonical
examples of thin chamber complexes. You already know the answer if W is
finite, at least if you have read the optional section at the end of Chapter II:
In this case W is in fact a finite reflection group, so ¥ is a sphere (hence a
manifold) by the results of Chapter I.

What happens if W (hence also X)) is infinite? There is an obvious neces-
sary condition. Namely, manifolds are locally compact, hence locally finite,
i.e., every non-empty simplex A is a face of only finitely many chambers.
In other words, the link of A must be finite. Conversely, if the link of ev-
ery non-empty simplex is finite, then it is in fact a sphere (since it is a
finite Coxeter complex). I leave it as an exercise for the interested reader
to deduce that ¥ is then a manifold. This proves:

Corollary 3. The following conditions are equivalent:

(1) X is a manifold.
(2) X is locally finite.
(3) Every proper special subgroup of W is finite. O

For example, the Coxeter complex associated to PGL2(Z) is not a man-
ifold. You can see the non-manifold points in the pictures in Chapter II:
They are the cusps.

EXERCISE
If condition (3) holds and W is infinite, show that (W,.S) is irreducible.

Remark. Condition (3) is quite restrictive. One can show that it holds
only in the following three cases: (a) W is finite; (b) W is an irreducible
Euclidean reflection group [in the sense hinted at in §IL.5]; (c) W is a
hyperbolic reflection group whose fundamental domain is a closed simplex
contained entirely in the interior of the hyperbolic space. See the exercises
in Bourbaki [16] for more information.

Even though we have not yet officially discussed Euclidean reflection
groups, you probably have some intuition about them, and you might be
wondering why reducible Euclidean reflection groups were excluded in the
remark (and in the exercise above): Given Euclidean reflection groups W,



3. Construction of Chamber Maps 63

and Wy acting on Euclidean spaces E; and Ej, isn’t their product W a
Euclidean reflection group acting on £ = E; x F,, which is a Euclidean
space and hence a manifold? And doesn’t ¥ triangulate this manifold? The
answer is “yes” to the first question, but “no” to the second. Exercise 1
below explains what happens.

EXERCISES

1. Let (W', S') and (W",S”) be Coxeter systems, and let (W,S) be their
“sum” (with W = W' x W"” and S = S’ US"). Show that

S(W,S) ~ S(W', ')+ S(W", 8"),

where the asterisk denotes the join operation. [Recall that the join A of two
simplicial complexes A’ and A" with vertex sets V' and V"’ has vertex set equal
to the disjoint union V' II V"’ and has one simplex A’ U A" for every A' € A’ and
A” € A”. From the poset point of view, then, A is simply the Cartesian product
of A’ and A”. But its geometric realization |A| is not the Cartesian product
|A'| x |A"[; in fact, A doesn’t even have the right dimension for this to be true.]

2. If you are still reading this and haven’t skipped ahead to the next section,
you have presumably figured out why we had to restrict ourselves to irreducible
Euclidean reflection groups above: The join of two manifolds is in general not a
manifold. Explain, now, why no such irreducibility restriction was necessary for
finite reflection groups.

3 Construction of Chamber Maps

We continue to assume that (W, S) is a Coxeter system with S finite and
that ¥ = (W, S) is the associated Coxeter complex. In studying X, it is
quite easy to work with the chambers and the adjacency relations. It is
awkward, on the other hand, to work with the vertices. (If you unwind the
definitions, you will find that they are the maximal proper special cosets
w(S — {s}).) It would therefore be of interest to prove that we do not ever
have to think about the vertices, i.e., that ¥ is determined by its associated
chamber system, consisting of the set of chambers [which correspond to
the elements of W] together with the adjacency relations [given by right
multiplication by elements of S].

If you have read about chamber systems in §D of the appendix to Chap-
ter I, then you know that we have, in fact, already proven this. For according
to that appendix, it suffices to show that the link of every vertex in ¥ is a
chamber complex. And we know by the previous section that this is indeed
the case.

The specific consequence of this that we will need is that if we want to
construct an endomorphism of £ (i.e., a chamber map ¢ : ¥ — X), then
we need only give a function ¢’ on the chambers which is compatible with
the adjacency relations.
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Rather than rely on the appendix to Chapter I for this result, I prefer
to give a direct proof. In order to motivate the precise statement, let’s
think about what “compatible” should mean in the rough statement given
above. If we take this to mean “preserving s-adjacency for all s”, then we
are only dealing with type-preserving endomorphisms of ¥. To handle the
general case we must specify, in addition to ¢’, a permutation ¢” of S which
describes how ¢ mixes up the vertex labels. The compatibility condition,
then, is that ¢’ takes s-adjacent chambers to ¢"(s)-adjacent chambers.

Here, now, is the precise result:

Proposition. Endomorphisms ¢ of ¥ are in 1-1 correspondence with pairs
(¢',¢"), where ¢’ is a function W — W, ¢" is a permutation of S, and
¢'(ws) = ¢'(w) or ¢'(w)¢"(s) for allw € W and s € S.

ProOF: We begin with a general observation which we will have occasion
to use again. Let ¢ : A — A’ be a chamber map between labellable chamber
complexes of the same dimension. Assume that A is a labelling of A by a
set I and that X is a labelling of A’ by a set I'. The observation, then, is
that there is a bijection ¢, : I — I’ which describes the behavior of ¢ with
respect to labels, in the sense that A'(¢(A)) = ¢.(A(A)) for all A € A. This
follows from the essential uniqueness of labellings. For A’ o ¢ is a labelling
of A by I’, so it must differ from the given labelling A by a bijection from
I to I’; this bijection is the desired ¢,.

Apply this now to an endomorphism ¢ of ¥, with A and A’ both equal to
the canonical labelling. We obtain a well-defined bijection ¢" = ¢, : S — S.
We also obtain from ¢ a function ¢’ : W — W, which is essentially the
restriction of ¢ to the chambers of X. (These are the singleton special cosets
and hence can be identified with the elements of W.) Clearly ¢ takes s-
adjacent chambers to ¢'(s)-adjacent chambers, which says precisely that
¢'(ws) = ¢'(w) or ¢'(w)¢"(s).

Note that ¢ is completely determined by the pair (¢’,¢”). For if A =
w(S’) is an arbitrary simplex of ¥, then A is the face of type S — S’ of the
chamber {w}; so ¢(A) must be the face of {¢'(w)} of type ¢"(S — S') =
S — ¢"(S’); in other words, ¢(w(S’)) = ¢'(w)(¢"(S’)).

Finally, we must show that every pair (¢’, ¢"’) as in the statement of the
proposition arises from an endomorphism ¢. To this end we simply define
#, as we must, by ¢(w(S’)) = ¢'(w)(¢”(S’)). It is easy to check that ¢ is
a well-defined chamber map which induces ¢’ on the chambers and ¢ on

the labels. O

We now give three corollaries to illustrate the proposition. The first two
involve automorphisms and the third involves foldings.

Recall that the W-action on ¥ is simply-transitive on the chambers;
in particular, this action is faithful, in the sense that the corresponding
homomorphism W — Aut X is injective. Here Aut X denotes the group of
simplicial automorphisms of ¥.
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Corollary 1. The image of W <« Aut X is the normal subgroup Auty X
consisting of the type-preserving automorphisms of X.

(This shows, for the second time, that W is determined up to isomorphism
by its Coxeter complex X.)

ProoFr: We already know that W acts as a group of type-preserving au-
tomorphisms of ¥. Conversely, suppose ¢ is an arbitrary type-preserving
automorphism, and let ¢’ and ¢” be its “components” as in the proposi-
tion. Then ¢” is the identity, so ¢'(ws) = ¢'(w)s for all w and s. [The
possibility ¢'(ws) = ¢’'(w) is excluded because ¢ is an automorphism.} It
follows easily that ¢’'(w) = ¢'(1)w for all w, so ¢’ is left-multiplication by
wp = ¢’(1) and hence ¢ is given by the action of wy. This proves everything
except the normality of Auty X, which is left as an exercise. O

There is a second obvious source of automorphisms of . Namely, there
is a homomorphism Aut(W,S) — Aut X, where Aut(W,S) is the group of
automorphisms of W stabilizing S; for such an automorphism takes special
cosets to special cosets and hence induces an automorphism of X.

Corollary 2. The homomorphism Aut(W,S) — Aut X just defined is in-
Jjective, and its image is the group Aut(X,C) consisting of the automor-
phisms of ¥ which stabilize the fundamental chamber C = {1}.

PRrROOF: Given a € Aut(W, S), its image ¢ € Aut X has components ¢’ = «
and ¢” = «|S. This shows that the homomorphism is injective. And ¢ stabi-
lizes C because a(1) = 1. Conversely, suppose we are given ¢ € Aut(Z,C),
and let ¢’, ¢” be its components. Then ¢’ is a bijection satisfying ¢'(1) = 1
and ¢'(ws) = ¢'(w)¢"(s). It follows that ¢'(s1---sa) = ¢"(s1) --- ¢"(sa)
for all s1,...,s4 € S. This implies that ¢’ is a homomorphism, hence an au-
tomorphism, and that ¢'(s) = ¢"(s) for all s € S. Thus ¢’ is in Aut(W,S)
and ¢ is its image in Aut(X, C). O

Remark. The group Aut(W,S) is quite easy to understand, in view of
the Coxeter presentation of W: An element of this group is determined by
giving a permutation = of S which is compatible with the Coxeter matrix,
in the sense that m(x(s), n(t)) = m(s,t) for all s,t € S. More concisely,
Aut(W,S) is simply the group of automorphisms of the Coxeter diagram
of (W,S).

EXERCISES

1. Show that the full automorphism group of % is the semi-direct product
Auto X X Aut(Z, C). Hence Aut X = W X Aut(W, S).

2. Suppose W is an irreducible finite reflection group. By looking at the list
given in Chapter I of possible Coxeter diagrams, show that, with one exception,
Aut(W,S) is either trivial or of order 2. [The exception is the group of type D4.]
So, with one exception, W is either the full automorphism group of ¥ or a sub-
group of index 2.
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3. Specialize now to the case where W is the group of symmetries of a regular
solid X, and note (again by looking at the list) that Aut(W, S) is of order 2 if and
only if X is self-dual. Explain this geometrically. More precisely, explain why an
isomorphism from X to its dual induces a “label-reversing” automorphism of I.
[HINT: X is the barycentric subdivision of the boundary of X.]

Finally, we complete the construction of foldings begun in §I1.3B.

Corollary 3. Let C; and C3 be distinct adjacent chambers of ¥.. Then
there is an endomorphism ¢ of ¥ with the following properties:

(1) ¢ is a retraction onto its image ®.
(2) Every chamber in ® is the image of exactly one chamber not in ®.

(3) ¢(Cz) = (-

PROOF: We may assume that C; is the fundamental chamber C, in which
case C is necessarily sC for some s € S. In this case we already constructed
the first component ¢’ of the desired ¢ in §I1.3B. Moreover, we saw in the
course of that construction that ¢’ takes t-adjacent chambers to t-adjacent
chambers for all £ € S. Thus we can take ¢” to be the trivial permutation
of S. Everything should be clear now, except perhaps for (1), which can be
expressed by saying that ¢ is idempotent, i.e., that ¢ = ¢. But ¢% and ¢
are type-preserving chamber maps which agree on chambers, hence they
agree on all simplices. O

4 Half-spaces

We are ready, finally, to complete the circle of ideas begun in Chapter II. We
will first develop, following Tits [56], a theory of half-spaces and reflections
in a thin chamber complex; this theory is based on the notion of “folding”
that we have already introduced informally. Once the basic properties of
foldings have been laid out, it will be evident that a Coxeter complex
E(W,S) does indeed possess a rich supply of half-spaces and that W is
generated by reflections of . Finally, we will prove a theorem of Tits that
characterizes the Coxeter complexes as the thin chamber complexes with a
“rich supply” of half-spaces.

4A Foldings

Let ¥ be an arbitrary thin chamber complex. Recall that an endomorphism
¢ of ¥ is called idempotent if $2 = @, or, equivalently, if ¢ is a retraction
onto its image. A folding of ¥ is an idempotent endomorphism ¢ such that
for every chamber C' € ¢(X) there is exactly one chamber C’ ¢ ¢(X) with
#(C") = C.

Let ¢ be a folding and let ® be its image ¢(X). It is easy to see that ® is
a chamber complex in its own right, since ¢ takes galleries to galleries. Let
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®’ be the subcomplex of ¥ generated by the chambers not in ®; thus @’
consists of all such chambers and their faces. By the definition of “folding”,
then, ¢ induces a bijection

Chd®' = Cho,

where Ch ® (resp. Ch ®’) denotes the set of chambers in ® (resp. ¢').

We now define a function ¢’ on Ch X by taking ¢’| Ch @’ to be the identity
and ¢'| Ch® to be the inverse of the bijection above. Intuitively, ¢’ is the
“folding opposite to ¢”; but ¢’ is not really a folding, since it is only defined
on chambers. I do not know whether, in the present generality, ¢’ can be
extended to an endomorphism of ¥. Nevertheless, the following is true.

Lemma 1. ¢’ takes adjacent chambers to adjacent chambers.

ProOF: We may assume that the two given chambers C and D are distinct.
If they are both in &', there is nothing to prove. So assume that at least
one of them, say C, is in ®. Then ¢'(C) is the unique C’ € ¥’ such that
#(C') = C. Let A= C N D be the common face of C and D, and let A’ be
the face of C’ such that ¢(A’) = A. Finally, let D’ be the chamber distinct
from C' and adjacent to C’ along A’. The following schematic diagram
should help you keep all this notation straight:

® C|D | D|C ¢
A A’

The diagram shows the picture we would expect if C and D are both in ®;
the big vertical bar in the middle is intended to suggest the “wall separating
® from ®”. You should visualize ¢ as folding from right to left along this
wall and ¢’ as folding from left to right.

Since ¢(D’) is a chamber having A as a face, we must have either ¢(D') =
C or ¢(D') = D. Suppose first that D’ € @', as suggested by the picture.
Then we cannot have ¢(D’) = C, since then C’ and D’ would be distinct
chambers in ®' mapping to C. So we must have ¢(D’) = D, which implies
that D € ® and that ¢/(D) = D’. Thus ¢'(D) is adjacent to ¢'(C) in this
case.

The other possibility is that D' € ®. In this case the correct picture is
presumably

C=D|D=C,

but we must prove this rigorously. Since D’ is in ®, so is its face A’. Hence
A = ¢(A’) = A’. Thus all four of our chambers have the common face A.
The thinness of ¥ now implies that {C,D} = {C’,D’}. Since C # C’
[because one is in ® and the other is in ®'], the only possibility is that
C=D €®and D =C" € &. Thus ¢/(D) = D = C' = ¢'(C), so
adjacency is again preserved. O

Note that, as a consequence of this lemma, ¢’ takes galleries to galleries.
In particular, it follows that &' is a chamber complex.
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We now proceed to develop the basic properties of our folding ¢ and the
associated function ¢’ and subcomplexes ® and &®'.

Lemma 2. There exists a pair C,C’ of distinct adjacent chambers with
C € ® and C' € ®'. For any such pair, we have ¢(C') = C and ¢'(C) = C".

Proor: Since Ch® and Ch®’ are both non-empty, there is a gallery T
which starts in ® and ends in ®’. Then I' must cross from ® to &’ at some
point, whence the first assertion. Suppose, now, that C and C’ are as in
the statement of the lemma, and let A=CNC'. Then A< C € ®,s0 A
is fixed by ¢ and hence ¢(C’) has A as a face. By thinness, we must have
#(C") = C or ¢(C'") = C'. But the second possibility would imply C’ € ¥,
so ¢(C") = C. It now follows from the definition of ¢’ that ¢'(C) = C’'. O

Lemma 3. ® and &’ are convex subcomplexes of ¥, in the sense that if T
is a minimal gallery in ¥ with both extremities in ® (resp. ®'), then T lies
entirely in ® (resp. ®’').

Proor: Suppose I' is a minimal gallery with both extremities in ®. If T is
not contained in ®, then it must cross from ® to ®’ at some point. Thus
there is a pair of consecutive chambers in I" to which we can apply Lemma 2.
But then ¢(I') stutters. We can therefore eliminate the repetitions and get a
shorter gallery with the same extremities as I', contradicting the minimality.
A similar argument (using ¢') works for ®'. O

Lemma 4. Let C and C' be as in Lemma 2. Then
Ch®={DeChX:d(D,C)<d(D,C")}

and
Chd®' ={DeChx:d(D,C)>d(D,C")}.
In particular, no chamber of ¥ is equidistant from C and C’.

(You should convince yourself that the last assertion is not vacuous, i.e.,
that there are thin chamber complexes in which a chamber D is equidistant
from two adjacent chambers C,C’. The intuitive reason why it cannot
happen in the present context is that the “wall” separating C from C’
would have to cut through D, contradicting the fact that our two “halves”
® and ¢’ are subcomplexes.)

ProoOF: Note that the right-hand sides of the two equalities to be proved
are disjoint sets of chambers. Consequently, since ® and &’ partition the
chambers of ¥, it suffices to prove that the left-hand sides are contained in
the right-hand sides. Suppose, then, that we are given a chamber D € @,
and let I' be a minimal gallery from D to C’. Then, as before, I' must cross
from ® to &' at some point, so we may fold it (i.e., apply # to it) to obtain
a stuttering gallery from D to ¢(C’) = C. Hence d(D,C) < d(D, ("), as
required. A similar argument, using ¢’, proves the second inclusion. O
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Lemma 5. Suppose C and C’ are distinct adjacent chambers such that
#(C") = C. Then ¢ is the unique folding taking C' to C.

ProOOF: Note first that we have C € ¢(X) = ® and C' € &' [because
#(C") # C']. So Lemma 4 is applicable and yields a description of the two
“halves” ® and ®' of ¥ determined by ¢. If ¢ is a second folding with
¥(C") = C, then we can similarly apply Lemma 4 to obtain the same
description of the halves of ¥ determined by . In particular, it follows
that 1, like ¢, is the identity on ® and maps Ch &’ bijectively to Ch . We
must show that ¢ agrees with ¢ on all vertices of ¢'.

To begin with, we know that the two foldings both take C’ to C and
fix all vertices of the codimension 1 face C N C’ of C’; hence they agree
pointwise on C’ (i.e., they agree on all vertices of C’). We will complete
the proof by showing that ¢ and 1 continue to agree pointwise as we move
away from C’ along a non-stuttering gallery I' in ®’. It suffices to show that
if ¢ and v agree pointwise on a chamber D € ®’ then they agree pointwise
on any chamber E € ®' which is adjacent to D (and distinct from D).

Let A be the common face DN E. Let D; = ¢(D) = ¢¥(D), let A; =
#(A) = Y(A), and let E; be the unique chamber distinct from D; and
having A; as a face:

® E |D, | D|E &
A A

Then necessarily ¢(F) = E; = (F); for the only other possibility is that
¢ or ¥ maps E to D, contradicting the injectivity of ¢ and ¢ on Ch ®’.
And ¢ and ¢ must agree pointwise on E, since they are already known to
agree on all but one vertex of F. O

Remark. The argument used in the previous two paragraphs will be called
the standard uniqueness argument. It will be used repeatedly as we proceed.
For pedagogical reasons, I prefer not to formalize the argument, since I
think it is useful for you to have to think it through several more times.
The basic idea to remember is the following: If a chamber map is known
on all the vertices of one chamber, then you can often figure out what it
has to do as you move away from that chamber along a gallery.

We will say that the folding ¢ is reversible if the function ¢’ defined
above on chambers extends to a folding. Note that if C and C’ are as in
Lemma 5, then we have ¢'(C) = C’; so if ¢ is reversible, then the extension
of ¢’ to a folding is unique: It is the folding of ¥ taking C to C’. We will
use the same symbol ¢’ for this extension, and we will call it the folding
opposite to ¢.

Lemma 6. Let C and C' be distinct adjacent chambers with ¢(C’) = C.
Then ¢ is reversible if and only if there exists a folding taking C to C'. In
this case there is an automorphism s of ¥ such that s|® = ¢’ and s|®’' = ¢.
This automorphism is of order 2, and it can be characterized as the unique
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non-trivial automorphism of ¥ which fixes C N C' pointwise. Finally, the
set of simplices of ¥ fixed by s is the subcomplex ® N ®' of T.

ProoF: We have already seen that if ¢ is reversible then the opposite
folding ¢’ takes C to C’. Conversely, suppose there is a folding ¢; such
that ¢1(C) = C’. Then we can apply Lemma 4 to ¢; to deduce that ¢;
determines the same “halves” ® and ®’ as ¢ (but with their roles reversed,
i.e., ® is the image of ¢;). In particular, ¢ and ¢, are both the identity on
H = &N &, so there is a well-defined endomorphism s of £ with s|® = ¢,
and s|®’ = ¢. Note that H is the full fixed-point set of s; for if A ¢ H, say
A ¢ @, then s(A) = ¢(A) # A.

It is clear that s maps Ch ® bijectively to Ch ®’, and vice versa, so s is
bijective on Ch X. Hence s? is bijective on Ch X. Since s? fixes C pointwise,
the standard uniqueness argument is applicable and shows that s? is the
identity. In particular, s is an automorphism.

We now prove that ¢;|ChX = ¢’, and hence that ¢ is reversible. Since
¢' and ¢; are both the identity on Ch ®’, it suffices to consider chambers
D € ®. For any such D we have D = s2(D) = ¢(¢1(D)), so ¢#1(D) is the
(unique) chamber in ¢’ which is mapped by ¢ to D. Hence ¢,(D) = ¢'(D)
by the definition of the latter.

Finally, to prove the characterization of s stated in the lemma, suppose
that ¢ is another non-trivial automorphism fixing C N C’ pointwise. Then ¢
. must interchange C' and C’; for otherwise ¢ would have to fix them point-
wise, and the standard uniqueness argument would show that ¢ is trivial.
Thus t agrees with s (pointwise) on C, and both are bijective on Ch £. We
can therefore apply the standard uniqueness argument yet again to deduce
that s = {. O

We now introduce geometric language and summarize some of the results
above in this language. A half-space of ¥ is a subcomplex ® which is the
image of a reversible folding ¢. In view of Lemmas 2 and 5, the folding ¢ is
uniquely determined by ®. The subcomplex &' generated by the chambers
not in ® is again a half-space, being the image of the opposite folding ¢’;
it 1s called the half-space opposite to ®.

The intersection H = ®NP’ of two opposite half-spaces will be called the
wall bounding ® (or ®’). Note that we can recover the pair of half-spaces
{®,®'} from the wall H and, in fact, from any simplex A € H which
is of codimension 1 in ¥. To see this, it suffices to describe the pair of
foldings {¢, ¢’} in terms of A: Let C; and C, be the chambers having A as
a face. Then there is a unique folding ¢; (resp. ¢2) such that ¢,(C2) = C
(resp. ¢2(C1) = (), and {,¢'} = {¢1, 42}

A wall H determines an automorphism s = sy by Lemma 6, which
fixes H pointwise and interchanges the two half-spaces determined by H.
For any A € H as in the previous paragraph, we can characterize s as the
unique non-trivial automorphism of ¥ that fixes A pointwise; in particular,
s is the unique non-trivial automorphism fixing every simplex of H. We
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call s the reflection of ¥ with respect to H.

Finally, two chambers C,C’ € X will be said to be separated by the
wall H if one is in ® and the other is in ®’. If the two chambers are
adjacent, Lemmas 2 and 5 imply that H is then the unique wall separating
them.

In case X is a Coxeter complex X(W, S), Corollary 3 in the previous sec-
tion shows that every pair Cy, Cs of distinct adjacent chambers is separated
by a wall. For we have a folding taking Cs to C; and also one taking C
to Co; these foldings are therefore opposite to one another by Lemma 6 and
determine a wall separating C; from C,. If C; and C; are C and sC for
some s € S, where C is the fundamental chamber, it is easy to see that the
reflection associated to this wall is given by the action of s. It follows easily
that the reflections of ¥ determined by all possible walls are precisely the
elements of W that we called reflections in Chapter II. Consequently, the
abstract set H of “walls” used in that chapter can be identified with the
set of walls of X.

You should now be thoroughly convinced that Coxeter complexes possess
a good theory of half-spaces. We will complete the chapter by showing that
this property characterizes the Coxeter complexes among the thin chamber
complexes.

EXERCISES

1. Let ® be a half-space and s the associated reflection. If C and C’ are
chambers in ®, show that d(C,sC’) > d(C,C"). [HINT: Argue as in the proof
of Lemma 4.]

2. You have now seen the standard uniqueness argument applied several times.
Try to write down a lemma which includes all of these applications. [ Warning:
Unless you have incredible foresight, you can expect to have to modify your
lemma one or more times as you see further applications of the argument. In
fact, this might even happen in the next few pages.]

4B Characterization of Cozeter complezes

Now that we have begun considering abstract chamber complexes that
are not necessarily given to us as complexes X(W,S), it is convenient to
slightly expand our previous terminology: From now on we will use the term
Cozeter complex for any abstract simplicial complex ¥ which is isomorphic
to L(W,.S) for some Coxeter system (W,.S) with S finite. This differs from
our previous use of the term in that we do not assume that we are given
a specific isomorphism ¥ = ¥(W,S) as part of the structure of X. In
particular, no chamber of ¥ has been singled out as “fundamental”.

The following theorem of Tits says, roughly speaking, that the Cox-
eter complexes can be characterized as the thin chamber complexes with
“enough” half-spaces.
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Theorem. A thin chamber complex ¥ is a Coxeter complex if and only if
every pair of distinct adjacent chambers is separated by a wall.

(Note: We can restate the condition of the theorem as follows: For every
ordered pair C,C’ of distinct adjacent chambers, there is a folding ¢ of &
with ¢(C’) = C. We don’t need to specify here that ¢ is reversible; for this
follows, as we saw above in the case of £(W,S), from the existence of a
folding taking C’ to C'.)

Proor: We have already proven the “only if” part. Conversely, assume
that every pair of distinct adjacent chambers is separated by a wall. Choose
an arbitrary chamber C and let S be the set of reflections determined by
the codimension 1 faces of C. Let W C AutX be the subgroup generated
by S. We will prove that (W, S) is a Coxeter system and that £ ~ (W, S).
The first observation is that W acts transitively on the chambers of X; the
proof of this is identical to the proof given in Chapter I for finite reflection
groups. It follows that every codimension 1 simplex of ¥ is W-equivalent to
a face of C, and hence every reflection of ¥ is W-conjugate to an element
of S. This shows that the “reflections” in W, in the sense of Chapter II,
are precisely the reflections of ¥ obtained from the theory of half-spaces.
We can therefore identify the set H used in Chapter II with the set of
walls of X, and we can identify H x {1} with the set of half-spaces of L.
It is now a routine matter to verify condition (A) of Chapter II by using
the W-action on the set of half-spaces. Thus (W, S) is a Coxeter system.
[If this argument seemed a little too quick, don’t worry; we will give
below a completely independent proof that (W,S) is a Coxeter system.]
To prove that ¥ ~ X(W, S), the crucial step is to calculate the stabilizers
of the faces of C. We could simply repeat, essentially verbatim, the argu-
ments which led to the analogous calculation for finite reflection groups in
Chapter 1. For the sake of variety, however, I will use a different method.
This is actually a little longer, but it adds some geometric insight that we
would not get by repeating the previous arguments. In particular, it leads
to a simple geometric explanation of the deletion condition.
We now proceed with a sequence of observations that will lead, ulti-
mately, to the desired calculation of stabilizers.

(a) X is labellable.

PROOF: Let C be the subcomplex Y<c. It suffices to show that Cisa
retract of X. The idea for showing this is to construct a retraction p by
folding and folding and folding ..., until the whole complex ¥ has been
folded up onto C.

To make this precise, let Ci,...,C, be the chambers adjacent to C and
distinct from it, and let ¢1,...,¢, be the foldings such that ¢;(C;) = C.
Let ¥ be the composite ¢, o--- 0 ¢1. I claim that d(C, ¢ (D)) < d(C, D)
for any chamber D # C. To prove this, let I' : C,C’,..., D be a minimal
gallery from C' to D; we will show that (T') stutters. If ¢1(T') stutters, we
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are done. Otherwise, the standard uniqueness argument shows that ¢; fixes
all the chambers of I pointwise. In this case, repeat the argument with ¢4,
etc. Eventually we will be ready to apply the folding ¢; which takes C’
to C. If the previous foldings did not already make I' stutter, then they
have fixed T’ pointwise and the application of ¢; yields a stuttering gallery.
This proves the claim.

It follows that, for any chamber D, ¥*(D) = C for k sufficiently large.
Since v fixes C pointwise, this implies that the “infinite iterate” p =
limi_, o0 ¥ is a well-defined chamber map which retracts ¥ onto C. O

It will be convenient to choose a fixed labelling A with S as the set
of labels, analogous to the canonical labelling that we used earlier in the
chapter. To this end we label the vertices of C by setting A(v) equal to the
reflection s € S which fixes the face of C opposite v; we then extend this
labelling to all of & by means of a retraction p of X onto C. Note that this
labelling A has a property which by now should be very familiar: For any
s € S, the chambers C and sC are s-adjacent.

(b) Foldings and reflections are type-preserving, hence all elements of W
are type-preserving. Consequently, wC' and wsC are s-adjacent for any
weEWandseS.

PROOF: A folding ¢ fixes at least one chamber pointwise, hence the induced
map ¢, on labels is the identity (cf. §3 above). This proves that foldings
are type-preserving, and everything else follows from this. O

IfT': Cy,...,Cy4is a non-stuttering gallery and H; is the wall separating
Ci_1 from Cj;, then, as usual, we will say that H,,...,H; are the walls
crossed by T'.

(c) IfT : Cy,...,Cq is a minimal gallery, then the walls crossed by T
are distinct and are precisely the walls separating Cy from Cy. Hence the
distance between two chambers is equal to the number of walls separating
them.

PROOF: Suppose H is a wall separating Cy from Cjy. Let ® and &' be the
corresponding half-spaces, say with Cp € ® and Cz € ®'. Then there must
be some 7 with 1 < i < d such that C;_; € ® and C; € ®’. Since ® and ¢’
are convex (Lemma 3 above), it follows that we have Cy,...,Ci_1 € ® and
Ci,...,Cq € ®'. In other words, T crosses H exactly once. Now suppose
H is a wall that does not separate Cy from Cy4. Then Cy and C; are both
in the same half-space ®, so the convexity of ® implies that I' does not
cross H. O

The crux of this proof, obviously, is the convexity of half-spaces, which
in turn was based on the idea of using foldings to shorten galleries. We
can now use this same idea to prove a geometric analogue of the deletion
condition. In order to state it, we need to talk about the “type” of a gallery.
IfT : Cy,...,Cq is a non-stuttering gallery, then the type of I' is the
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sequence s = (s1,...,8q) of labels such that C;_; is s;-adjacent to C; for
i=1,...,d. [This notion of “type of a gallery” makes sense in any labelled
chamber complex; we will use it again in later chapters.]

(d) Let T’ be a non-stuttering gallery of type s = (s1,...,84). If T is not
minimal, then there is a non-stuttering gallery I’ with the same extremities
as I', such that I has type s’ = (s1,...,8,...,8j,...,84) for some i < j.

PRrRoOF: Since T is not minimal, (c) implies that the number of walls sep-
arating Cp from Cj is less than d. Hence the walls crossed by I' cannot
all be distinct; for if a wall is crossed exactly once by I', then it certainly
separates Cp from Cy4. We can therefore find -a half-space ® and indices
t,J, with 1 < ¢ < j < d, such that C;_; and C; are in ® but C} is in the
opposite half-space @’ for i < k < j:

Ci—1|C;
® : @’
Cj Cj_l
Let ¢ be the folding with image ®. If we modify I' by applying ¢ to the
portion Cj,...,Cj_1, we obtain a gallery with the same extremities which

stutters exactly twice:
CO) SRR Ci-—lr ¢(Ct)1 R ¢(Cj-—l)) CJ} s )Cd-

So we can delete C;_; and C; to obtain a non-stuttering gallery I of
length d — 2. The type s’ of IV is (s1,...,8i,...,3;,...,84) because ¢ is
type-preserving. O

(e) The action of W is simply-transitive on the chambers of T.

Proor: We have already noted that the action is transitive. To prove that
the stabilizer of C is trivial, note that if wC = C then w fixes C pointwise,
since w is type-preserving. But then w = 1 by the standard uniqueness
argument. O

It follows from (e) that we have a bijection W — ChX, given by w
wC'. This yields the familiar 1-1 correspondence between non-stuttering
galleries starting at C' and words s = (s;,...,54), where the gallery (C;)
corresponding to s is given by C; = s;---5;C for « = 0,...,d. In view
of (b), the type of this gallery is the sequence s that we started with. So
a direct translation of (d) into the language of group theory yields the
deletion condition for (W, S). This gives, as promised, a new proof that
(W, S) is a Coxeter system.

(f) The subcomplex C = < is a fundamental domain for the action
of W on X, in the sense that every simplex of ¥ is W-equivalent to a
unique A € C. Moreover, the stabilizer of the face of C of type S — S’ is

the special subgroup (S’) of W. ‘

ProoOF: The first assertion follows from the transitivity of W on the cham-
bers, together with the fact that W is type-preserving. To prove the second,
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let A be a face of C and let A(A) = S — S'. It follows from the definition
of A that S’ is the set of elements of S that fix A pointwise. In particular,
the subgroup W’ = (S’) stabilizes A. To prove that W’ is the full stabilizer,
suppose wA = A. We will show by induction on {(w) that w € W’'. We
may assume w # 1, so we can write w = sw’ with s € S and {(w') < l(w).
Our correspondence between words and galleries now implies that there
is a minimal gallery of the form C,sC,...,wC. By (c), then, the wall H
corresponding to s separates C from wC'.

Let ® be the half-space bounded by H which contains C. Then wC is
in the opposite half-space s®, so we have w'C € ®. The equation wA = A
now Yyields

wWA=sA€cdNsd=H,

hence A € H and w'A = A. We therefore have s € S’ [because s fixes A
pointwise] and w' € W’ by induction; thus w = sw’ € W'. O

The desired isomorphism ¥ ~ X(W,S) is an easy consequence of (f).
This completes the proof of the theorem. O



IV

Buildings

The definition of “building”, to be given in the first section below, involves
three axioms which are quite easy to state. It is not so easy, however,
to motivate this definition. In particular, you will probably wonder how
someone (namely, Tits) came up with these axioms. I will not attempt to
answer this question now, but I will make some historical remarks in the
next chapter (§V.4) which should make the definition seem less mysterious.

The terminology used in this subject is attributed by Tits to Bourbaki.
In order to understand where it comes from, you need to interpret the
word “chamber” that we have been using as meaning “room”. Thus Coxeter
complexes are divided up into rooms by walls, and they are therefore called
“apartments”. Buildings, then, are complexes which are built by putting
apartments together. We now state the axioms, which specify the rules for
putting the apartments together.

1 Definition and First Properties

A butlding is a simplicial complex A which can be expressed as the union
of subcomplexes X (called apartments) satisfying the following axioms:

(B0O) FEach apartment ¥ is a Coxeter complex.

(B1) For any two simplices A, B € A, there is an apartment ¥ containing
both of them.

(B2) IfY and ¥’ are two apartments containing A and B, then there is
an isomorphism ¥ — ¥ fixing A and B pointwise.

Note that we can take both A and B to be the empty simplex in (B2);
hence any two apartments are isomorphic. Note also that A is a chamber
complex. For if C and C’ are maximal simplices, then they are also maximal
simplices of some apartment £ by (B1), so they have the same dimension
and are connected by a gallery.

Any collection A of subcomplexes ¥ satisfying the axioms will be called a
system of apartments for A. Thus a building is a simplicial complex which
admits a system of apartments. Note that we do not require that a building
be equipped, as part of its structure, with a specific system of apartments.
The reason for this is that it turns out that a building always admits a
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canonical system of apartments. And in the important special case where
the apartments are finite Coxeter complexes, it is even true that there is a
unique system of apartments. We will prove both of these assertions later
in the chapter (§§4 and 5, respectively).

Remarks

1. The definition of “building” given above is not the only one that is
found in the literature. The complexes we have called buildings are some-
times called weak buildings, the term “building” being reserved for the case
where A is thick. This means, by definition, that every codimension 1 sim-
plex is a face of at least three chambers. If we confine ourselves to the thick
case, then axiom (BO) can be considerably weakened. Namely, we need
only assume that the apartments ¥ are thin chamber complexes, and it
then follows from (B1) and (B2) that they are in fact Coxeter complexes.
The proof of this will be given in §7.

2. Axiom (B2) can be replaced by the following weaker axiom, which is
simply the special case of (B2) in which one of the two given simplices is
a chamber:

(B2') IfY and ¥’/ are apartments containing a simplex A and a chamber C,
then there is an isomorphism ¥ — ¥’/ fixing A and C pointwise.

For suppose that (B1) and (B2') are known and that we are given an
arbitrary pair of simplices A, B contained in two apartments ¥ and ¥’.
Choose chambers C and D with A < C € X and B < D € ¥/, and
choose an apartment X" containing C and D. In view of (B2’), we have
isomorphisms

) =, o i E',
where the first isomorphism fixes C' and B pointwise and the second iso-

morphism fixes A and D pointwise. The composite is then an isomorphism
¥ — ¥’ fixing A and B pointwise, so (B2) holds.

3. Axiom (B2’), in turn, is equivalent to the following axiom, which
appears at first glance to be stronger:

(B2") IfX and ¥’ are two apartments with a common chamber, then there
is an isomorphism ¥ — ¥/ fixing every simplex in TN X',

For suppose that (B2’) holds and that ¥ and ¥’ are apartments with a
common chamber C. Then we have, for each A € ¥ NY’, an isomorphism
$a : ¥ — Y fixing A and C pointwise. But our standard uniqueness
argument (cf. §II1.4) shows that there is at most one isomorphism from ¥
to ¥’ fixing C pointwise. So all the ¢ 4 are equal to a single isomorphism ¢,
which therefore fixes the entire intersection X N Y.

Assume, for the remainder of this section, that A is a building and that
A is a fixed system of apartments.
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Proposition 1. A is labellable. Moreover, the isomorphisms ¥ — Y/ in
axiom (B2) can be taken to be label-preserving.

Proor: Fix an arbitrary chamber C, and label its vertices by some set I.
If ¥ is any apartment containing C, then [since Coxeter complexes are
labellable] there is a unique labelling As; of ¥ which agrees with the chosen
labelling on C'. For any two such apartments X, ¥/, the labellings Ay and Ax
agree on ¥ N X'; this follows from the fact that Ayy can be constructed as
Az o ¢, where ¢ : ¥’ — X is the isomorphism fixing ¥ N X' [cf. (B2")].
The various labellings As, therefore fit together to give a labelling A defined
on the union of the apartments containing C. But this union is all of A
by (B1), so the first assertion of the proposition is proved.

To prove the second assertion, it suffices to consider the isomorphisms
which occur in axiom (B2’). But such an isomorphism is automatically
label-preserving, since it fixes a chamber pointwise. O

Choose a fixed labelling A of A by a set I. In view of the essential
uniqueness of labellings, nothing we do will depend in any serious way on

this choice. The labelling A yields, for any apartment X, a Cozeter matriz
M = (mij)i’jej, defined by

my; = diam(lkg A),

where A is any simplex in ¥ of type I— {7, j} (cf. §II1.2). Now Proposition 1
implies that any two apartments are isomorphic in a label-preserving way.
Consequently:

Proposition 2. All apartments have the same Coxeter matrix M. O

We will therefore call M the Cozeter matriz of A. Similarly, we can
speak of the Cozeter diagram of A; it is a graph with one vertex for each
i € I. Strictly speaking, we should be talking about the Coxeter matrix and
diagram of the pair (A,.A); but we will show in §3 below that the matrix
and diagram are really intrinsically associated to A and do not depend on
the system of apartments .A.

The importance of the Coxeter matrix, of course, is that it completely
determines the isomorphism type of the apartments. Let’s spell this out
in detail: Let Wjs be the Coxeter group associated to M, with genera-
tors s; (¢ € I) and relations (s;s;)™*% = 1. Let ¥ ar be the Coxeter complex
Y(Ww, {si}). It has a canonical labelling as in Chapter III, with I as the
set of labels. [More precisely, the set of labels is the set of generators {s;};
but this set is in 1-1 correspondence with I, so we may view I as the set
of labels.] We can now deduce from Proposition 2:

Corollary. For any apartment X, there is a label-preserving isomorphism
Y¥al¥ M-

PROOF: We can replace the labelling A of A by a different one without
affecting the truth of the statement to be proved. So we may assume that
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A has been constructed as follows: Choose an isomorphism ¢ : ¥ — X(W, S)
for some Coxeter system (W, S). Use ¢ to transport the canonical labelling
of £(W,S) to a labelling As of ¥, with S as the set of labels. And now
extend Ay to a labelling A of A. [To see that this last step is possible,
simply take A to be a labelling of A which agrees with Ay on the vertices
of one chamber of X; then A necessarily agrees with Ay on all of ¥ by the
uniqueness of labellings of X.]

With this choice of A, the result is essentially obvious. For the Coxeter
matrix M of ¥ is now equal to the Coxeter matrix of (W,S) by §III.2.
So we can identify W)y, with W and X,y with ¥(W,S), and our original
isomorphism ¢ is the desired label-preserving isomorphism. O

Finally, we record one more simple consequence of the axioms. Recall
that the study of local properties of Coxeter complexes consisted of a single
result, which said that the link of a simplex in a Coxeter complex is again
a Coxeter complex. The situation for buildings is similar:

Proposition 3. If A is a building, then so islk A for any A € A.

ProoF: Choose a fixed system of apartments A for A. Given A € A, let
A’ be the family of subcomplexes of lka A of the form lks A, where X is
an element of A containing A. Any such subcomplex is a Coxeter complex
by the result cited above. So it remains to verify (B1) and (B2). Given
B, B’ € lka A, we can join them with A to obtain simplices AUB and AUB’
in A. Since A satisfies (B1), there is an apartment £ containing both of
these simplices. Hence lks A is an element of A’ containing B and B’. This
proves that A’ satisfies (B1), and the proof of (B2) is similar. O

2 Examples

Almost all of the examples in this section will be defined as flag complexes,
so you should review the definition of the latter before proceeding (cf. §B
of the appendix to Chapter I).

Let P be a set with an “incidence” relation as in the appendix just
cited. Assume, in addition, that P is partitioned into non-empty subsets
Py, Py,...,P,_1. Elements of P; are said to have type i. Or, to use more
intuitive language, elements of Py, Py, P, ... might be called points, lines,
planes, etc. If the incidence relation has the property that two elements
of the same type are never incident unless they are equal, then we will
call P (together with the partition and incidence relation) an n-dimensional
inctdence geometry.

If n = 1, then the geometry just consists of a set of points, with no
further structure. If n = 2, then P is a “plane geometry”, consisting of
points and lines, with some points declared to be incident to some lines. If
n = 3, there are points, lines, and planes. And so on.
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In practice, of course, one is interested in incidence geometries which
are subject to certain axioms, such as the axioms for projective geometry
or some other kind of geometry. We will see below that different types of
geometries correspond to different types of buildings (where the “type” of
a building is determined by its Coxeter matrix).

We proceed now to the examples, starting with a case which is trivial
but nonetheless instructive.

1. Suppose A is a building of rank 1 (dimension 0). Then every apart-
ment must be a O-sphere S°, since this is the only rank 1 Coxeter com-
plex. In particular, A must have at least two vertices. Conversely, a rank 1
complex with at least two vertices is a building (with every 2-vertex sub-
complex as an apartment). Thus the rank 1 buildings are precisely the flag
complexes of the 1-dimensional incidence geometries with at least 2 points.
[It is, of course, reasonable to demand that a 1-dimensional geometry, or
“line”, have at least 2 points. In fact, one often even demands that there

be at least 3 points, which is equivalent to requiring the flag complex A to
be thick.]

2. Suppose A is a building of rank 2 (dimension 1). Then an apartment ¥
must be a 2m-gon for some m (2 < m < 00). We will draw the Coxeter

diagram as
m

O—0,
which should be interpreted as

(o] o]
if m =2 and as

Oo——-o0

fm=3.

Let’s begin with the case m = 2. Then every apartment is a quadrilateral:

[ ]

(The two types of vertices shown here indicate a labelling of A.) It follows
easily from the building axioms that every vertex of type e is connected
by an edge to every vertex of type o. Hence A is the flag complex of a
2-dimensional incidence geometry in which every point is incident to every
line. Conversely, the flag complex of such a geometry is always a rank 2
building (with m = 2), provided that the geometry has at least two points
and at least two lines.

Note that we can also describe A as the join of two rank 1 buildings. This
suggests a general fact, which you might want to prove before continuing:

EXERCISE

If A is a building whose Coxeter diagram is disconnected, show that A is canon-
ically the join of lower-dimensional buildings, one for each component of the
diagram.
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Returning now to Example 2, suppose next that m = 3. Then every
apartment is a hexagon, which we may draw as the barycentric subdivision
of a triangle:

Now that we have gotten used to thinking about flag complexes of incidence
geometries, this picture suggests a configuration of three lines in a plane
(one line for each o), whose pairwise intersections yield three points of the
plane (one for each e). If you have studied projective geometry, then you
know that three lines in “general position” in a projective plane always
yield such a configuration. So it is reasonable to guess that A is the flag
complex of a projective plane. Before proceeding further, let’s recall the
definition of the latter:

A projective plane is a 2-dimensional incidence geometry satisfying the
following three axioms:

(1) Any two points are incident to a unique line.
(2) Any two lines are incident to unique point.
(3) There exist three non-collinear points.

With this definition, it is indeed the case that our building A is the flag
complex of a projective plane. You should try to prove this as an exercise.
[The exercise is not entirely routine; if you get stuck, you’ll see it again
at the end of §3, at which point it should be easier.] Conversely, the flag
complex of a projective plane is a building, with one apartment for every
triangle in the projective plane (where a triangle is a configuration of three
non-collinear points and the three lines they determine). This converse is
a routine exercise, which you should do.

The most familiar example of a projective plane is the projective plane
over a field k. By definition, the set P of “points” is the set of 1-dimensional
subspaces of the 3-dimensional vector space k3; the set P, of “lines” is the
set of 2-dimensional subspaces of k2; and “incidence” is given by inclusion,
i.e., a point € P, is incident to a line L € P; if x C L as subspaces of k3.
If you haven’t seen this before, you should pause to verify the axioms.

It is now easy to construct concrete examples of buildings. Let P be
the projective plane over F, for instance, where F3 is the field with two
elements. Then P has 7 points (each on exactly 3 lines) and 7 lines (each
containing exactly 3 points). The resulting flag complex A is a thick build-
ing with 14 vertices and 21 edges. We will see in Exercise 1 below that the
points of P can be put in 1-1 correspondence with the 7th roots of unity ¢?
(¢ =€2™/7,j =0,...,6) in such a way that the lines of P are the triples
{¢4,¢i+1 ¢i+3}, j =0, ...,6. This leads to the picture of A shown below.
You might find it instructive to locate some of the apartments (there are
28 of them) and to verify some cases of the building axioms.
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The flag complex of the projective plane over Fa*

Remark. This picture is misleading in one respect; namely, it fails to
reveal how much symmetry A has. You can see from the picture that A
admits an action of the dihedral group D4, but in fact Aut A is of order
336. The subgroup Autg A of type-preserving automorphisms is GL3(F),
which is the simple group of order 168.

Continuing with Example 2, one could analyze in a similar way the build-
ings corresponding to m = 4,5,6,.... Each value of m corresponds to a
particular type of plane geometry. When m = 4, for example, the associ-
ated geometry is something called “polar geometry”, in which there do not
exist triangles but there do exist lots of quadrilaterals. Every quadrilateral
in the polar plane yields an apartment in the flag complex, this apartment
being an octagon (or barycentrically subdivided quadrilateral).

Finally, the case m = oo also has a simple interpretation. Namely, build-
ings of this type are simply trees with no endpoints (where an endpoint
of a tree is a vertex which is on only one edge). To see that such a tree
is a building, simply take the apartments to be all possible subcomplexes
which are lines (i.e., co-gons); the verification of the building axioms is a
routine matter. The converse, that every building of this type is a tree, is
more challenging. We will prove it in the next section, but you might want
to try it on your own first.

The two remaining examples are intended to give you a brief glimpse of
some higher-dimensional buildings. Details, which can be found in Tits [56],
will be omitted. We will, however, give some details about these and other
examples in the next chapter, from the point of view of group theory rather

*Reprinted from p. 424 of “Self-dual Configurations and Regular Graphs,”
H. S. M. Coxeter, Bulletin of the American Mathematical Society (1950), Vol-
ume 56, Pages 413-455, by permission of the American Mathematical Society.
The figure appears also on p. 118 of Coxeter’s book “Twelve Geometric Essays”
(Southern Illinois University Press, Carbondale, 1968), where the whole article
is reprinted with corrections.
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than incidence geometry. See also Exercise 2 below.

3. If P is an n-dimensional projective geometry, then its flag complex is
a rank n building of type A,,, i.e., having Coxeter diagram

o—o—o— --- —0——o (n vertices).

Every apartment is isomorphic to the barycentric subdivision of the bound-
ary of an n-simplex, and there is one such apartment for every frame in the
projective space (where a frame is a set of n+ 1 points in general position).
Conversely, every building of type A, is the flag complex of a projective
geometry.
When n = 2, this example reduces to the case m = 3 of Example 2.

4. If P is an n-dimensional polar geometry, then its flag complex is a
rank n building of type B,,, i.e., having Coxeter diagram

00— -+ ——2 (n vertices).
Every apartment is isomorphic to the barycentric subdivision of the bound-
ary of an n-cube (or n-dimensional hyperoctahedron), and there is one such
apartment for every “polar frame” in the given polar space.
Conversely, every building of type B, is the flag complex of a polar
geometry.
When n = 2, this example reduces to the case m = 4 of Example 2.

EXERCISES

1. (a) Let V be a 3-dimensional vector space over F2, and let P = P(V) be
the plane geometry in which the points are the elements of V' — {0} and the lines
are the triples {u,v,w} with v + v + w = 0. Show that P is isomorphic to the
projective plane over F3.

(b) Let A(V) be the flag complex of P(V), with its canonical labelling. If
V* is the dual of V, show that the correspondence between subspaces of V and
subspaces of V* induces a label-reversing isomorphism A(V) =~ A(V*). Con-
sequently, any isomorphism V — V* induces a type-reversing automorphism
of A(V). If the isomorphism V' — V* comes from a non-degenerate symmet-
ric bilinear form on V, show that the resulting automorphism of A(V) is an
involution (i.e., is of order 2).

(c) Let V be the field Fg, viewed as a vector space over F,. Show that there
is a Tth root of unity ¢ € Fs such that the lines in P = P(V) are the triples
L; = {¢*, ¢, ¢13), i € Z/7Z. [HINT: The polynomial z* + z + 1 is irreducible
over Fj ]

(d) With V = Fg as in (c), recall that there is a non-degenerate symmetric
bilinear form on V given by (z,y) = tr(zy), where tr : Fg — F, is the trace.
This induces a type-reversing involution 7 of A = A(V) by (b). Show that r is
given on vertices by ¢* — Lg—;. [HINT: ¢, ¢?, and ¢* all have the same minimal
polynomial, from which you can read off that they have trace 0.] Describe 7 in
terms of the picture of A above.
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2. Let V be a vector space of finite dimension n > 2 over an arbitrary field.
The projective geometry associated to V consists of the non-zero proper subspaces
of V, two such being called incident if one is contained in the other. (This is an
example of an (n — 1)-dimensional projective geometry.) The purpose of this
exercise is to prove that the flag complex A of this geometry is a building.

By a frame in V we will mean a set F = {L1,..., Ly} of 1-dimensional sub-
spaces of V such that V =L, &---@® L,. Given such a frame, consider the set of
subspaces V' C V such that V’ is spanned by a non-empty proper subset of F.
Let 3 = X(F) be the subcomplex of A consisting of flags of such subspaces. Call
a subcomplex ¥ of this form an apartment.

(a) Show that each apartment is a Coxeter complex of type A,_;. [HINT: See
the exercise in §1.5H.]

(b) Let C and C' be maximal simplices of A with vertex sets
ViC-+-CVaoy and VW C---CVa_q,

respectively. Set Vo = Vg = 0 and V, = V, = V, and view {Vi}o<icn and
{V{}o<i<n as composition series for V. According to the Jordan-Holder theorem,
there is a permutation 7 of {1,...,n} such that V{/V_; = V;/V;—1 if j = =(3).
This is of course a triviality in the present context of vector spaces; but we need
to review how the proof of the Jordan-Holder theorem yields a canonical = and
canonical isomorphisms V{/V_, = V;/Vj_;.

For each i € {1,...,n}, the composition series {V]}o<j<n induces a filtration
of V! /V._;. [First intersect with V, then take images mod V{_,.] Since V;/V{_,
is one-dimensional, this filtration must be trivial, i.e., only one of the successive
quotients is non-trivial. Define = (i) to be the index j such that the jth quotient
is non-trivial. Equivalently, j = (i) is characterized by the property that

V.'{._]_ for k < J
V! fork>j.

The resulting function # = #(C,C') : {1,...,n} — {1,...,n} is called the
Jordan-Hélder permutation associated to the pair C,C’. Show that = is indeed
a permutation. More precisely, show that x(C,C’) and x(C’,C) are inverses of
one another and that, if x(z) = j, there are isomorphisms

Vi = viny; = Y
Vi, (Vi nV) + (V! nVja) Vi

induced by inclusions. [HINT: All of this can be extracted from the proof of the
Jordan-Holder theorem as given in many standard texts (e.g., [34], §3.3). But you
might prefer to just prove it directly. To show, for instance, that V;_; NV, C V,_;,
suppose this is false; then V; = Vj—; + (V_; NV;). Intersect both sides with V{
to obtain V/ NV, = (V/ nV;_1) + (V.1 NV;) C V., contradicting the definition
of j.]

(c) Deduce from (b) that axiom (B1) holds. [HINT: Given maximal simplices C
and C’, find a frame F by choosing, for each ¢, j as above, a suitable L; C V/NV; ]

(d) Complete the proof that A is a building by verifying (B2"). [HINT: Any
chamber in X(F) determines a canonical ordering of the n elements of F. So

a chamber in two apartments determines a canonical isomorphism between the
apartments.]

Vii+(VinW) = {
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(e) Let W be the symmetric group on n letters, i.e., the Coxeter group of
type An—1. As a byproduct of the proof that A is a building, we have obtained
a function ChA x ChA — W, given by (C,C') — =(C,C’). Can you guess
what the geometric meaning of this function is? [HINT: What is «(C,C') if C
and C' are i-adjacent, i.e., if V; = V] for j # i?] We will come back to this in
Exercise 3(e) of §4.

3 Retractions

Retractions, as we saw in Chapter IV, can be quite useful technical tools.
In this section we will establish the existence and formal properties of
retractions of a building onto its apartments.

Assume throughout this section that A is a building and that A is an
arbitrary system of apartments.

Proposition 1. Every apartment X is a retract of A.

Proor: Thisis very similar to the proof of labellability: Fix a chamber C of
the given apartment X, and consider all the apartments ¥’ which contain C.
For any such ¥’ there is a unique isomorphism ¢s : ¥’ — ¥ which fixes C
pointwise, where the existence follows from axiom (B2) and the uniqueness
is proved by the standard argument. For any two such apartments ¥/, ¥/
the isomorphisms ¢y and @+ agree on ¥’ N X”. This follows from the
fact that we can construct ¢y» by composing ¢sy with the isomorphism
¥” — ¥’ which fixes every simplex of ¥’ N X" [cf. (B2")]. The various
isomorphisms @5 therefore fit together to give a chamber map p: A — X,
and p is a retraction since ¢y is the identity. O

One useful consequence of this is that combinatorial distances between
chambers of A can be computed in terms of the distance functions on
apartments, which we understand reasonably well:

Corollary 1. Let C and D be chambers of A, and let ¥ be any apart-
ment containing C and D. Then da(C, D) = dx(C, D). Consequently, the
diameter of A is equal to the diameter of any apartment.

ProOF: Suppose T is a minimal gallery in ¥ from C to D. Then T is also
minimal in A; for if there were a shorter gallery in A, then we could get a
shorter one in ¥ by applying a retraction. This proves the first assertion.
As an immediate consequence, we have diamY < diamA. To prove the
opposite inequality, let C’ and D’ be arbitrary chambers of A and let ¥’
be an apartment containing them. Then we have

da(C',D') = dg(C',D') < diam¥'.
But ¥ = ¥’ so diam ¥’ = diam¥ and hence diam A < diamX. O

Corollary 1 can be used to prove the important fact that the Coxeter
matrix M = (m;;)i jer of A, as defined in §1, really is an invariant of A:
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Corollary 2. The Coxeter matrix M depends only on A, not on the sys-
tem of apartments. It is given by

mi; = dlam(lkA A),
where A is any simplex with A(A) = I — {i, j}.

PRroOF: Suppose A(A) = I — {i,j}, and let ¥ be any apartment contain-
ing A. Then we have m;; = diam(lky A) by definition. But lky A is an
apartment in the building lka A, so it has the same diameter as the latter
by Corollary 1. This proves the second assertion, and the first assertion
follows at once. O

As an example, suppose that A is 1-dimensional and that the apartments
are 2m-gons as in Example 2 of the previous section. Then every system
of apartments in A must consist of 2m-gons (for the same m = diam A).

Returning now to the general study of retractions, note that the proof
of Proposition 1 actually yields, for any apartment ¥ and any chamber
C € X, a canonical retraction p = py ¢ : A — L. We call p the retraction
onto ¥ centered at C. It can be characterized as the unique chamber map
A — ¥ which fixes C pointwise and maps every apartment containing C
isomorphically onto X.

This characterization makes it appear that p depends on the apartment
system A. But part (3) of the following proposition gives a different char-
acterization, which shows that p depends only on ¥ and C, not on A.

Proposition 2. The retraction p = pg, ¢ has the following properties.
(1) For any face A< C, p~1(A) = {A}.
(2) p preserves distances from C, i.e., d(C, p(D)) = d(C, D) for any
chamber D € A.

(3) p is the unique chamber map A — ¥ which fixes C' pointwise and
preserves distances from C.

PRrooF: (1) Suppose B € A is a simplex such that p(B) = A < C. Choose
an apartment ¥’ containing both B and C. Then p|¥’ is an isomorphism,
and it maps both A and B to A. Hence B = A.

(2) Let D be a chamber and let ¥’ be an apartment containing C and D.
Since p|¥’ is an isomorphism, we have dg(C, p(D)) = dx/(C, D). In view
of Corollary 1 above, we can delete the subscripts to obtain d(C, p(D)) =
d(C, D), as required.

(3) Suppose ¢ : A — X is another chamber map which fixes C pointwise
and preserves distances from C. Then ¢ and p must both take any minimal
gallery in A starting at C to a minimal gallery in X. In particular, the
image galleries must be non-stuttering. But this is all that is needed to
make the standard uniqueness argument go through, hence ¢ = p. O

Property (2) above enables one, in practice, to figure out what p looks
like. Suppose, for example, that A is a tree as in Example 2 of the previous
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section. Then X is a triangulated line and C is an edge of . Let v and w
be the vertices of C. Then it follows easily from (2) that p simply “flattens
A out” onto X, with the part of A closer to v than to w going to the
corresponding part of X, and similarly for the part closer to w:

W\K )/\,
3>\ c i—d %
v w

We close this section by remarking that the retractions p make it easy
to complete the discussion of 1-dimensional buildings that we began in Ex-
ample 2 of the previous section. Let’s prove, for instance, that a building A
of type =20 is a tree.

Suppose, to the contrary, that A contains a cycle, i.e., a subcomplex Z
which is a k-gon for some k with 3 < k < oo. Let C be a chamber in Z,
with vertices v and w, let £ be any apartment containing C, and let p be
the retraction pg c. As we traverse Z starting at C (thought of as oriented
from v to w, say), the image under p is a closed curve in ¥ passing through
the vertices v,w,... and never passing through w again before returning
to v [cf. part (1) of Proposition 2]. But ¥ is a line, so there is no way for
the curve to get back to v without passing through w. This contradiction
shows that Z cannot exist.

EXERCISES
1. The girth of a 1-dimensional simplicial complex A is the smallest integer
k > 3 such that A contains a k-gon. (Or, if A is a tree, the girth is defined to

be 00.) Arguing as above, show that a building A of type o-""~o with m < co has
girth 2m. In case m = 3, deduce that A is the flag complex of a projective plane.

2. Let A be a connected labellable 1-dimensional simplicial complex in which
every vertex is a face of at least two edges. Show that A is a building if and only
if A has diameter m and girth 2m for some m with 2 < m < co. [“Diameter”
here means the supremum of the distances between vertices.)

4 The Complete System of Apartments

We have seen a number of cases where something that seemed a prior: to
depend on a choice of apartment system 4 turned out to be independent
of A. We now prove the ultimate result of this type; it can be viewed as
saying that all systems of apartments in a given building are compatible
with one another:

Theorem. If A is a building, then the union of any family of apartment
systems is again an apartment system. Consequently, A admits a largest
system of apartments.

Proor: It is obvious that (B0) and (B1) hold for the union, so the only
problem is to prove (B2). We will work with the variant (B2"”). Suppose,
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then, that ¥ and ¥’ are apartments in different apartment systems and
that ¥ N X’ contains at least one chamber. We must find an isomorphism
¥’ — ¥ which fixes every simplex of X N X'.

Choose an arbitrary chamber C € ¥ N X’. There are then two obvious
candidates for the desired isomorphism ¥’ — X. On the one hand, we know
by the previous section that ¥ and X’ have the same Coxeter matrix M,
so we can find a label-preserving isomorphism ¢ : ¥’ — X by the Corollary
to Proposition 2 of §1. And we can certainly choose ¢ so that ¢(C) = C,
since the group of type-preserving automorphisms of ¥ is transitive on the
chambers. It then follows that ¢ fixes C' pointwise. Unfortunately, it is not
obvious that ¢ fixes every simplex of ¥ N X'.

The other candidate is provided by the theory of retractions. Namely,
let p be the retraction pg ¢ and let ¢ : &' — X be the restriction of p
to X’. Then 9 obviously fixes every simplex of ¥ NY’, simply because p is a
retraction onto X. But it is not obvious that 4 is an isomorphism. [If you’re
tempted to say that v is an isomorphism by the construction of p, recall
that we don’t know that ¥’ is part of an apartment system containing ¥;
indeed, that’s what we’re trying to prove!]

To complete the proof, we will show by the standard uniqueness argument
that ¢ and 1 are in fact the same map, which therefore has all the required
properties. Since ¢ and i both fix C pointwise, the standard argument will
go through if we can show that ¢(I') and (I') are non-stuttering for any
minimal gallery T in X’ starting at C. This is clear for ¢(T') since ¢ is an
isomorphism. And it is true for ¥(I') because of two facts proved in the
previous section: (a) T is still minimal when viewed as a gallery in A; and
(b) p preserves distances from C. O

The maximal apartment system will be called the complete system of
apartments. It consists, then, of all subcomplexes ¥ C A such that ¥ is in
some apartment system A.

Remark. This description of the complete apartment system is not very
informative. Here are two characterizations that are more useful. Let X be
a chamber subcomplex of A, i.e., a subcomplex which is a chamber complex
in its own right and has the same dimension as A (so that Ch ¥ C Ch A).
Let A be the complete system of apartments. Then:

(1) ¥ € A ifand only if ¥ is isomorphic in a label-preserving way to L.

(2) Assume X is thin. Then ¥ € A if and only if ¥ is convex in A, in
the sense that any minimal gallery in A with both extremities in X
is entirely contained in X.

The sufficiency of each of the stated conditions will be proved in the exer-
cises below. The necessity has already been proved in the case of (1) and
will now be proved for (2):

Proposition. Every apartment ¥ is convex.
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Proor: Let T : Cy,...,C4q be a minimal gallery with Cy,Cq € . If T is
not contained in ¥, then there is an index ¢ with C;_; € ¥ and C; ¢ .
Let C be the chamber of ¥ distinct from C;_; and having C;_1 NC; as a
face, and let p be the retraction pg c. Then p(C;) = Ci_1 [why?], so p(I")
stutters and has the same extremities as I'. This contradicts the minimality
of T. O

Remark. The same proof yields a stronger result. Recall that the distance
d(C, A) between a chamber C and a simplex A is defined to be the minimal
length d of a gallery I : Cy,...,Cq with Co = C and Cgq > A. Any gallery T
which achieves this minimum is said to be stretched from C to A. [You
should draw some low-dimensional pictures to get a feeling for what this
means.] Suppose, now, that A and C are in an apartment ¥X. Then one
can prove, exactly as above, that every gallery stretched from C to A is
contained in X.

EXERCISES

Most of the results in these exercises are taken from Tits [59]. For the benefit of
readers who want to see proofs of these results but do not want to attempt them
as exercises, I have provided substantial “hints”, which in many cases are almost
complete solutions, immediately following the set of exercises.

1. Let A be a labelled building with Coxeter matrix M. Recall that the
labelling enables one to speak of the type of any non-stuttering gallery I' :
Co,...,Cq (cf. §II1.4B); it is a sequence i = (11,...,8a) of labels. It will be
convenient to identify i with the corresponding word s = (si;,...,8:;) in the
generators of Wys. In particular, it makes sense to ask whether i is reduced, or is
a reduced decomposition of an element w € Wys. Prove that T' is minimal if and
only if its type i is reduced.

2. Prove the characterization (1) of the complete apartment system.

3. Recall that if (W,S) is a Coxeter system, then the combinatorial distance
function on £ = (W, S) is given by d({w}, {w'}) = (w™'w'). This suggests
that we consider the “W-valued distance function” § : Ch¥ x Ch¥ — W defined
by §({w}, {w'}) = w™'w'. The function § turns out to be an extremely useful
refinement of d. The purpose of this exercise is to explore its geometric meaning
and define an analogous function on any building A.

(a) Let X be a labelled Coxeter complex with Coxeter matrix M. Show that
there is a function § : Ch ¥ x Ch¥ — W)y, characterized by the following prop-
erty: If T' : Cy,...,Cq is a.non-stuttering gallery of type i, then §(Co, Cq) is the
element of Wy, represented by the word i.

Assume, for the remainder of this exercise, that A is a labelled building with
Coxeter matrix M.

(b) Show that the functions & defined in (a) on the apartments of A are com-
patible with one another and hence give a well-defined function

§:ChA xChA — Wy

This function is characterized by the following property: If I' : Co,...,Cq is a
minimal gallery of type i, then §(Co,Ca) is the element of Wi represented by i.
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(c) Suppose C and D are chambers of A with §(C, D) = w € Wu. Given any
reduced decomposition i of w, show that there is a minimal gallery from C to D
of type i.

(d) For any apartment ¥ and chamber C € ¥, show that the retraction p =
px,c satisfies §(C, p(D)) = §(C, D) for any chamber D € A.

(e) Suppose A is the complex of flags of proper non-zero subspaces of an n-
dimensional vector space, as in Exercise 2 at the end of §2 above. Show that W,
can be identified with the symmetric group on n letters and that § associates to
any pair C, C’' of chambers the Jordan-Holder permutation #(C,C").

4. Let A and § be as in Exercise 3. By “apartment” in what follows, we will
always mean an apartment in the complete apartment system. Given two subsets
C,D CChA, a strong isometry from C into D is a function o : C — D such that
§(a(C),a(C")) = §(C,C'") for all C,C' € C. We will also say, in this situation,
that C is strongly isometric to its image a(C). The purpose of this exercise is to
prove:

Theorem. If C is strongly isometric to a subset of an apartment, then C is
contained in an apartment.

It will be convenient to introduce some canonical chamber maps p which are
slight variants of the retractions onto apartments. Given an apartment X, a cham-
ber C € ¥, and a chamber D € A, there is a unique type-preserving chamber
map p : A — X such that p(D) = C and p maps every apartment containing D
isomorphically onto . [Uniqueness is clear; for existence, take the retraction
pz/.p, where &' is any apartment containing D, and follow it by the unique type-
preserving isomorphism ¥’ — X taking D to C.] For lack of a better name, we
will simply call p the canonical map A — X such that p(D) = C.

(a) Let C be as in the theorem and let ¥ be an apartment. Show that a strong
isometry a : C — ChZX is completely determined once a(Cp) is known for one
chamber Gy € C. Moreover, o is necessarily the restriction to C of the canonical
map p : A — X taking Co to a(Co).

(b) Let D=a(C) CChX,and let =o' : D — C.If D and D’ are adjacent
chambers of & with D € D and D' ¢ D, show that 3 extends to a strong isometry
from DU {D'} into A.

(c) Show by repeated applications of (b) that # can be extended to a strong
isometry defined on all of Ch X.

(d) Deduce the theorem from (c).

5. Go back through the proof in Exercise 4, and get the following additional
information: Suppose the set C in the theorem is contained in a convex chamber
subcomplex A’ C A in which every codimension 1 simplex is a face of at least
two chambers; then the apartment containing C can be constructed inside A’.
Deduce that A’ is an apartment if it is thin. This proves the characterization (2)
of the complete apartment system.

HINTS

1. If T is minimal, then it is contained in an apartment; i is then reduced
by the connection between words in a Coxeter group and galleries in the asso-
ciated Coxeter complex. Conversely, suppose i is reduced. We may assume by
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induction that the subgallery Ci,...,C4 is minimal and hence is contained in
an apartment X. Then pg,c, (T') is a non-stuttering gallery in ¥ with the same
type i as T', so it is minimal. It follows that I' is minimal, since its image under
a chamber map is minimal.

2. Suppose % is a chamber subcomplex which is isomorphic to Xas in a label-
preserving way. It suffices to show that if T is adjoined to an apartment system A,
then axiom (B2") still holds. The proof is essentially the same as the proof that
a union of apartment systems is again an apartment system. The given complex
¥ plays the role of the complex T’ that occurred in that proof, and the only
extra ingredient required is that one needs to use Exercise 1 to show that every
minimal gallery in ¥ is still minimal in A.

3. (a) We may assume that ¥ = X(W, S) with its canonical labelling; we can
then take § to be the difference function ({w}, {w'}) — w™' v’ discussed above.

(c) Work in an apartment containing C and D.

(¢) Work in the apartment X corresponding to a frame {Li,...,Ln}. The
symmetric group W = W acts on ¥ in an obvious way, and one need only check
that 7(C,wC) = w for any w € W if C is the standard flag Ly C L & L, C
o CL1®---®Lp-1.

4. (b) Let C = B(D). It suffices to find a chamber C’ such that the canonical
map p: A — ¥ with p(C') = D’ induces a : C — D; for then p will induce a
strong isometry CU {C'} — DU {D’'} whose inverse extends § (cf. Exercise 3(d)
above). Suppose, for the moment, that C' is any chamber distinct from C and
i-adjacent to it, where i is the label such that D and I’ are i-adjacent. Let p be
as above. Given D" € D, let C" = B(D") and let w = §(D, D") = §(C, C"). Thus
D" = wD if we identify ¥ with s in such a way that D is the fundamental
chamber. Similarly, D' = sD, where s is the generator s; of Was. Let ® and &' be
the half-spaces of ¥ corresponding to the reflection s, with D € ® and D' € @'.
There are two cases to consider.

Case 1: D" € @, i.e., l(sw) = l(w) + 1. Take any minimal gallery T from C
to C". Its type i is a reduced decomposition of w. The gallery (C’,T) consisting
of C’ followed by T is then non-stuttering and of reduced type (i,i), hence it
is minimal. It follows that p takes this gallery to a non-stuttering gallery in X
of the same type, whence p(C) = D and §(D,p(C")) = w. This implies that
p(C") = D", as required.

Case 2: D" € @, i.e.,l(sw) = l(w)—1. Then there is a reduced decomposition i
of w starting with i. By Exercise 3(c), we can find a minimal gallery I' from C
to C" of type i. If the second chamber C; of I' happens to be our chosen C', then
8(D’', p(C")) = sw and hence p(C") = D". Otherwise there is a non-stuttering
gallery C',Cy,...,C" of type i, obtained by replacing C by C' in T. This gallery
is still minimal, so §(D’, p(C")) = w and p(C") = swD = sD".

Let f = pB : D — ChZ. We have just seen that f(D”) = D" or sD" for all
D" € D, and that the possibility f(D") = sD” can only occur for D" . € &'.
Moreover, it is clear from the discussion of Case 2 that we can choose C’' so
that f(D") = D" for at least one D” € DN & [unless DN & = @, in which
case we’re already done]. Note further that f is distance-decreasing, in the sense
that d(f(D1), f(D2)) < d(D1, D2) for all Dy, D, € D; for B preserves distances,
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and p, like all chamber maps, takes galleries to galleries and hence is distance-
decreasing. The following simple observation, which is an immediate consequence
of Exercise 1 in §II1.4A, now shows that f(D") = D" for all D":

Let £ be any subset of Ch®' and let f : £ — ChX be a distance-decreasing
function such that f(E) = E or sE for all E € £. If f(E) = E for one E € €,
then f(E)=FE for all E € £.

(d) The extended isometry, still called B, preserves the adjacency relations
and hence extends further to a label-preserving chamber map # : ¥ — A. This
chamber map is an isomorphism onto its image, with inverse given by a canonical
map p as in (a). The image is then an apartment containing C by Exercise 2.

5 The Spherical Case

A Coxeter complex ¥ is called spherical if it is isomorphic to the complex
associated to a finite reflection group. In view of a result in the optional
§11.5, this is equivalent to saying that ¥ is finite; but we will not make any
use of this equivalence, except in another optional section (§6 below). It
is not hard to see that ¥ is finite if and only if it has finite diameter, so
we can also characterize the spherical Coxeter complexes as those of finite
diameter. :

A building A is called spherical if its apartments are spherical. In this
case A has finite diameter, equal to the diameter of any apartment. [And,
conversely, if A has finite diameter, then it is spherical by the last sentence
of the previous paragraph.] Two chambers C, C’ in a spherical building A
are said to be opposite if d(C, C') = diam A. This terminology is motivated
by the corollary to Proposition 4 in §I.4E. As an easy consequence of that
corollary, we will prove:

Lemma. Let C and C' be opposite chambers and let ¥ be any apartment
containing C and C’. Then every chamber D € ¥ occurs in some minimal
gallery from C to C'. :

[This is the combinatorial analogue of the following geometric fact: Given
two opposite points z,z’ of a sphere, the geodesics (great semi-circles) from
z to z’ cover the entire sphere.]

ProoF: Let d = d(C,C’) = diamX. The result of Chapter I cited above
says that d is also equal to the number of walls of X, all of which separate
C from C’. For any chamber D € ¥ and any wall H, D is either in the half-
space containing C or the half-space containing C’. Hence H separates D
from either C or C’, but not both. Since the combinatorial distance between
two chambers equals the number of separating walls, it follows that

d = d(C,C") = d(C, D) + d(D, C").

Hence we can construct a minimal gallery from C to C’ by juxtaposing a
minimal gallery from C to D with one from D to C’. 0O
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Since we know that any apartment X is convex, it follows from the lemma
that ¥ is the convex hull of {C,C’} for any pair of opposite chambers
C,C'" € X, i.e., ¥ is the smallest convex chamber subcomplex of A con-
taining C and C’. This simple observation leads to the following theorem,
which shows that the nature of apartment systems in a spherical building
is considerably simpler than in the general case:

Theorem 1. A spherical building A admits a unique system of apart-
ments. The apartments are precisely the convex hulls of pairs C,C’ of
opposite chambers.

PROOF: Let A be an arbitrary system of apartments. Every apartment
in A contains a pair of opposite chambers and hence is their convex hull.
Conversely, given a pair C, C’ of opposite chambers in A, there is an apart-
ment ¥ € A containing them both, and ¥ is then equal to their convex
hull; hence this convex hull is indeed in A. O

Remark. In non-spherical buildings there can definitely exist apartment
systems other than the complete one. We will see in the next chapter that
such apartment systems arise naturally from group theory. But there is
an easy example available now, namely, the case where A is a tree. The
complete apartment system A in this case consists of all lines in A, but
it easy to see that one usually does not need to take all of the lines as
apartments in order to satisfy the building axioms. If you know about ends
of trees (cf. [46], §§1.2.2 and II.1.1), then you can understand the situation
as follows: The set A of lines is in 1-1 correspondence with the set of pairs
of distinct ends of A; in particular, 4 has a natural topology. To get a
system of apartments, one need only take a dense subset of A.

The notion of “opposite chamber” that we introduced above has other
uses apart from the characterization of apartments. It arises, for instance,
if one attempts to analyze the homotopy type of a spherical building A
(i-e., the homotopy type of the geometric realization |A|). Here’s a sketch
of how that can be done, following [47].

Fix a chamber C of A and let A’ be the subcomplex obtained by delet-
ing all chambers opposite to C. I claim that A’ is contractible. Now a
contractible subcomplex can be collapsed to a point without affecting the
homotopy type (cf. [48], 7.1.5 and 7.6.2). So the claim yields the following
theorem of Solomon and Tits [47]:

Theorem 2. If A is a spherical building of rank n, then |A| has the
homotopy type of a bouquet of (n — 1)-spheres, where there is one sphere
for every apartment containing C. O

It remains to say something about the claim. Note first that every apart-
ment X containing C' admits a canonical label-preserving isomorphism
to Xas, with C going to the fundamental chamber of £s. Now |Xps]| can be
identified with the unit sphere in the vector space V on which the reflection
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group Wjs acts. Hence ¥ admits a “spherical geometry”; in particular, the
punctured sphere |[£ N A’| admits a canonical contracting homotopy which
contracts it to the barycenter of |C| along geodesics, i.e., arcs of great cir-
cles. One can show that the various homotopies, one for each apartment
containing C, are compatible with one another; hence they fit together to
give a well-defined contracting homotopy on A’.

Remarks

1. The idea of introducing geodesics (and other geometric notions) into
the study of buildings is extremely useful. We will not do any more with
it in connection with spherical buildings, but in Chapter VI we will carry
out in detail the analogous program for Euclidean buildings, i.e., buildings
whose apartments can be identified with Euclidean space.

2. The next section contains a purely combinatorial proof, also based
on [47], of the contractibility of A’. That proof, while not as close to the
geometric intuition as the proof sketched above, has the advantage that the
method extends to non-spherical buildings and enables one to analyze their
homotopy type as well. The result is that every non-spherical building is
contractible.

3. If you know what a Cohen-Macaulay complex is (cf. [40], §8), then
you can easily deduce from our study of the homotopy type of a building
that every building is a Cohen—Macaulay complex. [The point here is that
links in buildings are again buildings, so we also understand the homotopy
type of any link.]

EXERCISE

Let A be the complex of flags of proper non-zero subspaces of an n-dimensional
vector space, as in Exercise 2 of §2 and Exercise 3(e) of §4. Let C and C’' be
chambers with vertex sets Vi C --- C V,—y and V{ C --- C V;i_;, respectively.
Show that C and C’' are opposite if and only if V = V; @ V,,_; for all i. [HINT:
Begin by noting that the length of a permutation 7 (with respect to the standard
generating set S for the symmetric group on n letters) is the number of pairs
i < j such that «(i) > 7(j). You can check this directly or you can deduce it
from §1.4E, Proposition 4, part (1).]

6 The Homotopy Type of a Building

This section is optional. Its purpose, as stated in Remark 2 above, is to
give Solomon’s combinatorial proof of the Solomon-Tits theorem and of
the contractibility of non-spherical buildings. The idea of this proof is to
start with a fixed chamber C' and then keep track of the homotopy type
as you successively adjoin the chambers adjacent to C, then the chambers
at distance 2 from C|, etc. The proposition below enables one to figure out
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what happens each time a new chamber is adjoined (along with its faces).
Recall that if A is a simplex in an abstract simplicial complex A, then
A denotes the subcomplex A4, whose geometric realization is the closed
simplex in |A| corresponding to A.

Proposition. Let A be an arbitrary building. Fix a chamber C and an
integer d > 1, and let D be a set of chambers with the following two
properties:

(1) d(C,D) < d for every D € D.

(2) D contains every chamber D € A with d(C,D) < d.
Let A’ be the subcomplex of A generated by D, and let D be a chamber
of A such that d(C,D) =d and D ¢ D. Then

DNA'= U A,
A€EF

where F is a non-empty set of codimension 1 faces of D. The set F con-

tains all the codimension 1 faces of D if and only if A is spherical and of
diameter d.

It is a routine matter to use this proposition to complete the analysis of
the homotopy type of A. The details of this are left as an exercise.
The rest of this section will be devoted to a proof of the proposition.

Lemma 1. Given simplices C, A € A with C a chamber, there is a unique
chamber D > A such that d(C, D) = d(C, A).

ProoF: Let ¥ be an apartment containing C and A. Then, as we noted
in §4, ¥ contains any gallery I' stretched from C to A. So ¥ contains ev-
ery chamber D > A with d(C, D) = d(C, A). We are therefore reduced
to proving the lemma for the Coxeter complex ¥. We may assume that
¥ = X(W, S) for some Coxeter system (W, S) and that C is the fundamen-
tal chamber. Then A corresponds to a special coset in W, and chambers
having A as a face correspond to representatives of this coset. The lemma
now follows from the first assertion of Exercise 2 in §I1.3D, which says that
a special coset has a unique representative of minimal length. Alternatively,
you might find it instructive to give a geometric proof of the lemma, us-
ing foldings; see Proposition 2.29 of Tits [56] if you get stuck. [It is also
instructive to think about why the lemma is true when X is the poset of
cells associated to a set of hyperplanes, as in Chapter 1.] O

Lemma 2. Let C, A, and D be as in Lemma 1. For any chamber D > A,
one can find a minimal gallery from C to D' which consists of a gallery
from C' to D followed by a gallery which is contained in A 4.

PROOF: By working in an apartment containing C and D', we are again
reduced to the case of a Coxeter complex. The result this time follows from
the second assertion of the same exercise cited in the proof of Lemma 1.
Once again there is a geometric proof, for which you can see Propositions

2.30.6 and 2.7 of [56). O
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Lemma 3. If A is spherical and C and D are opposite chambers, then
d(C, A) < d(C, D) for every codimension 1 face A of D. Conversely, suppose
A is arbitrary and C and D are chambers such that d(C, A) < d(C, D) for
every codimension 1 face A of D; then A is spherical and C and D are
opposite.

PROOF: As usual, it suffices to consider X(W,S) and to assume that C
is the fundamental chamber. The first assertion, then, simply states the
obvious fact that if w is the unique element of maximal length in a finite
reflection group W, then l(ws) < I(w) for all s € S. This is equally obvious
geometrically: If D is the unique chamber at maximal distance from C,
then any chamber D’ adjacent to D and distinct from it is closer to C than
D is. :

For the converse, we are given a Coxeter system (W, S) with S finite and
an element w € W such that l(ws) < l(w) for all s € S. We must show
that W is finite and that w is the element of maximal length. It suffices to
show that l(w) = l(ww'~!) + I(w') for all w' € W. [This implies that w has
maximal length, and the finiteness of W then follows from the fact that
the length function is bounded.] The proof is by induction on I(w’), which
may be assumed positive.

Take a reduced decomposition w' = s; ---s4. Then the induction hy-
pothesis applies to the element w' = s; ---s4_; and shows that w admits
a reduced decomposition ending with s; - -+ s4_1. Since l(wsy) < l(w) by
hypothesis, the exchange condition implies that we may exchange one of
the letters in our reduced decomposition of w for an s4 at the end. The
exchanged letter cannot come from the “w”-part” of w, since that would
contradict the fact that I{(w’) = d. So we obtain a new reduced decomposi-
tion of w ending with s; - - - s4, as required. a

Lemma 4. With the hypotheses and notation of the proposition,
DNA'={B< D:d(C,B)<d}.

Proor: The right-hand side is contained in the left-hand side by hy-
pothesis (2) of the proposition. To prove the opposite inclusion, suppose
B € DN A’. Then there is a chamber D' € D with B < D’, and we have

d(C,B) < d(C,D') < d(C,D)=d

by hypothesis (1). Since D # D’, Lemma 1 implies that d(C, B) < d, as
required. ]

PROOF OF THE PROPOSITION: Given B < D with d(C, B) < d, it follows
from Lemma 2 that there is a minimal gallery " : C' = Cy, ...,Cq = D with
B < Cy_1. Setting A = Cy4_1 N D, we then have B < A and d(C, A) < d.
Thus
{B<D:d(C,B)<d}= U A,
A€F
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where F is the set of codimension 1 faces A of D such that d(C, A) < d.
Note that the left-hand side of this equation is non-empty [it contains the
empty face of D]; hence F is non-empty. The proposition now follows from
Lemmas 4 and 3. O

7 The Axioms for a Thick Building

The purpose of this final section of the chapter is to show that axiom (BO)
can essentially be eliminated if A is thick. We won’t actually need this
result in what follows, since it will always be clear in our examples that the
purported apartments are in fact Coxeter complexes. But the proof is very
instructive, being based on a clever use of retractions and the standard
uniqueness argument.

Theorem. Let A be a thick chamber complex with a family A of thin
chamber subcomplexes ¥ satisfying axioms (B1) and (B2). Then every
Y € A is a Coxeter complex, so A is a building and A is a system of
apartments.

PROOF: Note first that much of the theory of retractions developed in §3
did not use axiom (BO0), but only the fact that the apartments ¥ are thin
chamber complexes. In particular, Propositions 1 and 2 of that section
remain valid, as does Corollary 1 of Proposition 1. We will also need to
know that the retraction p = pg c preserves distances from any face A
of C:

d(A, p(D)) = d(A, D) (+)

for any chamber D € A and any A < C. This was proved in §3 for the case
A = C, and the proof in general is identical.

We now show that any ¥ € A is a Coxeter complex by constructing
foldings (cf. §II1.4B). Given distinct adjacent chambers C,C’ € X, we must
find a folding ¢ : ¥ — ¥ such that ¢(C’) = C. Let A be the common face
CNC’', let C" be a third chamber of A having A as a face, and let £’ be
an apartment containing C and C”. Let ¢ : ¥ — X be the restriction to L
of ps ¢ 0 psr ¢. Then ¢ fixes C pointwise and satisfies ¢(C’) = C. We will
prove that ¢ is a folding. [You should draw a picture, of the tree case for
instance, to see why this is plausible.)

In view of (%), ¢ preserves distances from A, i.e., d(4, ¢(D)) = d(A, D)
for any chamber D € X. [Distances here may be computed either in ¥ or
in A, but we will be thinking about X-distances when we apply this.] In
other words, if T' is a gallery in X stretched from A to D, then ¢(T) is
stretched from A to ¢(D). In particular, ¢(I') is non-stuttering, and this
will enable us to apply the standard uniqueness argument.

A first such application shows that if D is a chamber of ¥ with d(A, D) =
d(C, D) (i.e., if there is a gallery stretched from A to D which starts with C),
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then ¢ fixes D pointwise. Thus ¢ is the identity on the subcomplex ®
generated by { D € ChX : d(A, D) = d(C, D) }. And this subcomplex & is
precisely the image of ¢. For suppose D is any chamber of ¥ and I is a
gallery stretched from A to D; then ¢(T') is stretched from A to ¢(D) and
starts with C, so ¢(D) € ®. Thus ¢ is a retraction of ¥ onto P.

Everything we have done so far can also be done with the roles of C
and C’ reversed. Hence there is an endomorphism ¢’ of ¥ with ¢'(C) = C’,
such that ¢’ preserves distances from A and retracts ¥ onto the subcom-
plex &' generated by { D € Ch X : d(A, D) = d(C',D) }.

We show next that ® and &’ have no chamber in common: Suppose D
is a chamber in ® N ®’. Then D is fixed pointwise by both ¢ and ¢’. If T"
is a gallery stretched from D to A, it follows by the standard uniqueness
argument that ¢ and ¢’ fix every chamber in I" pointwise. But this is absurd,
since I' ends with either C or C".

We now have Ch¥ = Ch® II Ch®’. The proof that ¢ is a folding will
be complete if we can show that ¢ maps Ch®’ bijectively to Ch®. To
this end, consider the composites ¢¢’ and ¢'¢. The first takes C to C and
fixes A pointwise, so it fixes C pointwise; it is therefore the identity on &
by the standard uniqueness argument. Similarly, the other composite is
the identity on ®’. Hence ¢ induces an isomorphism &’ — & with inverse
induced by ¢'. O
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Buildings and Groups

In this chapter we will develop the group theory that goes along with the
theory of buildings, in much the same way that the theory of Coxeter
groups goes along with the theory of Coxeter complexes. In particular, we
will discover a class of groups G for which we can construct an associ-
ated building A, on which G acts as a group of type-preserving simplicial
automorphisms.

We will only consider thick buildings. It would be possible to treat the
general case, but the thickness assumption leads to some simplifications
and suffices for most applications to group theory.

We begin by assuming that we have a group G which acts in a nice way
on a thick building A. This imposes some conditions on GG, and we will
then take these conditions as axioms for the class of groups we are seeking.

1 Strongly Transitive Automorphism Groups

1A Definitions

Let A be a thick building and A a system of apartments. Suppose a group G
acts on A as a group of type-preserving simplicial automorphisms leaving .4
invariant. Thus if ¥ is an apartment, then so is its image ¢gX. This is
automatic, of course, if A is the complete system of apartments; but we
want to allow A to be arbitrary.

We will say that the G-action is strongly transitive if G acts transitively
on the set of pairs (X, C) consisting of an apartment ¥ € 4 and a chamber
C € X. This is equivalent to saying that G is transitive on Ch A and that
the stabilizer of a given chamber C' is transitive on the set of apartments
containing C. Alternatively, it is equivalent to saying that G is transitive
on A and that the stabilizer of a given apartment X is transitive on Ch X.

Assume throughout the remainder of this section that the G-action is
strongly transitive, and choose an arbitrary pair (X, C) as above. We will
often refer to ¥ as the “fundamental apartment” of A and to C as the
“fundamental chamber” of X. Let W be the group of type-preserving auto-
morphisms of X, and let S C W be the set of reflections associated to the
codimension 1 faces of C. Then (W,S) is a Coxeter system, and ¥ can be
identified with (W, S).
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We now introduce three subgroups of G:
B={geG:9C=C}
N={geG:¢gx =X}
T = {g€G:g fixes ¥ pointwise }.
Note that T is a normal subgroup of N, being the kernel of the homomor-
phism « : N — W induced by the action of N on X. Note also that « is
surjective, so that W =~ N/T. For if we are given w € W, then we can
find n € N such that nC = wC) since n and w are both type-preserving,
they agree pointwise on C, hence a(n) = w by the standard uniqueness

argument. Note, finally, that T = BN N; for if n € BN N, then n fixes C
pointwise and hence acts trivially on X. The following diagram summarizes

the notation:
G
/ N\
N/
T

Let’s pause now to see what all of this looks like in a simple example.

N —» W = (S)

1B FEzample

Let P be the projective plane over a field k, as defined in §IV.2, and let
A be its flag complex. It is a rank 2 building, with one vertex for every
proper non-zero subspace of k3 and one edge for each pair consisting of a
1-dimensional subspace contained in a 2-dimensional subspace. The unique
apartment system for A has one apartment for every triple {L,, Ls, L3} of
1-dimensional subspaces such that ¥3 = L, @ L, @ L3. Given any subset
X C k3, let’s denote by [X] the subspace spanned by X. Then a triple as
above has the form {[ei], [e2], [e3]} for some basis e, e2,e3 of k2, and the
corresponding apartment is the following subcomplex of A:

[e1]
/ \
[61, 62] [81, 63]

N

[e2] —————le2, ea] —————[es]

As fundamental apartment ¥ we take the apartment associated to the
standard basis of k3. And as fundamental chamber C we take the edge
[61] —_— [61,62].

Let G be the group GL3(k) of linear automorphisms of k3. Then any
g € G takes subspaces to subspaces and induces a type-preserving automor-
phism of A. It is easy to check that this action of G is strongly transitive.
Let’s compute B, N, T, W, and S. ‘
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The subgroup B C G consists of all automorphisms of k3 which leave the
subspaces [e;] and [e;, e;] invariant; hence B is the upper-triangular group

* ok
0 x =
0 0 =

The subgroup N C G consists of all automorphisms which permute the
three subspaces [e;],[e2], [es]. Hence N is the monomial group, consisting
of all matrices with exactly one non-zero element in every row and every
column.

Given n € N, the action of n on ¥ is determined by the permutation of
{le1], [e2], [e3]} induced by n; so T consists of the diagonal matrices (which
induce the trivial permutation), and W = N/T can be identified with the
symmetric group on 3 letters, or, equivalently with the group of 3 x 3
permutation matrices. [Thus we have a splitting N = T'x W]

Finally, it is easy to check that the set S of “fundamental reflections”
consists of the permutations represented by

010 1 0 0
1 0 0 and 0 0 1].
0 01 010

As a mnemonic aid, you might find it helpful to know that B is what is
called a Borel subgroup of G in the theory of matrix groups, 7" is a maximal
torus, N is the normalizer of T', and W is the Weyl group.

Remarks

1. Instead of taking G = GL3(k) above, we could equally well have
taken G to be the subgroup SLg(k) consisting of matrices of determinant 1.
The groups B, N, and T would then be the intersections with SL3(k) of
the groups B, N, and T above. The quotient W = N/T would still be
the symmetric group on 3 letters (as it has to be, since W = Auty(X),
independent of G). The set S C W consists of the same two permutations
as above, which can be represented by the monomial matrices

0 -1 0 1 0 0
1 0 0 and 0 0 -1
0 0 1 01 0

of determinant 1.

2. Still another variation on this example is obtained by replacing GL3(k)
by its quotient PGL3(k) = GL3(k)/Z, where Z C GL3(k) is the central sub-
group consisting of scalar multiples of the identity matrix. The subgroup Z
acts trivially on A, so we obtain an action of PGL3(k) on A; and clearly this
action is still strongly transitive. Similarly, PSL3(k) = SL3(k)/(SL3(k)N 2Z)
acts strongly transitively on A.

3. If you have done Exercise 2 at the end of §IV.2, then you can easily
generalize all this from GL3 to GL, (or SLy, or PGL,, or PSL,).
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1C The chamber system associated to A

Let G and A be as in §1A. Recall the notation that we introduced there:
G

/ N\

B N W = (S)

N/

T

We will identify W with N/T'; in particular, we will often find it convenient
to view an element w € W as a subset of G, namely, the coset WT', where
w € N is any element of N representing w.

Let’s try now to describe A in terms of G and see, in the process, how
properties of A translate into properties of G.

Give A the labelling A whose restriction to ¥ is the canonical labelling,
with S as the set of labels. [Here ¥ is identified with £(W,S).] Then A
gives rise to a chamber system, consisting of the set Ch A together with
s-adjacency relations, one for each s € S. Since G acts transitively on Ch A
with B as the stabilizer of C, we have a bijection

G/B =5 ChA,

which takes a coset gB to the chamber gC. Given s € S, we need to figure
out the s-adjacency relation induced on the set G/B of cosets.

Suppose first that h € G is an element such that hC is s-adjacent to C.
Then C' N hC is the face A = C' N sC of C of type S — {s}:

hC
—0 o b))
C 4 sC
Since h is type-preserving, it must take A to the face of hC of the same
type. But A itself is the face of hC of this type, so hA = A. Thus hC is
s-adjacent to C if and only if h is in the stabilizer P, of the face A of C
of type S — {s}. Applying the G-action, we conclude that gC' is s-adjacent
to ¢’C if and only if ¢’ = gh for some h € P,. In other words, s-adjacency
of chambers corresponds to the following relation on G/B:

gB~¢'B < gP, =4 P,.

Note the analogy here with the Coxeter group situation, where chambers
correspond to cosets of the trivial subgroup, and two are s-adjacent if and
only if they represent the same coset of (s).

Next, we will make this analogy even better by showing that P, is the
subgroup (B, s) generated by B and s. [Recall that s is viewed as a coset
8T C N, so the symbol (B, s) makes sense. Moreover, (B,s) = (B, §) for
any representative §.] Given h € P;, choose an apartment ¥’ containing
C and hC. By strong transitivity we can find b € B such that bX' = X.
The chamber bhC of X is then s-adjacent to 8C = C, so it is either C
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or sC. It follows that bh is either in B or in sB [= §B]. Thus we have
h € BUb~1sB. This proves that P, = (B,s), and, in fact, it proves the
following much more precise result:

P, = BU BsB.

Digression. The set BsB [= B3B] which just arose is a double coset.
Most people don’t learn about double cosets until they need to, so let’s
take a moment to review them. Given a group G and a subgroup B, you
are certainly familiar with the partition of GG into left cosets g B, which are
minimal subsets invariant under right multiplication by B. Similarly, there
are right cosets Bg, which are closed under left multiplication by B and
which give a different partition of G. Double cosets BgB provide a third
partition of G, this time into subsets which are closed under both left and
right multiplication by B.

The three types of cosets all coincide if B is normal in G, in which case
the set of cosets inherits a group structure. In general, however, the set G/B
of left cosets is just a set with left G-action, the set B\G of right cosets is
a set with right G-action, and the set B\G/B of double cosets is a set with
no further structure. What we saw above is a situation (namely, B C P,)
where there are exactly two double cosets.

Example. Let G = GL3(k) as in §1B above. The two subgroups P, are the
stabilizers of [e;] and [ey, e2], respectively; hence they are the subgroups

* kK X k  x
0 * «x and * k%
0 * + 0 0 =«

I recommend as an exercise that you verify by direct matrix computation
the double coset decomposition P, = BU BsB for each of these groups P;.

We now have a description, entirely in terms of (G, B, N, S), of the cham-
ber system associated to A. This gives, in principle, a group-theoretic de-
scription of A. But we will make this much more explicit below by extending
the stabilizer calculation to the case of an arbitrary face A < C.

1D Stabilizers

Given S’ C S, let A be the face of C of type S — S’. Equivalently, A is the
face whose stabilizer in W is the special subgroup W’ = (S’). Let Ps/ be
the stabilizer of A in G. Given g € Ps/, choose an apartment ¥’ containing
C and ¢gC, and choose (by strong transitivity) an element b € B such that
bY = X. Then bgC = wC for some w € W, whence bg € wB and ¢ € BwB.
Since g € Ps» and B C Ps, we have wA = A and hence w € W’. Thus

Py = | J BuwB,
weW!

or, more concisely,
Pss = BW'B.
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When S’ is a singleton {s}, we recover the calculation of P, above.

This formula for Ps raises an obvious question: Are the various double
cosets BwB all different as w ranges over W? We will give an affirmative
answer to this question shortly. Accepting this result for the moment, one
concludes that the function S’ — P is a poset isomorphism from the set
of subsets of S to the set of subgroups of G of the form Py . To see this,
note that we can recover S’ from the group P = Ps: by

S'={seS:BsBCP}.

For if BsB C P, then BsB = BwB for some w € (S’), hence s = w by the
result we are accepting; but then s € S’ by the lemma in §III.1.

It now follows formally that A, as a poset, is isomorphic to the set
of cosets gP, where P is a subgroup of the form Pg and the cosets are

ordered by the opposite of the inclusion relation. Thus we have entirely
reconstructed A from G, B, N, and S.

1E The Bruhat decomposition

The stabilizer calculation above is of interest even when A is the empty
face of C. In this case S’ = S, Ps: = G, and W/ = W. So the result is that

G=BWB= U BwB.
wew

In particular, G is generated by B and N. We now prove, as promised, the
following more precise result, which is known as the Bruhat decomposition:

G= |] BuB. (%)

wew

To prove (*), we take a closer look at the stabilizer calculation for the
case A = 0. Given g € G, choose ¥’ containing C and gC as before, and
choose b € B such that b¥’ = ¥. Then the action of b induces the unique
isomorphism ¥/ — X fixing C pointwise. So we have

bgC = p(9C),

where p is the retraction py ¢. What we proved above, then, is that g €
BwB, where w is the unique element of W such that p(¢C) = wC. In
other words, if we define a function p : G — W by setting p(g) equal to
the element w € W such that p(9C) = wC, then we have g € Bp(g)B.

The Bruhat decomposition will follow if we show for any w € W that p
maps the entire double coset BwB to w. Choose W € N representing w,
and consider an arbitrary element g = bwb’ € BwB, where b,b’ € B. Then
gC = bwC = bwC; hence gC and C are both in the apartment bX. Now
b~! maps this apartment back to ¥, whence p(gC) = b~'¢gC = wC. Thus
p(g) = w, as required.
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EXERCISES

1. Suppose G = GL,(k) and W is the symmetric group on n letters, as in
Remark 3 of §1B above. Show that the Bruhat decomposition has the following
interpretation in terms of Jordan-Holder permutations (cf. Exercise 2 of §IV.2):
Given g € G, let w = x(C, gC), where C is the fundamental chamber of A; then
g € BwB. [HINT: Method 1. Show that x(C,gC) depends only on the double
coset containing g; this reduces you to the case where g is a permutation matrix.
Method 2. Use the geometric interpretation of the Bruhat decomposition in terms
of retractions, and apply Exercise 3(e) of §IV.4.]

2. Let G = GL,(k) again. Prove by direct matrix calculations (row and column
operations) that G = BW B. If you’re ambitious, try to prove (*) by matrix
calculations also.

1F Products of double cosets

The proof of the Bruhat decomposition leads to a remarkable fact about
products of double cosets. Note first that a product BgB - Bg'B of two
double cosets in a group is a subset which contains gg’ and is closed under
left and right multiplication by B; hence it is a union of double cosets, one
of which is Bgg’B. This is all that can be said in general. In the present
situation, however, we can say much more, at least when one of the factors
is BsB for some s € S. Namely, we will show that

BwB - BsB C BwB U BwsB (%)

for all w € W and s € S, so that the product consists either of two double
cosets or one. [If the product is one double coset, of course, then it is
necessarily BwsB.]

To prove (*%), we need only recall that p: A — ¥ is a type-preserving
chamber map and hence preserves s-adjacency for all s € S. So the function
p : G — W defined above must satisfy p(gh) = p(g) or p(g)s for g € G and
h € P,. Taking ¢ € BwB and h € BsB C P,, we conclude that p(gh) = w
or ws, i.e., that gh € BwB or BwsB. This proves (*x).

Remarks

1. Since BwB -BsB = BwBsB = B(wBs)B, the content of () is that
wBs C BwB U BwsB.

2. Taking inverses in (*#*), we can equally well write the result in the
form

BsB - BwB C BwB U BswB
for s € S and w € W; equivalently, sBw C BwB U BswB.

It will be convenient to write C(w) = BwB for w € W. Then, as we
noted above, (*x) implies that

C(w)C(s) = C(ws) or C(w)C(s) = C(w)UC(ws).
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To finish this discussion, we will show that the first case occurs at least
half of the time:
C(w)C(s) = C(ws) if l(ws) = l(w) + 1. (#%%)

It suffices to show that wBs C BwsB if l(ws) = l(w)+1. Choose elements
w,5 € N representing w and s, respectively. Given ¢ = wb5 € wBs, we
must show that p(g) = ws, i.e., that p(¢C) = wsC. To compute p(gC), we
need a minimal gallery from C to gC' = wbsC. Now wbsC is s-adjacent
to wbC' = wC and is distinct from it. So if T' is a minimal gallery in ¥ from
C to wC, then there is a non-stuttering gallery I = (T', gC), consisting of
I' followed by ¢gC. If we can show that I is minimal, then it will follow
that p(9C) = wsC, as required; for otherwise we would have p(gC) = wC
and p(I') would stutter, contradicting the fact that p preserves distances
from C.

To prove the minimality of IV, we could simply apply Exercise 1 of §IV 4.
But here is a direct proof, which consists, essentially, of one of the steps in
the solution to that exercise. Let p' = px . Then p'(gC) # wC, hence
p'(gC) = wsC. So p'(I'") = (T, wsC), which is minimal by the correspon-
dence between words in W and galleries starting at C in X. But then I
must be minimal since its image under the chamber map p' is minimal.
This completes the proof of (#*x).

EXERCISE
If {(ws) = {(w) — 1, show that C(w)C(s) = C(w) U C(ws).

1G Thickness

Finally, we spell out the group-theoretic meaning of our assumption that
A is thick. (We haven’t used this assumption yet, except in the exercise
above.)

Since A is thick, every codimension 1 face of C is a face of at least three
chambers. In other words, for each s € S there is a chamber C’ s-adjacent
to C and not equal to C or sC. Such a C’ necessarily has the form hC
for some h € P;, and the condition hC # C says that h ¢ B; so we must
have h € BsB. Similarly, the condition hC # sC says that h ¢ sB. Thus
BsB g sB, which implies that Bs g sB. This can be rewritten in various
ways, such as

s~ 1Bs ¢_ B,
or, since s has order 2,
sBs SZ B.

1H Conclusion

Our rambling discussion has led to a long list of conditions that G must
satisfy if it admits a strongly transitive action on a thick building. It’s time
to put these conditions together and look at them from the point of view
of group theory.
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2 BN-Pairs

2A The azioms

Suppose we are given a quadruple (G, B,N,S), where G is a group; B
and N are subgroups which generate G; N normalizes the intersection
T = BN N; and S is a set of generators of the quotient group W = N/T.
Thus we have the usual setup

/N
B N-w=(S)

N/
T

Let C(w) = BwB for w € W, and let BW'B = |J, ¢+ C(w) for any
subset W’ of W. As the notation suggests, we will be primarily interested in
the case where W' is a special subgroup (S’) of W. Consider the following
conditions on (G, B, N, S), all of which are known to hold if (G, B, N, S)
arises as in §1 from a strongly transitive G-action on a thick building:

(1) S consists of elements of order 2 and (W, S) is a Coxeter system.
(2) BUC(s) is a subgroup of G for every s € S.

(3) BW'B is a subgroup of G for every special subgroup W' C W.
(@) G=Lew Cw).

(5) C(s)C(w) C C(w)UC(sw) for every s € S and w e W.

(6) C(s)C(w) = C(sw) ifl(sw) > l(w).

(7) C(s)C(w) = C(w) UC(sw) ifl(sw) < I(w).

(8) Foreverys€S,sBs™' ¢ B.

This long list would make a rather unwieldy system of axioms. Fortu-
nately, it turns out that there is a great deal of redundancy in (1)—(8):

Theorem. If (5) and (8) hold, then all of the properties (1)—(8) hold.
The proof will be broken up into several steps:

Lemma 1. Assume that S consists of elements of order 2. If (5) holds,
then all of the properties (2)—(6) hold.

PRrRoOF: Property (2) is a special case of (3), so we begin with the latter.
We must show that C(w)C(w') C BW'B for every w,w’ € W'. Write w
as a word s; ---sg in the generators S’ of W’. Then an easy induction
on d shows that C(w)C(w') C |JC(w"w'), where w” ranges over the 2¢
elements of W obtained from the word s; - - - s4 by deleting zero or more
letters. [When d = 1, this is precisely our hypothesis (5).] Since each w” is
in W', this proves (3).
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We now know, in particular, that BW B is a subgroup of G. Since this
subgroup contains B and N, which generate G, we have G = BWB. To
prove (4), then, it remains to show that

Clw)=C(t') = w=1v'

The proof is by induction on d = min{l(w),!{(w’)}. We may assume d =
l(w'). If d = 0, then v’ = 1 and the hypothesis C(w) = C(w') says that
C(w) = B. This clearly implies that w = 1in W = N/(BNN), as required.
So suppose d > 0, and write v’ = sw” with s € S and {(w”) = d — 1. Then
the hypothesis says that sw”B C BwB. Multiplying by s and using (5),
we conclude that

w”B C sBwB C C(w) U C(sw),

hence C(w”) = C(w) or C(sw). This implies, by induction, that w" = w
or sw. Now the first case cannot occur, since l(w"') < d < l(w). So v’ = sw,
whence w’ = w. This proves (4).

Finally, we prove (6) by induction on {(w). The result is trivial if [(w) = 0,
so suppose {(w) > 0 and write w = w't with ¢t € S and l{(v') = l(w) — 1.
Assume that C(s)C'(w) # C(sw). Then (5) implies that sBw meets BwB
and hence that sBw’ meets BwBt. Applying (5) again [or, rather, the result
obtained from (5) by taking inverses], we conclude that

sBuw' meets C(w) U C(wt) = C(w) U C(v').
If we assume now that {(sw) > I(w), then I(sw') > I(w'); for otherwise
we would have
I(sw) = l(sw't) < l(sw') + 1 < N(w') + 1 = (w).

So the induction hypothesis implies that C(s)C(vw') = C(sw'), and the
result of the previous paragraph now says that C(sw') = C(w) or C(w').
In view of (4), it follows that sw’ = w or w’. The second possibility is
absurd since s has order 2 and hence is non-trivial. But the first possibility
is also absurd, since it would imply I(sw) = {(w’) < I(w). This contradiction
completes the inductive proof of (6) and hence the proof of the lemma. [

Lemma 2. Assume that S consists of elements of order 2. If (2), (6), and
(8) hold, then so does (7).

Proor: By (2) we have C(s)C(s) C BUC(s), so C(s)C(s) = B or BUC(s).
The first possibility would contradict (8), whence
C(s)C(s) = BUC(s).
This is actually a special case of (7), and this special case, together with (6),
easily yields the general case. Indeed, if I(sw) < l(w), then I(s-sw) > I(sw).
So (6) implies
C(w) = C(s - sw) = C(s)C(sw),

hence
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C(5)C(w) = C(s)C(s)C(sw)
= (BUC(s))C(sw)
= C(sw) U C(s)C(sw)
= C(sw) U C(w),
as required. O

Lemma 3. Assume that S consists of elements of order 2. If (4), (6),
and (7) hold, then so does (1).

Proor: We will verify the folding condition (F') of Chapter II. Suppose
I(sw) = l(w) + 1 = I(wt) but I(swt) < l(w) + 2. Then we have

C(s)C(wt) = C(wt) U C(swt) = C(wt) II C(swt),

where the first equality follows from (7) and the second follows from (4).
Since C(wt) = C(w)C(t) by (6), it follows that

C(s)C(w)C(t) = C(wt) I C(swt).
Similarly, computing C(sw)C(t) by (7) and C(s)C(w) by (6), we find
C(s)C(w)C(t) = C(sw) I C(swt).

Hence C(sw) = C(wt), and so sw = wt by (4). This proves the folding
condition. a

For practical purposes, Lemmas 1, 2, and 3 prove the theorem. More
precisely, they prove the theorem under the extra hypothesis that S consists
of elements of order 2. Now in all examples I know of| it is trivial to verify
by inspection that S consists of elements of order 2, so it would be harmless
to add this as a hypothesis. On the other hand, it is interesting that (5)
and (8) actually force this to be true. So here, for your amusement, is the
final step in the proof of the theorem:

Lemma 4. If (5) and (8) hold, then every s € S has order 2.

ProoF: Take w = s~! in (5) to get C(s)C(s™!) C C(s~!) U B. Since
C(s)C(s~1) # B by (8), we must have

C(s)C(s~!) = C(s~1) 1 B.

Taking inverses, we obtain C(s)C(s~!) again on the left, but C(s) II B on
the right. This implies that C(s‘l) = C(s), and the equality above becomes

C(s)C(s)=C(s) I B.

On the other hand, if we take w = s in (5) and use the fact that C(s)C(s)
is known to consist of two double cosets, then we find

C(s)C(s) = C(s) L C(s?).
Hence C(s?) = B and C(s) # B, so s has order 2 in W. O



110 V. Buildings and Groups

Remark. It follows from the theorem that we were very inefficient in §1.
For instance, there was no need to prove (6) geometrically after having
proved (5), nor was there any need for the exercise in §1F. The advantage
of having been inefficient, however, is that we have acquired some geometric
intuition to go along with each of the properties (1)—(8).

We now formally state our axioms, which have been boiled down to (5)
and (8): Following Tits, we say that a pair of subgroups B and N of a
group G is a BN-pair if B and N generate G, the intersection T= BN N
is normal in N, and the quotient W = N/T admits a set of generators S
such that the following two conditions hold for all s € S and w € W:

(BN1) C(s)C(w) C C(w) UC(sw).
(BN2) sBs™' ¢ B.

One also says, in this situation, that the quadruple (G, B, N, S) is a Tits
system. Such a quadruple, then, has all of the properties (1)—(8). The
group W will be called the Weyl group associated to the BN-pair.

It might seem strange that we don’t take S as part of the structure in
the definition of “BN-pair” (i.e., that we don’t define a “BNS-triple”). The
reason for omitting S from the notation is that S turns out to be uniquely
determined by B and N. We will see this below as a byproduct of our study
of the subgroup structure of G. Then, finally, we will be ready to construct
a building associated to a group with a BN-pair.

2B Parabolic subgroups

Assume that G is a group with a BN-pair and that S is as in the definition
above. Recall that every subset S’ C S gives rise to a subgroup BW'B
of G, where W' = (S’). As in §1D above, one shows easily that the function
S’ — BW'B is a poset isomorphism from the set of subsets of S to the set
of subgroups of G of the form BW'B. We will call a subgroup of G of this
form special. This notion of “special subgroup” seems to depend on B, N,
and S. Surprisingly, it turns out to depend only on B:

Theorem 1. The special subgroups of G are precisely the subgroups con-
taining B.

The crux of the proof is provided by the first assertion of the following
lemma:

Lemma. Let w € W admit a reduced decomposition w = sy ---sq. Then
the subgroup of G generated by C(w) contains C(s;) for i = 1,...,d.
Moreover, this subgroup is generated by B and wBw™!.

PROOF OF THE LEMMA: The subgroup generated by C(w) contains w
and B. We therefore have

(B,wBw™') C (C(w)) C (C(s1),...,C(sa)).
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So both assertions will follow if we can show that the subgroup P =
(B,wBw™1!) contains C(s;) for each i. We argue by induction on d. Since
I(s1w) < l(w), we know [cf. (7) above] that s; Bw meets BwB. Hence s; B
meets BwBw™!, which implies that C(s;) C P. It follows that P also con-
tains s;wBw™!s,. We can now apply the induction hypothesis to s;w to
conclude that P contains C(s;) for i = 2,...,d, whence the lemma. O

ProorF oF THEOREM 1: The special subgroups obviously contain B =
C(1). Conversely, suppose P is a subgroup containing B. Then P is a
union of double cosets, hence P = BW'B, where W' is the subset of W
defined by
W ={weW:C(w) C P}

Now W' is a subgroup of W, since C(w~!) = C(w)~! and C(ww’) C
C(w)C(w'). And the first assertion of the lemma implies that W' contains,
for each of its elements w, the generators s € S which occur in any reduced
decomposition of w. Hence W’ is the special subgroup of W generated by
W' NS, and P is therefore a special subgroup of G. O

It is now easy to prove the assertion above that S is uniquely determined
by B and N:

EXERCISE

Deduce from Theorem 1 (or directly from the lemma) that S consists of all non-
trivial elements w € W such that BU C(w) is a subgroup of G.

By a special coset in G we will mean a coset g P such that P is a special
subgroup. Equivalently, a left coset in G is special if and only if it contains
a left coset of B. Motivated by §1D above, we introduce the poset A(G, B)
of special cosets, ordered by the opposite of the inclusion relation. The
upshot of §1D, then, is that if our BN-pair arises from a strongly transitive
action of G on a building A, then we can reconstruct A as A(G, B).

Notice that this description of A does not refer to N. We need N,
however, if we want to describe the apartment system A in terms of G.
Namely, the fundamental apartment ¥ C A corresponds to the set of spe-
cial cosets wP with w € W, or, equivalently, to the set of special cosets with
a representative in N; and the remaining apartments are gotten from X by
using the G-action.

Returning now to our arbitrary group with a BN-pair, here is a conse-
quence of the second assertion of the lemma:

Theorem 2. Every special subgroup is equal to its own normalizer, and
no two special subgroups are conjugate.

PROOF: Let P and P’ be special subgroups, and suppose gP’g~! = P for
some g € G. Let C(w) be the double coset containing g. Then wP'w~! = P,
so P contains B and wBw™!. The lemma now implies that C(w) C P, so
we have ¢ € P and P’ = P. This proves the theorem. O
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A subgroup @ C G is called parabolic if Q contains a conjugate of B, or,
equivalently, if @) is conjugate to a special subgroup. It follows at once from
Theorem 2 that there is a bijection from the set of special cosets to the
set of parabolic subgroups, given by gP — gPg~!. This bijection is easily
seen to be compatible with the inclusion relation. Consequently, we obtain
a new description of the poset A(G, B):

Corollary. The poset A(G, B) is isomorphic to the set of parabolic sub-
groups of G, ordered by the opposite of the inclusion relation. O

3 The Building Associated to a BN-Pair

Let G be a group with a BN-pair, and assume that the set S of generators
of W is finite. [As we remarked at the beginning of Chapter III, this assump-
tion is not really necessary.] We already have our candidate A = A(G, B)
for the associated building. So let’s check that it really is a building.

Lemma. The poset A is a simplicial complex.

PRrROOF: We have the usual two things to check: (a) Any two elements
of A have a greatest lower bound; and (b) for any A € A, the poset A<y
is isomorphic to the set of subsets of a finite set.

Given two special cosets g P and g’ P’, there is certainly a smallest left
coset containing them, namely, gP"”, where P" = (P, P’,g~'g'). Since P"
contains B, it is special. This proves (a).

As to (b), we have already noted that the function S’ — B(S’)B is
a poset isomorphism from the set of subsets of S to the set of special
subgroups of G. So if we denote by C the special coset B, then we have

A<c = (subgroups D B)°P ~ (subsets of S)°P ~ (subsets of S),

where the last isomorphism is given by complementation. Using the G-
action on A, we immediately conclude that (b) holds. O

Now let’s try to construct a system of apartments in A. Let ¥ be the
subcomplex of A consisting of the special cosets of the form wP with
w € W, and let A be the set of transforms g¥ of ¥ by elements of G.

Theorem. The complex A is a thick building, and A is a system of apart-
ments. The action of G is type-preserving and strongly transitive.

PROOF: There is a map ¢ : (W,S) — A(G, B) given by «(wW'’) = wP,
where W’ is a special subgroup of W and P = BW'B is the corresponding
special subgroup of G. It is easy to check that ¢ is well-defined (i.e., inde-
pendent of the choice of coset representative w) and is a simplicial map.
Note that the image of ¢ is the subcomplex ¥ defined above.

There is also a map p : A(G,B) — X(W,S), given by p(gP) = wW’
if ¢ € C(w) and P = BW'B. To see that p is well-defined, suppose that
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g’ = gh is another representative of the coset gP. Then h € C(w') for some
w' € W'. Write w’ as a word in the generating set S’ = WN.S of W’. Then
we have

g = gh € C(w)C(vw') € | JC(wu"),

where ' ranges over the elements of W’ obtained by deleting zero or more
letters from the word representing w' [cf. proof of Lemma 1 in §2A above].
So ¢’ € C(ww") for some such w”, and we obtain the same special coset
ww" W' = wW' if we use ¢’ instead of g in the definition of p. This shows
that p is well-defined, and it is easy to check that it is a simplicial map.

Clearly p¢ = idgw,s). In particular, ¢+ maps X(W,S) isomorphically
onto X, and the latter is therefore a Coxeter complex. It follows that
(A, A) satisfies axiom (BO0). The proof of this has also given us a retraction
p=p: A — X, given by p'(¢9P) = wP if g € C(w).

To verify (B1), we may assume that one of the two given simplices is a
special subgroup P. The other one is then gP’ for some ¢ € G and some
special subgroup P’. Writing g = bnd’ with n € N and b,b’ € B, we have
gP’' = bnP’ € bX, so bX is an apartment containing P and gP’. This proves
(B1).

It follows from what we have done so far that A is a chamber complex.
Moreover, the proof of the lemma essentially constructed a G-invariant
labelling of A, given by gP +— S — S’ if P = B(S’)B. So A is labellable
and G is type-preserving. Strong transitivity is also immediate; for G is
transitive on A, and the subgroup N stabilizes ¥ and is transitive on Ch X.

To complete the proof that A is a building, we will prove the variant
(B2") of axiom (B2). Thus we are given two apartments with a common
chamber C, and we must construct an isomorphism between them fixing
their intersection. By strong transitivity, we may assume that one of the
two apartments is ¥ and that C is the special coset B. Let L’ be the other
apartment. Since the stabilizer of C is precisely the subgroup B, we can
apply strong transitivity again to find an isomorphism ¢ : £’ — X given
by the action of some element b € B.

I claim that ¢ = p'|¥’, where p’ is the retraction constructed above.
Indeed, every simplex of £/ = 4~!% has the form b~ !wP for some w € W
and some special subgroup P; the definition of p’ now gives

P (b 'wP)=wP =b-b"'wP = ¢(b~'wP),

as claimed. It follows that ¢ fixes ¥'NE, so (B2") holds and A is a building,.

Finally, the thickness of A is an easy consequence of axiom (BN2).
In fact, if you go back to §1G above (where we proved that (BN2) is a
consequence of thickness), you will see that all the steps in that proof are
reversible. O

EXERCISE

Extract from the first part of the proof the following generalization of the Bruhat
decomposition: For any special subgroup P = BW'B of G, there is a bijection
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B\G/P =~ W/W', where B\G/P is the set of double cosets of the form BgP.
Still more generally, show for any two special subgroups P = BW'B and P’ =
BW" B that P'\G/P" ~ W\W/W".

Remarks

1. As we noted in the proof, the fundamental apartment ¥ has a cham-
ber C [namely, the special coset B] whose stabilizer is B. The stabilizer
of ¥, however, might be strictly bigger than N. So we do not quite have
a 1-1 correspondence between BN-pairs and strongly transitive actions on
thick buildings.

For a simple example of this, let’s go back to the group G = GL3(k). We
constructed the BN-pair in that example by starting with an action on a
building A and taking B (resp. N) to be the stabilizer of a fundamental
chamber (resp. apartment). But suppose we now replace N by any subgroup
N’ < N which surjects onto W; for instance, we could take N’ to be the
group of permutation matrices. Then it is easy to check that we still have a
BN-pair (B, N') and that we still get the same building A(G, B); but now
our N’ is not the full stabilizer of X.

So if we want the group theory to precisely reflect the geometry, we
need to add a new axiom which guarantees that N is “big enough”. The
appropriate axiom turns out to be:

(BN3) T= () wBuw™
weEW

One says that the BN-pair is saturated if (BN3) holds.

To see why this is the appropriate axiom, consider an arbitrary BN-pair
and the associated building A. Let N* be the stabilizer of the fundamental
apartment X. Then it is easy to see that N* = NT*, where T* = {g € G :
g fixes ¥ pointwise }. Now an element of G fixes ¥ pointwise if and only if
it stabilizes every chamber of ¥ [why?]; so we have T* = [,y wBw™.
Thus (BN3) simply says that T7* = T, which implies that N* = N.

In practice, there is no reason to impose (BN3). For if we want to apply
geometry to group theory, the important thing is to be able to construct a
building associated to a given group.

2. Let Go = yeq gBg~1; this is the normal subgroup of G consisting of
the elements which act trivially on A. Let G = G/Gy. By analogy with the
situation for Coxeter groups and their associated complexes, one might ex-
pect to be able to recover G from A as the group Autg A of type-preserving
automorphisms. This turns out to be false in general; counterexamples will
be given in §8 below (cf. Remark 3 in §8B).

3. Since the simplices of A = A(G, B) correspond to the parabolic sub-
groups of GG, one can use geometric language to express properties of the
parabolic subgroups. Consider, for example, the minimal parabolics (con-
jugates of B). These correspond to the chambers of A, so we can talk about
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the distance between two minimal parabolics, and we can even apply the
refined distance function §, which has values in W (cf. Exercise 3 of §IV 4).
In the spherical case, we can ask whether two minimal parabolics are op-
posite to one another. In GL3(k), for example, the upper triangular group
and the lower triangular group are opposite to one another. (To see this,
take a look at the picture of the fundamental apartment at the beginning
of §1B, and compute the stabilizer of the chamber opposite to C in this
apartment.)

EXERCISE

Show that the upper and lower triangular groups are opposite in GLn(k) for
arbitrary n. [HINT: See the exercise at the end of §IV.5.]

4 Historical Remarks

I began Chapter IV by writing down, with no motivation, the strange-
looking axioms for buildings. I then showed in the present chapter how
these lead in a fairly natural way to some equally strange-looking axioms
for groups with a BN-pair. In this brief section I will attempt to put both
of these axiom systems in their historical context. They may still seem
strange when I’m done, but at least you will have some idea of where they
came from.

Our starting point is a 1954 paper of F. Bruhat [21] on the representation
theory of complex Lie groups. Bruhat was especially interested in the four
classical families A,;, B,,, C,, D, of simple matrix groups G. If you’re not
familiar with these, you can just think about the group G = SL,(C); this is
the classical group of type A,,_;. [[’m being a little sloppy here. The group
SL,(C) is not really simple, but it is “almost simple”. More precisely, its
center Z is finite, and the quotient PSL,(C) = SL,(C)/Z is simple.]

At the time of Bruhat’s work, it had been known for a long time how to
associate to G a finite reflection group W, called the Weyl group of G. It is
given by W = N/T, where T is a “maximal torus” and N is its normalizer.
And people were becoming aware of the importance of a certain subgroup
B C G (which eventually became known as the “Borel subgroup” of G as
a result of the fundamental work of Borel [12]). What was not yet known,
however, was the connection between B and W provided by the Bruhat
decomposition G =[],y BwB.

Bruhat discovered this while studying so-called “induced representa-
tions”. Questions about these led him to ask whether the set B\G/B of
double cosets was finite. He was apparently surprised to discover, by a sep-
arate analysis for each of the four families of classical simple groups, that
the set of double cosets was not only finite but was in 1-1 correspondence
with the finite reflection group W.
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The Bruhat decomposition was a fundamental fact that had previously
gone unnoticed. Chevalley picked up on it immediately, and it became
a basic tool in his work on the construction and classification of simple
algebraic groups ([23], [24]). He replaced Bruhat’s case-by-case proof by
a unified proof that applied not only to the classical groups (types A-D)
but also to the five exceptional groups (types E¢, E7, Es, F4, and Gj).
Moreover, he worked over an arbitrary field k, not just k¥ = C. In particular,
since k could be finite, one now had for each of the types A-G examples
of finite simple groups which admitted a Bruhat decomposition, with the
Weyl group W being the finite reflection group of the given type. Finally,
Chevalley’s work included a study of the basic properties of the parabolic
subgroups of his matrix groups.

In the early 1960’s Tits analyzed Chevalley’s methods and extracted the
two axioms (BN1) and (BN2). He showed that these two axioms were
sufficient to imply Chevalley’s results on the Bruhat decomposition and
parabolic subgroups. This axiomatization can be found in a short 1962
paper [52], which contains most of the results of §2 above. The only serious
omission from this paper is the proof that the Weyl group W associated to
a BN-pair is necessarily a Coxeter group; this fact was discovered a year or
two later by Tits (cf. [54]) and, independently, by Matsumoto [37].

Meanwhile, Tits had been engaged since the mid 1950’s in a different
project, in which he was giving geometric interpretations of algebraic ma-
trix groups. “Geometric” here refers to incidence geometry. Thus, in the
same way that projective plane geometry is closely related to the group SLj
[cf. §1B above], Tits constructed incidence geometries associated to very
general matrix groups, even more general than those considered by Cheval-
ley. See [58] for Tits’s own account of this project and of his early attempts
to provide an axiomatic framework for the geometries he was constructing.

By the early 1960’s, then, Tits was thinking about axioms for geometries
as well as axioms for groups with a Bruhat decomposition. It was natural
for him to combine these two lines of thought, and he did this in [563]. In
§4.2 of that paper one finds three axioms which look very much like the
three axioms for buildings, except that they are stated in terms of incidence
geometries instead of simplicial complexes. And in §5 Tits indicates how a
group with a BN-pair gives rise to a geometry satisfying his three axioms.
In other words, he essentially constructs the building A(G, B). One also
finds in this paper some of the fundamental ideas in the theory of buildings,
such as retractions onto apartments (phrased in the language of incidence
geometry).

Now flag complexes did not actually appear explicitly in [53], but the
paper did use flags extensively. So it was only a matter of time before Tits
focused on the flag complexes themselves and restated his axioms in terms
of simplicial complexes. The first published account of this was given in a
1965 Bourbaki Seminar exposé [54], where buildings were called “complexes
with Weyl structure”. This paper contains, among other things, an outline
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of much of the basic theory of Coxeter complexes and buildings that we
gave in Chapters III and IV. It also contains the correspondence between
BN-pairs and strongly transitive actions on buildings (§§1 and 3 above).

This completes my highly condensed account of the origin of buildings.
I hope it gives you some idea, admittedly vague, as to how Tits discovered
buildings by combining (a) years of work on incidence geometries associated
to matrix groups and (b) ideas inspired by Chevalley’s treatment of the
Bruhat decomposition.

There is an interesting footnote to this story. I mentioned that the types
A-G of finite reflection groups all arose in Chevalley’s work as the Weyl
group W of a finite simple group with a BN-pair. What about the remaining
types H3, Hy, and I3(m) (m = 5 or m > 7)? The type I5(8) (dihedral group
of order 16) was observed fairly early; it arises, for instance, from a BN-
pair in a finite simple group constructed by Ree, of order 17,971,200 =
211.33.52.13. But it turns out that this is the only “unusual” Weyl group
that can arise from a finite group (simple or not) with a BN-pair. This is a
consequence of a theorem of Feit and Higman [27], which can be restated
as follows in the language of buildings:

Theorem. If A is a finite thick building, then every connected component
of its Coxeter diagram is of type A,,, B,, Dy, E,,, Fy, Go, or I5(8).

I’ll say a few words about the proof. First, it suffices to consider the
case where A is irreducible, by which we mean that its Coxeter diagram is
connected. For in the general case, A can be decomposed as a join of irre-
ducible buildings, one for each component of the diagram. Next, it suffices
to consider the case where A is of rank 2. For the only other cases to worry
about are Hz and Hy4; and if A had either of these types, then a suitable
link in A would be a finite thick building of the prohibited type I5(5).

Now a rank 2 building A is necessarily the flag complex of a plane inci-
dence geometry P, simply because A is labellable. [It’s actually true that
all buildings are flag complexes, but this is not immediately obvious. It is
proved in [56], Proposition 3.16; see also §VI.5 below, where we will prove
it in a special case.] If one unwinds the characterization of rank 2 buildings
(§IV.3, Exercise 2), one finds that P is what is known as a generalized m-
gon, where m is the integer such that A has type o-"—o. This terminology
comes from the fact that P has formal properties analogous to those of the
geometry consisting of the vertices and edges of an m-gon; see [58] or [27]
for the precise definition.

We are therefore reduced to the following question: For which integers
m > 3 do there exist finite generalized m-gons in which every point is on
at least 3 lines and every line contains at least 3 points? The bulk of the
Feit-Higman paper is devoted to answering this question, and what they
show is that the only possibilities for m are 3, 4, 6, and 8. These correspond,
respectively, to the types Ay, By, G2, and I3(8), whence the theorem. See
[27] or [54] for more details.
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5 Example: The General Linear Group

Let G = GLy(k) (n > 2), where k is an arbitrary field. [Note: Everything
we are about to do goes through if we instead take G to be SLy(k), or
PGLy(k), or PSL,(k).] As we have already noted in various remarks and
exercises, it is possible to proceed exactly as in the case n = 3 (cf. §1B).
In other words, one can obtain a BN-pair by using the action of G on the
complex A of flags of proper non-zero subspaces of k™. This approach relies,
of course, on the fact (proved in Exercise 2 of §IV.2) that A is a building.

In the present section we will give an alternate approach, which does
not depend on the exercise just cited. Namely, we will simply verify the
BN-pair axioms by direct matrix computations. As a byproduct, we will
obtain a new proof that the flag complex A is indeed a building.

Let B C G be the upper triangular group, i.e., the stabilizer of the
standard flag

[61] - [ely 62] c---C [elv s ;en-l])

where e;,...,e, is the standard basis of k™. Let N C G be the monomial
group, i.e., the stabilizer of the set of lines {[e;],...,[en]}. Then N acts
as a group of permutations of this set, and we obtain a surjection from N
onto the symmetric group on n letters. The kernel of this homomorphism
is T'= BN N, which is the diagonal subgroup of G. So N normalizes T,
and W = N/T can be identified with the symmetric group on n letters.

To see that B and N generate GG, we need only note that the subgroup
(B, N) contains the lower triangular group, which is wBw=! for a suitable
w € W, hence it contains all elementary matrices. [Recall that an elemen-
tary matrix is one which has 1’s on the diagonal and exactly one non-zero
off-diagonal entry; left multiplication (resp. right multiplication) by such a
matrix corresponds to an elementary row (resp. column) operation.] It now
follows from elementary linear algebra that (B, N) = G.

Let S C W be the standard set of generators {si1,...,sp—1}, where s; is
the transposition which interchanges ¢ and i + 1. To simplify the notation,
we will verify the axioms (BN1) and (BN2) only for s = s;; the other
elements of S are treated similarly. Our s, then, is represented by any
monomial matrix of the form

0 =
x 0

*

where the blank regions are understood to be filled with zeroes.
Axiom (BN1) says that sBw C BwB U BswB. Multiplying on the right
by w™1, we can rewrite this as

sB C BB'UBsB’,
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where B’ = wBw™1. In other words, we must show that any matrix in sB
is reducible to either 1 or s via left multiplication by B and right multi-
plication by B’. It turns out that we will only need to use the elementary
matrices in B and B’, so that we will simply be doing some elementary
row and column operations (also known as “pivoting”).

Note first that left multiplication by upper triangular elementary matri-
ces allows us to pivot upwards, i.e., to add a multiple of a row to any higher
row. Now a typical element of sB has the form

0 x = *
X k% *
* *
)
*
which is easily reduced to
0 =
x %
*
*

by pivoting upwards. If the (2,2)-entry is zero, then we have already reduced
the matrix to s. So we may assume that all three *’s in the upper left 2 x 2
block are non-zero.

Now let’s use right multiplication by B’. To avoid messing up what we
have already achieved, we will only use B’ N GLj; here GL, is identified
with the subgroup

{g € GL, : g[e1,e2] = [e1,€2] and ge; = ¢; for i > 2}.
Note that B’ = wBw™! is the stabilizer of the flag

[ew(l)] C [ew(l); e11)(2)] c--C [ew(l)y vee aew(n—l)]'

It follows easily that B’ N GL, is the stabilizer in GL2 of the line spanned
by either e; or e, whichever occurs first in the list ey (1), - . ., €w(n)- In other
words, B'NGLs, is the upper triangular subgroup of GL, if w™=1(1) < w™1(2)
and the lower triangular subgroup otherwise.

Looking at the elementary matrices in B’ N GLy, we see that we now
have a column operation available: If w=!(1) < w™!(2), then we can add a
multiple of column 1 to column 2, and otherwise we can add a multiple of
column 2 to column 1. In the first case, we pivot on the (2,1)-entry of our
matrix above in order to clear out the (2,2)-entry; this reduces the matrix
to s. In the second case, we pivot on the (2,2)-entry in order to clear out
the (2,1)-entry; the resulting matrix is in B, and we are done. (Note: The
proof of (BN1) actually showed that sBw C BswB for half of the elements
w € W. This should not surprise you.)
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Finally, it is trivial to check that (BN2) holds; for we have

* 0 * ... *
* x k... *

sBs = * ... * SLB'
*

Having verified the BN-pair axioms [with remarkably little effort], we
obtain a building A(G, B). Let’s show that this building is isomorphic to
the complex A of flags of proper non-zero subspaces of k™. Consider the
action of G on A. If C is the standard flag, it is immediate that C = A<c
is a fundamental domain for the action. Moreover, the stabilizers of the
faces of C are precisely the special subgroups of G. Indeed, they are special
since they contain B, and it is trivial to verify that they are all distinct.
Since C has 2"~ faces and G contains only 2"~ special subgroups (one for
each subset of S), the stabilizers must exhaust the special subgroups. The
desired isomorphism now follows easily. In particular, we have obtained
a group-theoretic proof, independent of Exercise 2 of §IV.2, that the flag
complex A is a building.

6 Example: The Symplectic Group

Let k continue to be an arbitrary field. Let (—, —) be the bilinear form
on k?" (n > 1) defined as follows on the standard basis vectors:

0 ifit+j#2n+1

(i, ej) = 1 ifi+j=2n+landi<y
-1 fi+j=2n+1andi>j.
If we denote the standard basis vectors by ey, eq,...,€n, fn, fa-1,.-., f1,

then the non-zero “inner products” above can be written more simply as
(eivfi) =1= —(fi;ei>-

The bilinear form (—, —) is alternating by which we mean that (v,v) = 0

for all v. [This implies skew-symmetry: (v, v') = —(v’, v). Conversely, skew-

symmetry of a bilinear form implies that the form is alternating, provided
chark # 2]

It is easy to explicitly compute (—, —) in terms of coordinates: If we write
a typical element of k2 as a pair (X,Y) with X,Y € k*, then we have
(X, ), (Z,W)=X -W -Y -Z,

where the prime means “reverse the coordinates” and the dot denotes the
ordinary dot product of vectors in k":
n

(1, y2n)  (V1y-- -, Yn) = Zx,‘-y;.

i=1
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When n = 1, for instance, (v, w) is simply the determinant of the 2 x 2
matrix with v and w as columns.

We now define the symplectic group Sp,, (k) to be the group of automor-
phisms g of k2" which preserve (—, —), i.e., which satisfy (gv, gw) = (v, w)
for all v, w € k?". It is enough to check this equation when v and w are
basis vectors. So an element of Sp,,,(k) is a 2n X 2n matrix g whose columns
vi,...,Va, satisfy the same inner product relations as the standard basis
vectors ej,...,ea,. When n = 1, this simply says that detg = 1; thus
sz = SL2.

For each i = 1,...,n there is a copy of Sp, [= SLy] in Sp,,, which
stabilizes the plane [e;, f;] and fixes all basis vectors other than e; and f;.
Taking n = 2 and ¢ = 1, for instance, we obtain a copy of SL; in Sp, that

looks like this:
* *

1 0
0 1
* *

In addition, there are various ways to embed GL32 in Sp,,,. Namely, given
1 < i< j < n,there is a copy of GL, which stabilizes [e;, e;] and [fi, f;] and
fixes all basis vectors other than these four; an automorphism g of this type
can do anything at all on [e;, ¢;], but its effect on [f;, f;] is then forced by
the requirement that g be symplectic. Suppose, for example, that we take
n = 2 again and try to construct an element g € Sp, which is given by an

01
Then g must have the form

elementary matrix (1 a) on [ey, e5] and which stabilizes [fi, f2] = [eq, e3].

1l a

01
*  x
*  x

3

and a simple computation shows that this will be symplectic if and only if

the lower right 2 x 2 block is ((1) —‘1')

Finally, for each 7 < j as above there is also a copy of GL; in Sp,,, which
stabilizes [e;, f;] and [e;, fi].

Call a symplectic matrix elementary if it is the image of a 2 x 2 elemen-
tary matrix under one of the embeddings described in the three previous
paragraphs. You might find it a useful exercise to explicitly write down all
the types of elementary matrices in Sp,. (There are two copies of SLy and
two copies of GLy, hence 8 types of elementary matrices.) You can also
check as an exercise that Sp,, is generated by elementary matrices. The
idea is to interpret multiplication by elementary matrices in terms of row
and column operations. You will then find it easy to use these operations
to reduce any symplectic matrix to the form

(" 4)
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where I and A are n x n matrices and I is the identity. But then A is forced
to be the identity also since the matrix is symplectic.

We need one last bit of terminology before constructing a BN-pair in
Span(k). A subspace V C k%" is called totally isotropic if (v,v') = 0 for all
v,v’ € V. This is equivalent to saying that V C V1, where the orthogonal
subspace V1 is defined in the usual way. Note, for instance, that a subset
of the standard basis spans a totally isotropic subspace provided it contains
no pair {e;, fi }. The chain of totally isotropic subspaces

[e] C ler,e2) C - [ex,. .., en)

will be called the standard isotropic flag in k*®. Note that the subspaces
orthogonal to these totally isotropic subspaces form a descending chain

le1, ... ean—1] D e1,...,eam—2] D ---Dle1,...,en];

so if we take the standard isotropic flag together with the orthogonal
subspaces, we get the standard ordinary flag in k*" (with the subspace
[e1, ..., en] counted twice). Incidentally, the set of non-zero totally isotropic
subspaces, with inclusion as the incidence relation, is an example of what
is called a polar geometry.

Now let B be the group of upper triangular symplectic matrices, i.e.,
the stabilizer in G = Sp,,,(k) of the standard flag in k%". If a symplectic
matrix stabilizes a subspace V, then it stabilizes V* too; hence B can also
be described as the stabilizer in G of the standard isotropic flag. Let N C G
be the group of symplectic monomial matrices, i.e., the stabilizer in G of
the set of lines {L1,...,Ln,L},..., L}, where L; = [e;] and L} = [fi].
Then T = BN N is the group of diagonal symplectic matrices, i.e., the
group of matrices of the form diag(Ay, ..., s, AL, ..., A7), In particular,
N normalizes T'. Note that T is isomorphic to the product of n copies of k*;
in the language of the theory of algebraic groups, T is a torus of rank n.

The quotient W = N/T can be identified with a group of permutations
of the set of 2n lines above. We will show that W is equal to the group W’
consisting of all permutations which map each pair {L;, L)} to another such
pair. The inclusion W C W' is immediate, since W preserves the orthogo-
nality relations among the given lines. To prove the opposite inclusion, note
first that W' is generated by the following set S = {s1,..., s, } of permuta-
tions: s; for ¢ < n is the product of the two transpositions L; < L;;; and
L} « L}, ;; and s, is the transposition L,, « L7 . So the inclusion W C W
follows from the easy observation that each s € S can be represented by a
symplectic monomial matrix in one of our embedded SL3y’s or GL5’s.

One can now use elementary row and column operations, exactly as in
the case of GL,,, to complete the proof that we have a BN-pair. Details are
left to the reader. [You might want to check (BN1) for n = 2 and s = s;;
for instance, just to convince yourself that the same method really does
work.] The crucial thing that keeps the proof from becoming unpleasant
is that each s; is in a GL2 or SL»; one is thereby able to reduce (BN1)
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to a 2 x 2 computation before ever having to think about what the group
B’ = wBw™! looks like.

Finally, one can check that the associated building A = A(G, B) is iso-
morphic to the flag complex of the set of non-zero totally isotropic sub-
spaces. The proof is essentially the same as the proof of the analogous
‘statement for GL,, provided that you know the basic linear algebra of
alternating forms. See, for instance, Artin [8], Chapter III.

EXERCISE

Draw a picture of the fundamental apartment in A when n = 2; it is a barycen-
trically subdivided quadrilateral, whose 8 vertices consist of the totally isotropic
subspaces spanned by subsets of the standard basis.

Remarks

1. You probably noticed that the Weyl group W is isomorphic to the
“signed permutation group on n letters”, which is the finite reflection group
of type B, or C,, cf. §1.3. [Strictly speaking, type B,, was only defined for
n > 2 in Chapter I; but we make the convention that B; = A;.] This
calculation of W is consistent with the fact that Sp,, is said to be of
type C,, in the classification of matrix groups.

2. The “inner product” {(—, —) that we worked with may have seemed
arbitrary. But, in fact, one can show that it is the typical non-degenerate
alternating bilinear form, in the following sense: If V is a finite dimensional
vector space with a non-degenerate alternating bilinear form (—, —), then
dimV is even and V has a basis ey, ..., en, fa,..., fi Wwhose inner products
look like those of our example. A proof can be found in the book of Artin
cited above.

7 Example: The Orthogonal Group

We assume now that char k # 2, although much of what we do would work
in characteristic 2 also. Let (—,—) be the symmetric bilinear form on k™
(m > 2) defined as follows on the standard basis vectors ey, ..., en:

(e e-)—-{l ifi+j=m+1
YT 0 otherwise.

We will write m = 2n (resp. m = 2n + 1) if m is even (resp. odd), and
we will denote the last n basis vectors by f,,..., fi. The non-zero inner
products, then, are

(ei, fi) = 1= (fi, i)
and, if m = 2n + 1,

(en+1 ) 6n+1) =1.
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It is easy to explicitly compute (—, —) in terms of coordinates: Write a
typical vector v € k™ as (X,Y) if m is even and as (X, A,Y) if m is odd,
with X|Y € k™ and XA € k; then we have

(X, Y),(Z,W)=X -W+Y- -2
(X, A\Y),(Z,p,W))=X -W +Y -Z' + A,

where the prime and the dot product have the same meaning as in §6. In
particular, the associated quadratic form @) is given by

QX,Y)=2X-Y' or Q(X,\Y)=2X Y +A2

This form is equivalent, under change of coordinates, to the form @’ given
by
Q' (21, y2m) =—2f — - —2h 4+ 20+ 2

And if k contains v/—1, then it is equivalent to the “standard” quadratic
form 700, 22

We now define the orthogonal group O, (k, Q) to be the group of auto-
morphisms g of k™ which preserve (—, —) or, equivalently, Q. The special
orthogonal group SO, (k, Q) is defined to be the group of orthogonal ma-
trices of determinant 1. We will often suppress ) from the notation and
simply write O, (k) and SO,,(k), since the quadratic form Q defined above
is the only one we will consider.

Note that SO, is the “rank 1 torus” consisting of diagonal matrices
diag(A,A~1). It has index 2 in Og, the non-trivial coset being the set of

matrices
0 )1
A0 !
which have determinant —1.

Let’s focus now on G = SO,,, returning to the case of O,, afterwards.
For each i = 1,...,n we have a copy of SO; in G which stabilizes [e;, f;]
and fixes all the other basis vectors. In case m = 2n + 1, we can extend
this to an embedding O, < G by using the “extra” basis vector v = e, 4;:
For if ¢ € O, has determinant —1, then we can copy g on [e;, f;] and then
send v to —v in order to make the determinant 1.

Next, given 1 < i < j < n, there are two ways of embedding GL; in
G = SOy,, exactly analogous to the two embeddings used for Sp,,. In
particular, this gives us lots of elementary matrices to work with.

We now construct the BN-pair in the usual way: B is the upper triangular
subgroup of G and N is the monomial subgroup. Then T'= BN N consists

of the diagonal elements of G. If m = 2n, these elements necessarily have
the form

ERATSIERRE

and if m = 2n + 1 they have the form
diag()\l,...,/\n,l,A;I,...,Al‘l).

diag(A1, ..., An, AZL, L, ATY),
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In both cases, T is a “rank n torus”. The Weyl group W = N/T can
be identified with a group of permutations of the 2n lines L; = [e;] and
L = [fi], ¢t = 1,...,n. This is clear if m = 2n, but it is also true if
m = 2n+1; for e, 41 is the only non-isotropic basis vector, so W necessarily
fixes the line it spans.

If m = 2n+ 1, then W is the same permutation group W’ as in the case
of Sp,,,. One proves this by exhibiting elements of N which represent the
generators s; of W’ (¢ = 1,...,n) constructed in §6. For i < n, the required
element of N can be found in the embedded GLs acting on [e;, €;41] and
[fi, fi+1]- And for i = n, the required element can be found in the embedded
O, acting on [en, €n41, fn]. This calculation of W is consistent with the fact
that the matrix group SOs, 41 is said to be of type B,.

If m = 2n, however, it is impossible to represent s, by an orthogonal
monomial matrix of determinant 1. The group W in this case turns out to
be a subgroup of index 2 in W’. This subgroup is generated by the s; for
1 < n together with one additional element ¢, which is the product of the
transpositions L,_; « L} and L, « L] _;. Note that ¢ is in the embedded
GL; acting on [en -1, fn] and [ey, fn—1]. (I am assuming here that n > 2; if
n = 1, then G = SO, and we have already said everything there is to say
about that group.)

In both cases, we now have a set of n generators for W, and it is a routine
(although somewhat tedious) matter to verify the BN-pair axioms, using
the same methods as in §§5 and 6. We have already identified the Weyl
group in case m = 2n + 1. In case m = 2n, you can check, by computing
orders of products of generators, that W is of type D,. [Strictly speaking,
D,, was only defined for n > 4 in Chapter I; but the appropriate convention
is that D3 = A3 and that the diagram of type D, is the union of two copies
of the diagram of type A;.] This calculation of W is consistent with the
fact that the matrix group SO,, is said to be of type Dj,.

Remark. Did the definition of ¢ above seem ad hoc? Was there a different
choice of t that seemed more natural to you? If so, you would have struggled
in vain to verify the BN-pair axioms for your choice. Indeed, we know from
the general theory that, given B and N, there can only be one set S for
which the BN-pair axioms hold (cf. §2B, Exercise).

Let’s try now to figure out what the building A(G, B) is. The naive guess
is that it is the flag complex A of non-zero totally isotropic subspaces of £™.
This guess is correct if m is odd, and the proof is the same as the proofs
of the analogous assertions in §§5 and 6. But it is wrong if m is even, as
one can see in a variety of ways. For one thing, the flag complex A has
the wrong type. [It is the flag complex of a polar geometry and hence has
type B, ; but we’ve already seen that the Weyl group of SO, has type D,,.]
For another thing, one can show that the action of SOy, on Ch A is not
transitive. [There are precisely two orbits.] Yet a third thing that goes
wrong is that A is not thick. [A simple computation shows that there are
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only two ways of extending the flag

[el] c---C [61,...,en_1]

to a maximal flag.]

The correct answer, when m is even, turns out to be that A(G, B) is
the flag complex of the following so-called “oriflamme geometry” P: The
elements of P are the non-zero totally isotropic subspaces of k2" of dimen-
sion # n — 1; two such subspaces are called incident if one is contained in
the other or if both have dimension n and their intersection has dimension
n — 1. As an example of a flag in P we have the following chamber C"

C [31:-~-’en—1;en]
[61] c---C [61,...,6,,_2] -

[61)'--’en—1:fn]

We can get some feeling for this by thinking about the case n = 2 and
describing P in the language of projective geometry: An isotropic line in k4
is simply a point in the 3-dimensional projective space P3 over k that lies
on the quadric surface X defined by Q = 0. And an isotropic plane in k* is
simply a line in P2 which is contained in X . Our geometry P, then, consists
of lines in the surface X, two such being called incident if they intersect. If
you believe, as asserted above, that the flag complex of P is a building of
type Dy = A; IT Ay, then it must be true that there are two types of lines
in X, and that every line of one type intersects every line of the other type
(cf. §IV.2, Example 2). One can actually see this directly, by exhibiting an
isomorphism between X and the direct product P! x P! of two copies of the
projective line; the two types of lines in X, then, are simply the two types
of slices of the product. Details can be found in van der Waerden [61], §1.7,
which contains an interesting discussion of the groups SO,, for 3 < m < 6.

Finally, what happens if we look at the full orthogonal group O,, instead
of SO,,? For m odd, everything goes through with no essential change.
In particular, we again get a BN-pair, with the associated building being
the same as the building for SO,,. This is not surprising, since O,, =
SO,, x{x1} if m is odd, so there is virtually no difference between the two
groups.

When m is even, on the other hand, the situation is more complicated.
One still has an action of G = O,, on the oriflamme complex A, but the
action is not type-preserving. For it is easy to give examples of orthogo-
nal matrices which stabilize the flag C' constructed above but do not fix
it pointwise. So the action of G on this building does not yield a BN-pair
in G. We obtain, instead, something called a generalized BN-pair. See Bour-
baki [16], §IV.2, Exercise 8, if you want to know precisely what this means.
I’ll say more about it in the next section, in connection with a different
group.

One last comment about G = Os2,: In addition to the building A of
type Dy, one still has the non-thick building of type B,,, consisting of flags



8. Example: SL, Over a Field With Discrete Valuation 127

of totally isotropic subspaces. The action of G on this building is type-
preserving and strongly transitive, so all of the results of §1 are applicable
except those which used thickness. In particular, properties (1)—(6) of §2A
all hold, with B equal to the upper triangular subgroup of O, [which
happens to be the same as the upper triangular subgroup of SO»,] and with
the Weyl group being of type B,,. One thus has a choice of two geometries
associated to G, one of type D,, [which yields a generalized BN-pair] and
one of type B, [which yields what could be called a “weak” BN-pair].
The former might seem more natural since G is classically considered to
be of type Dy, but the latter has had applications also; see, for instance,
Vogtmann [63].

8 Example: The Special Linear Group Over a
Field With Discrete Valuation

Up to now, all of our examples of BN-pairs have had finite Weyl groups (and
hence spherical buildings). It turns out that the same matrix groups that
occurred in those examples admit a second BN-pair structure whenever
the ground field comes equipped with a discrete valuation. This was first
noticed by Iwahori and Matsumoto [33] and was later generalized to a much
larger class of groups by Bruhat and Tits [22]. The Weyl group for this
second BN-pair is an infinite Euclidean reflection group, and the associated
building therefore has apartments which are Euclidean spaces. We will
illustrate this by treating the groups SL,,. But first we must review discrete
valuations.

8A Discrete valuations

Let K be a field and K* its multiplicative group of non-zero elements.
A discrete valuation on K is a surjective homomorphism v : K* - 7Z
satisfying the following inequality:

v(z + y) > min{v(z), v(y)}

for all z,y € K* with z + y # 0. It is convenient to extend v to a function
defined on all of K by setting v(0) = +o0; the inequality then remains
valid for all z,y € K. Note that we necessarily have v(—1) = 0 since Z is
torsion-free; hence v(—z) = v(z). It follows from this and the inequality
above that the set A = {z € K : v(z) > 0} is a subring of K; it is called
the valuation ring associated to K. And any ring A which arises in this
way from a discrete valuation is called a discrete valuation ring.

The group A* of units of A is precisely the kernel v=1(0) of v. So if
we pick an element # € K with v(w) = 1, then every element x € K*
is uniquely expressible in the form z = 7"u with n € Z and v € A*. In
particular, K is the field of fractions of A.
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The principal ideal 7A generated by 7 can be described in terms of v as
{z € K : v(z) > 0}. It is a maximal ideal, since every element of A not in
7A is a unit. The quotient ring k = A/7A is therefore a field, called the
residue field associated to the valuation v.

Example. Let K be the field Q of rational numbers, and let p be a prime
number. The p-adic valuation on Q is defined by setting v(z) equal to the
exponent of p in the prime factorization of . More precisely, given z € Q*,
write £ = p™u, where n is a (possibly negative) integer and u is a rational
number whose numerator and denominator are not divisible by p; then
v(z) = n. The valuation ring A is the ring of fractions a/b with a,b € Z
and b not divisible by p. [The ring A happens to be the localization of Z
at p, but we will not make any use of this.] The residue field k is the field
F, of integers mod p; one sees this by using the homomorphism A » F,
given by a/b +— (a mod p)(b mod p)~!, where a and b are as above.

The valuation ring A in this example can be described informally as the
largest subring of Q on which reduction mod p makes sense. It is thus the
natural ring to introduce if one wants to relate the field Q to the field F,,.
This illustrates our point of view toward valuations: We will be interested
in studying things (namely, matrix groups) defined over a field K, and we
wish to “reduce” to a simpler field k as an aid in this study; a discrete
valuation makes this possible by providing us with a nice ring A to serve
as intermediary between K and k:

A — K

l

k

Returning now to the general theory, we note that the study of the
arithmetic of A (e.g., ideals and prime factorization) is fairly trivial:

Proposition 1. A discrete valuation ring A is a principal ideal domain,
and every non-zero ideal is generated by ™ for some n > 0. In particular,
wA is the unique non-zero prime ideal of A.

PROOF: Let I be a non-zero ideal and let n = min{v(a) : a € I}. Then I
contains 7™, and every element of I is divisible by #”; hence I = 7" A. O

One consequence of this is that we can apply the basic facts about mod-
ules over a principal ideal domain (e.g., a submodule of a free module is
free). Let’s recall some of these facts, in the form in which we’ll need them
later. Let V be the vector space K™. By a lattice (or A-lattice) in V we will
mean an A-submodule L C V of the form L = Ae; & --- ® Ae,, for some
basis ej,...,e, of V. In particular, L is a free A-module of rank n. If we
take e1,...,e, to be the standard basis of V, then the resulting lattice is
A" which we call the standard lattice.
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If L' is a second lattice in V/, then we can choose our basis ey, ..., e, for L
in such a way that L’ admits a basis of the form Ajeq,..., A e, for some
scalars A\; € K*. This fact should be familiar to you for the case L' C L,
and the general case follows easily. [Choose a large integer M such that
7™ [ C L, and apply the usual theory to L” = #™ L’.] The scalars ); can
be taken to be powers of 7, and they are then unique up to order. They
are called the elementary divisors of L’ with respect to L.

All of this follows from well-known results about modules over principal
ideal domains. But I will sketch the proof of part of it (namely, the existence
of the e; and J;) in the case at hand, where A is a discrete valuation ring;
for the proof involves ideas that will be needed later anyway.

Start with arbitrary bases of L and L', and express the basis elements
of L' as linear combinations of those of L; this yields an element of GL,(K).
It is easy to see that this matrix can be reduced to a monomial matrix by
means of integral row and column operations, where “integral” means that
the operation is given by multiplication by an elementary matrix in SL,, (A).
[In other words, when we add a scalar multiple of one row or column to
another, the scalar is required to be in A.] To see that this is possible,
choose a matrix entry a;; with v(e;;) minimal. Then pivot to clear out
everything other than a;; in the ith row and jth column, noting that this
pivoting only requires integral row and column operations. Now ignore the
ith row and jth column and repeat the process, using an element of minimal
valuation in the rest of the matrix. It is clear that we will eventually obtain
a monomial matrix by continuing in this way

The row and column operations above correspond to changes of basis
in L and L’. So what we have just done is to replace the given bases of
L and L' by new ones, such that the new basis elements of L’ are scalar
multiples of the new basis elements of L. This completes the proof.

Note that if the matrix in GL,(K) that we started with above happened
to be in SL,(K), then the same would be true of the monomial matrix that
we ended with. So we obtain, as a byproduct of the proof:

Proposition 2. SL,(K) is generated by its monomial subgroup together
with the elementary matrices in SL,(A). a

We end this review of discrete valuations by commenting briefly on the
notion of completeness. A discrete valuation v induces a real-valued abso-
lute value on K, defined by

lz| = eV,
We then have
ley] = |z| - |y| and |z 4+ y| < max{|z|,|y|}.

This inequality is a very strong form of the triangle inequality. In particular,
we get a metric on K by setting d(z,y) = |z — y|. It therefore makes sense
to ask whether K is complete, in the sense that every Cauchy sequence
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converges. If not, then one can form the completion K of K by formally
adjoining limits of Cauchy sequences, in exactly the same way that one
constructs R in elementary analysis by completing Q. The only difference
is that the construction is actually easier in the present context, because
of the strong form of the triangle inequality. In fact, one can build the
completion purely algebraically by using inverse limits; see, for instance,
Atiyah-MacDonald [9], Chapter 10.

The field operations and the function v extend to K by continuity, and K
is again a field with a discrete valuation. Its valuation ring is the completion
Aof A (i.e., the closure of A in K ), and its residue field is the same as that
of K. In case the residue field k is finite, one can show that A is compact;
since A is the closed unit ball in K, the latter is locally compact in this
case.

The canonical example for all this is the p-adic valuation on Q discussed
above. The completion is the field Q, of p-adic numbers. It is a complete,
locally compact, discretely valued field, with residue field F,. Its valuation
ring is called the ring of p-adic integers.

8B The group SL,(K)

Let K continue to denote a field with a discrete valuation v, and let A, ,
and k be as in §8A. We then have a diagram of matrix groups

SL.(4) < SL.(K)

l
SLn (k)

which we will use to construct a BN-pair in SL,(K) by “lifting” the BN-
pair in SL,(k) that we studied in §5. More precisely, we will take B to be
the inverse image in SL,(A) of the upper triangular subgroup of SL,(k),
but we will take N, as before, to be the monomial subgroup of SL,(K).
[It wouldn’t make sense to also construct N as an inverse image, since
B and N would then both be subgroups of SL,(A) and hence could not
possibly generate SL,(K').]

Note that B contains the upper triangular subgroup of SL,,(A); the sub-
group generated by B and N therefore contains both the upper triangular
and lower triangular subgroups of SL,(A) and hence all elementary ma-
trices in SLy(A). This subgroup is therefore the whole group SL,(K) by
Proposition 2 of §8A. The intersection T'= BN N is the diagonal subgroup
of SL,,(A), which is easily checked to be normalized by N; in fact, the con-
Jugation action of N on T simply permutes the diagonal entries of a matrix
inT.

We need some notation in order to describe the group W = N/T. For any
commutative ring R, let N(R) (resp. T(R)) denote the monomial (resp. di-
agonal) subgroup of SL,(R). Then our N and T above are N(K) and T(A),
so W = N(K)/T(A). Let W = N(K)/T(K), identified as usual with the
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symmetric group on n letters. Then W is a quotient of W, and we have a
short exact sequence

This sequence splits, since the subgroup N(A)/T(A) C W maps isomor-
phically to the quotient W; so we have

WaFx W,

where F = T(K)/T(A) ~ (K*/A*)"~1. Note that the valuation v induces

an isomorphism K*/A* — Z, so the normal subgroup F' above is free
abelian of rank n — 1. In order to understand the action of W on this
free abelian group, identify F with {(z1,...,2,) € Z" : Y1,z = 0}.
[The isomorphism of F with this group is obtained by applying v to the
n diagonal entries of an element of T'(K).] The action of W on F, then,
simply permutes the n coordinates. We now need to find a suitable set of
generators for W and verify the BN-pair axioms. Let’s start with the case
n = 2, deferring the general case to §8C below.

When n = 2, we have W =~ Z x {*1}, with the non-trivial action of
{#£1} on Z; this is the infinite dihedral group. It is generated by s; and u,
where s; is the non-trivial element of the {+1} factor and u is a generator
of the infinite cyclic normal subgroup F = T(K)/T(A) C W. So W is
generated by the set S = {s;,82} of elements of order 2, where s, = sy u.
Let’s take u to be represented by the element diag(w, 7~ !) € T(K); then

s1 is represented by
0 -1
1 0
and s3 is represented by
0 -1 = 0 {0 -1
1 0 0 =~/ " \x 0 :

Note that it is by no means clear, a prior:, that we have made the right
choice of u—we could replace u by u~! and still get a set of two generators
of W of order 2. But, as we noted when discussing SO», in §7, only one of
these choices can be “right” (in the sense that the BN-pair axioms hold). We
have, in fact, made the right choice, and one can easily verify the axioms.
The verification of (BN1) is slightly tedious since it requires consideration
of several cases. As an example, let’s take s = s; and w = (s152)", where
r > 0. In this case we’ll show that sBw C BswB, which is what should be
true since I(sw) = l(w) + 1.

Note first that the subgroup B C SL2(K) can be described by the fol-
lowing conditions on the valuations of the matrix entries:

(11:0 vZO)
v>1 v=0/
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Computing sBw, we find that its elements satisfy

( v>r v:——r-——l)
v=r+1 v>-r+1/°

The unique entry with minimal valuation is in the upper right-hand corner,
so we pivot at this position to clear out the diagonal entries. This requires
multiplication by elementary matrices of the form

1 0
w2a 1

with a € A. Elementary matrices of this form are in B, so the pivoting
operations are legal and we have reduced our matrix to a monomial ma-
trix in SL2(K) whose upper right-hand corner has valuation —r — 1. This
monomial matrix is equivalent mod T to the matrix

0 —g—r-1
artl 0 ’

which represents sw. This completes the verification of our special case of
(BN1). The other cases are equally easy.

Now let’s try to describe the building A(G, B). Note first that one of the
special subgroups is SL2(A), since this is a subgroup containing B. Since
SL2(A) is the stabilizer in SLy(K) of the standard A-lattice A% in K2, this
suggests that the vertices of A(G, B) should correspond to lattices in K2.
[There is, of course, an obvious action of SLy(K'), and even GLy(K), on
the set of lattices.] On the other hand, our experience in §5 suggests that
A should admit an action of PGLy(K) = GLy(K)/Z, where Z is the group
of scalar multiples of the identity. So it is more reasonable to expect the
vertices to correspond to Z-orbits of lattices. With this as motivation, we
proceed to describe the building.

Call two A-lattices L, L' in K? equivalent if L = AL’ for some A € K*.
Note that the scalar A can then be taken to be a power of #. Let [L] denote
the equivalence class of a lattice L. If L is given as Afy & Afs for some
basis fi, f2 of K2, then we will also write [[f1, f2]] for the class [L].

I want to assign a “type” to a lattice class. To this end, consider the obvi-
ous action of GL2(K') on the set of lattice classes. This action is transitive,
and the stabilizer of [A?] is Z - GLy(A), where Z is as above. It follows that
v(det g) is an even integer for every g in this stabilizer. We can now say that
a lattice class A is of type O (resp. type 1) if v(det g) is even (resp. odd)
for every g € GLy(K) such that g[4%] = A. In other words, the type of
([f1, f2]] is v(det(f1, f2)) mod 2, where det(fi, f2) is the determinant of the
matrix with f; and f, as columns.

Call two distinct lattice classes A, A’ incident if they have representatives
L, L' which satisfy

sLCL CL.

Note that the representatives wL, L’ then satisfy L’ C 7L C L', so the
incidence relation is symmetric. Note also that, in this situation, the ele-



8. Example: SL, Over a Field With Discrete Valuation 133

mentary divisors of L’ with respect to L are necessarily 1 and =, so we have
A = [[f1, f2]] and A’ = [[f1, 7 f2]] for some basis f;, fo of K2. It follows that
A and A’ are of different types, so we have a plane incidence geometry.

Let’s show now that the flag complex A of this geometry is isomorphic to
A(G, B) for G = SL2(K) as above. We will prove this, as usual, by finding
a fundamental domain and computing stabilizers. Let C' be the edge with
vertices [[ey,e2]] and [[e;, mez]], where ey, e; is the standard basis of K2.
Let C' = {A,A’} be an arbitrary edge, with A of type 0. Then there is a
basis fi, fa such that A = [[f1, f2]], A’ = [[f1, 7f2]], and det(f1, f2) = 7*"u
for some r € Z and u € A*. Replacing f; by 7~ "u~1f; and fo by 77" fo,
we still have A = [[f1, f2]] and A’ = [[f1, 7f2]], but now det(fi, f2) = 1.
So the matrix g with f; and f, as columns is an element of G such that
gC = C'. Since the action of G is type-preserving, it follows easily that C
is a fundamental domain.

The stabilizer of [A2] in G is SL2(K)N(Z - GL2(A)) = SL2(A). And the
stabilizer of [[e;, me;]] is the conjugate g SLa(A)g™!, where g = diag(1, ).
This conjugate is the subgroup of G defined by

v>0 v>-1
v>1 v>0 )
The stabilizer of C, then, which is the intersection of the stabilizers of its
two vertices, is precisely B. The desired isomorphism A =~ A(G, B) follows
easily.
The fundamental apartment ¥ is obtained by applying the elements of
the monomial group N to C} it is a line, with vertices [[7%e;, 7%es]], a,b € Z.

An arbitrary apartment g¥ is the same sort of line, but with e;, es replaced
by an arbitrary basis of K2.

Remarks

1. Since A(G, B) is a building of type -0, we know from §IV.3 that
the flag complex A is a tree. We could have simply proven this directly
(cf. Serre [46], Chapter 1I) and deduced the BN-pair structure in G with-
out any matrix computations. (We would then have had to check strong
transitivity, but this is easy.)

2. This example shows that incomplete apartment systems arise natu-
rally. In fact, it is not hard to see that the apartment system A = {gX}
is complete if and only if the field K is complete with respect to the val-
uation v. One can show further that if an arbitrary K is replaced by its
completion K, then the building A remains the same—all that changes is
the apartment system, which gets completed. These assertions, and their
analogues for SL,, with n > 2, will be proved in the next chapter (§VI.9F).

Consider, for example, the case where K is the field Q2 of 2-adic numbers.
Then one can show that A is the tree pictured below, with uncountably
many apartments. If we instead take K = Q (with the 2-adic valuation),
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The building for SL2(Q2)

then we get the same tree, equipped with a certain countable apartment
system.

3. The isomorphism type of the tree A associated to SLy(K) depends
only on the cardinality of the residue field k = A/7A. If k = F,, for in-
stance, then every vertex is on exactly 3 edges, so the tree is necessarily the
one pictured above. This shows that many different choices of (K, v) can
yield the same tree A, even if we stick to the case where K is complete. Thus
there is no hope of recovering the group G, or even the quotient G defined
in Remark 2 of §3 above, from the tree A. In particular, one cannot expect
that G is the group of type-preserving automorphisms of A. I recommend
as an exercise that you consider the case where K has residue field F, and
show directly that the tree pictured above admits type-preserving auto-
morphisms not in G (which is PSLy(K)).

This discussion might seem to suggest that there is a very poor correspon-
dence between groups with a BN-pair and buildings, unlike the situation
for Coxeter groups and Coxeter complexes. But the tree case is atypical in
this regard, and the correspondence is much better for some other classes

of buildings; see Tits ([56], [57], [60]).

Before moving on to SL, for n > 2, we look briefly at what happens
if we replace SLy(K) by GLa(K). It is clear that GL2(K) acts on the
flag complex A; but the action does not preserve types. This is the same
situation that we saw at the end of §7, so we obtain some kind of generalized
BN-pair structure in GL2( K). I'll illustrate this by proving one result about
double cosets in GLy(K).

Let (G, B, N, S) continue to have the same meaning as above, with G =
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SL32(K), etc. The result to be proved is that
sBm C BmB U BsmB

for any s € S and any monomial matrix m € GLy(K). It would be quite
easy to deduce this by direct matrix calculations from the axiom (BN1)
for G. But I prefer to imitate the geometric argument given in §1, since this
will illustrate how one can get information about a group from an action
which is not type-preserving. As in §1, the geometric argument will prove
the following equivalent form of the assertion:

mBs C BmB U BmsB.

Let § € N be a representative of s, and consider an arbitrary element
g = mbs € mBs. Note that the three chambers mC, msC, and gC have
a common codimension 1 face. Now the first two of these chambers are
in X, since m stabilizes X. Hence p(9C) = mC or msC, where p = px c.
On the other hand, we know from §1 that p(¢C) = b'gC for some b’ € B,
so gC = b'~'mC or b'"'msC. Thus ¢ € BmB’ U BmsB’, where B’ is
the stabilizer of C' in GL2(K). But all elements of Bm U Bms have the
same determinant as g; so we can replace B’ by B’ N SLy(K) = B to get
g € BmB U BmsB, as required.

8C The group SL,(K), concluded

We continue with the notation of §8B, but we now assume n > 3. Recall
that W = Fx W, where F = T(K)/T(A) ~ Z"~! and W = N(A)/T(A).
We need a set S = {s1,...,8,} of generators of W. For the first n — 1 of
these we use the standard generators of the symmetric group W; thus s;
for ¢ < n is represented by a monomial matrix in the embedded SL2(A4) C
SL2(K) < SL,(K) acting on [e;,€ei4+1]. And for s, we take the element
of W represented by

0 —g—1

m 0

This monomial matrix is in the embedded SLy(K) acting on [en, €1]. To see
that S generates W, note first that the subgroup W’ = (S) contains W.
Multiplying s, by a suitable element of W, we conclude that W' also con-
tains the element of F represented by diag(w,1,...,1,771). Conjugating
this element by W, we obtain a set of generators for F, so W/ = W.

The verification of (BN2) presents no problem. To check (BN1), one
proceeds as in §§5-7, the idea being to use row operations to reduce to a
2 x 2 matrix computation. As an illustration, here are the details for the
case where n = 3 and s = s3.
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The statement to be proved is that sB C BB’ U BsB’, where B’ =
mBm™1 for some monomial matrix m of determinant 1. Motivated by what
we just did at the end of §8B, let’s prove this inclusion more generally for
an arbitrary monomial matrix. Now an element of sB has the form

v20 v20 v=-1
v>21 v=0 v2>20 |,
v=1 v2>21 wv2>1
so we start by pivoting at the upper right-hand corner to clear out the

two entries below it. (The row operations required for this are given by left
multiplication by lower triangular elements of B.) This leaves us with

v>20 v>20 v=-1
v>1 v=0 0
v=1 v2>1 0

We can also make the middle entry (the one with v = 0) equal to 1; for
this can be achieved by multiplication by an element of T.
Now pivot on this middle entry to clear out the entries above and below
it. This yields
v>0 0 v=-1

v>1 1 0
v=1 0 0

Pivoting at the lower left-hand corner, finally, reduces us to a matrix in the
copy of SL, which contains s = s3:

v>0 0 v=-1
0 1 0
v=1 0 0

For the rest of the proof we ignore the middle row and middle column
and work entirely in the SL, that remains. We need some notation. Let
G3 = SL3(K) and let G2 be the embedded SLo(K) that we have just
reduced to, i.e., Go = {g € G3 : ges = e, gle1,es] = [e1,e3]}. Let B3
and B; be the corresponding B’s. The matrix above, then, is an element
of sB3 N G2, and we wish to reduce it to 1 or s by multiplying on the left
by B3 N G4 and on the right by B’ N G,.

It is easy to check that B3 N G; = Bs and that sBs N G2 = §B,, where
s is the monomial matrix §3 that we wrote down above. So we will have
reduced our problem about G3 to the same sort of problem for G5 [which
we solved in §8B], provided B’ N G, is a “B’-type” subgroup of G,. To
finish the proof, then, we need to understand what kind of subgroup of G3
can arise as a B’, and we need to show that B’ N G5 is the “same kind” of
subgroup of Gs.

Let L be the standard lattice in K3, with basis ey, ey, es. Then we can
identify L/x L with the vector space k3 over the residue field k. Note that
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any g € SL3(A) stabilizes L and hence acts on L/xL = k?; indeed, this is
one way of describing the homomorphism SL3(A) — SL3(k) that we wrote
down at the beginning of §8B. We can now describe B = Bj; as follows:
Given g € G3, we have

g€ B3y <= gL=1Land gC =C,

where C is the standard flag in k3. Consequently, B’ = mBm™! admits a
similar description:

gEB <= gL' =1L and gC' = ',

where L' = mL and C’ is the flag in L'/w L' corresponding to C under the
isomorphism L/xL — L'/xL’ induced by m.

Now the lattice L’ has a basis 7%e;, 7es, 7°e3 for some a,b,c € Z. So the
k-vector space L'/wL’' comes equipped with a “standard basis”, and C’ is
simply the “permuted standard flag” obtained from a permutation of that
standard basis. [The permutation that arises is the one corresponding to
the monomial matrix m.] It is now easy to describe B’ NGy: Let L} be the
lattice in [e1, eg] with basis 7%e;, 7°e3; given g € G2, we have

g € B'NGy < gL4 = L), and gC} = C,

where Cj is a certain permuted standard flag in L%/xL%. This charac-
terization of B’ N G2 as a subgroup of G is the exact analogue of the
characterization of B’ as a subgroup of G3, so we are done.

Remark. If we had simply tried to prove (BN1) instead of a generaliza-
tion of it, then we would have assumed det m = 1. The only difference this
would have made is that we would have had a+b+ ¢ = 0 in the description
of L'. But the analogous sum a + ¢ for L, would not necessarily have been
0, so we would still have needed the generalized (BN1) for the 2 x 2 case.
In other words, we needed to understand GL,, and not just SL,, in order
to deal with SL,, for n > 3.

The building A associated to SL,(K) is a flag complex as in the case
n = 2: One considers classes of lattices in K™, one assigns a type to any
such class by taking the valuation of a determinant and reducing mod n,
and one defines incidence exactly as before. The fundamental chamber is
the simplex with vertices [[e1,...,ei, Teiy1,...,men]], i = 1,..., n. Further
details are left to the interested reader.

There are a number of interesting things to say about this example,
and they motivate much of what we will do in the next chapter. Consider
first the Weyl group W = Z"~! x W. It is not one that we have seen
before. Computing the orders of the products s;s;, one finds that its Coxeter
diagram is
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where there are n vertices all together. [We are still assuming n > 3; the
diagram for n = 2 is different.] We will see in the next chapter (§VI.1F) that
W is a Euclidean reflection group acting on R®~1. If n = 3, for instance,
W is the group of isometries of the plane generated by the reflections in
the sides of an equilateral triangle. The apartments in this case are planes
tiled by equilateral triangles, and these planes are somehow glued together
to form the building A. This can be viewed as a 2-dimensional analogue of
a tree, which is constructed by gluing lines together.

If we delete a vertex from the Coxeter diagram above, we obtain the
diagram of type A, _1. So the link of a vertex in our “Euclidean building” A
is a spherical building of type A,-;1. (This is true if n = 2 also.) If we
take, for instance, the vertex [[ey, ..., e,]] whose stabilizer is SL,(A), this
link is some building of type A,_; which comes equipped with an action
of SL,(A). The obvious guess is that the link is the spherical building
associated to SL,(k) as in §5, and it is easy to check that this guess is
correct.

There is, of course, another building of type A,_; that one would natu-
rally think of, namely, the building A’ obtained by forgetting that K has
a valuation and applying §5 to SL,(K). This building admits an action of
the full group SL,(K). Is it somehow related to our Euclidean building A
also? The answer is that every Euclidean building gives rise in a canonical
way to a spherical building “at infinity”, obtained by attaching a sphere at
infinity to each apartment. When this procedure is applied to A, it yields
A’. Details will be given at the end of the next chapter.

This connection between A and A’ provides a nice geometric explanation
of the fact that both of our BN-pairs in SL,( K) used the same N. For N is
the stabilizer of the fundamental apartment in both A and A’; the use of
the same N therefore yields a 1-1 correspondence between the apartments
in A and those in A’. The previous paragraph explains this correspondence
geometrically.

All of this is easy to understand when n = 2 if you know about ends
of trees. The building A’ in this case is 0-dimensional, so it is simply the
discrete set G/ B [with B equal to the upper triangular group], in which the
two-element subsets have been called apartments. This set can be identified
with a set of ends of the tree A (cf. Serre [46], §11.1.3), so A’ is clearly a
building “at infinity” associated to A. And the 1-1 correspondence between
apartment systems simply reflects the fact that a line in a tree gives rise
to a pair of ends and that, conversely, a pair of ends determines a unique
line.



V1

Euclidean Buildings

The last example in Chapter V motivates a systematic study of buildings
in which the apartments are Euclidean spaces. We need to begin by un-
derstanding the apartments themselves. This requires that we go back and
re-do much of Chapter I in a more general setting.

1 FEuclidean Reflection Groups

Let V be a real vector space of finite dimension n > 1. All of the geometric
notions introduced in Chapter I treated the origin of V as a special point.
Our hyperplanes, for instance, were required to go through the origin. Our
reflection groups therefore fixed the origin, and our cells were all cones
with the origin as cone point. By the end of that chapter it had become
clear that we weren’t doing Euclidean geometry at all, but rather spherical
geometry. In Euclidean geometry, there is nothing special about the origin.
So let’s introduce the appropriate language for talking about reflections
whose fixed hyperplane does not necessarily pass through the origin.

1A Affine concepts

An affine subspace of V is a subset of the form ¢+ Vp withz € V and Vj a
linear subspace of V. In other words, it is a coset of a linear subspace. The
dimension of x + Vj is defined to be the dimension of V. If the dimension
isn — 1 (i.e., if Vp is a linear hyperplane), then z + V4 is called an affine
hyperplane. Equivalently, an affine hyperplane is a subset defined by a linear
equation of the form f = ¢, where f : V — R is a non-zero linear map and
¢ is a constant.

For any non-empty subset X C V, there is a smallest affine subspace
containing X, called the affine span of X. An affine frame for V is a
subset X such that V is the affine span of X but not of any proper subset
of X. Such a frame necessarily has exactly n + 1 elements; for we may
assume that one of the elements is the origin, in which case the remaining
elements form a basis for V. When n = 2, for instance, an affine frame is
simply a set of 3 non-collinear points.

An affine map from V to a vector space V' is a map « of the form a(z) =
g(z)+v', where g : V — V' is linear and v’ is a vector in V’. In other words,



140 VI. Euclidean Buildings

« is the composite 7,/g, where 7,/ is the translation z’ +— z’ 4+ v'. We will
mainly be interested in the case where V/ = V and ¢ is an automorphism,
in which case we will call « an affine automorphism of V. Such an a is
uniquely expressible as 7,9 with v € V and g € GL(V), where GL(V) is
the group of linear automorphisms of V. One deduces easily that the group
Aff(V) of affine automorphisms of V is the semi-direct product

AfE(V) = V x GL(V),

where V is identified with the (normal) subgroup consisting of translations.
The GL(V')-component g of an element o € Aff(V') will be called the linear
part of .

Assume, now, that V is Fuclidean, by which we mean that it comes
equipped with a positive definite inner product (—,—). We then have a
distance function on V given by d(z,y) = ||z — y||, where ||v|| = /(v, v},
and we will be interested in affine maps which are isometries. With the
notation above, the affine map « is an isometry if and only if its linear part ¢
is in the orthogonal group O(V) C GL(V), consisting of automorphisms
which preserve the inner product. Thus the group of affine isometries of V
is V' x O(V). It is worth noting that the word “affine” is redundant here;
see Exercise 3 below.

Let H be an affine hyperplane and let Hg be the linear hyperplane parallel
to H, i.e., satisfying H = z + Hy for some z. Let sy be the orthogonal
reflection sg,, and let s = 7, 597_;; in other words, s is the conjugate of sq
by some translation taking Ho to H. Explicitly, we have

sy=z+so(y—z)=soy+ (1 —s0)2

for any y € V. In particular, s is an affine isometry whose linear part is
so. It is easy to check that s depends only on H, and not on the choice
of the representative z; this follows, for instance, from the formula above
together with the observation that z is unique mod Hy = ker(1 — sp). We
can therefore write s = sy and call s the reflection with respect to H.

EXERCISES

1. Let zo,21,...,%p be an affine frame. Show that a point z € V is completely
determined by the n + 1 numbers d(z, z:), i.e., if d(z,z:) = d(z’, z:) for all 3,
then ¢ = z'. [HINT: We may assume zo = 0. Then if we know the numbers
- d(z, i), we can compute the inner products (z,z:) via the identity d*(z,y) =
llzlI> + lly|I* — 2(=, y), which is essentially the law of cosines.]

2. Let zo,...,zn be an affine frame and let yo,...,yn be points such that
d(yi,y;) = d(zi, z;) for all i, 5. Show that there is an affine isometry o such that
a(z;) = y; for all i. In particular, yo,...,yn is an affine frame. [HINT: Law of
cosines again.]

3. Deduce from Exercises 1 and 2 that every isometry o : V — V is affine.

4. Show that the reflection sy can be characterized as the unique non-trivial
isometry of V that fixes H pointwise.
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5. Let X and X' be isometric subsets of V. Show that every isometry X — X'
extends to an isometry of V. [We will only need this result when V is the affine
span of X. In this case one can find an affine frame zo,...,z, in X and argue
as in Exercise 3. The proof in the general case is similar but takes slightly more
work.]

1B Affine reflection groups

We continue to assume that V is a Euclidean vector space of dimension
n > 1. Let W be a group of affine isometries generated by reflections sy,
where H ranges over a set H of affine hyperplanes. It is clear that we can
enlarge H, if necessary, to make it W-invariant. We will say that W is an
affine reflection group if we can find such a W-invariant family X which is
locally finite, in the sense that every point of V has a neighborhood which
meets only finitely many H € H. Much of what we did in Chapter I then
goes through with little or no change, although some of the arguments
get slightly longer since we now only have local finiteness of H instead of
finiteness. I will sketch the theory, including proofs only for those results
that are really special to the affine case. All omitted details can be found
in Bourbaki [16], Chapter V.

The hyperplanes H € H yield a partition of V into convex cells, these
being non-empty sets A defined by linear equalities or strict inequalities,
one for each H € H. More precisely, if H is defined by a linear equality
f = ¢, then the definition of A will involve either the same equality or else
one of the inequalities f > cor f < c. A cell A has a support, defined as in
Chapter I; the support is an affine subspace of V, and A is open relative
to its support. The dimension of A is the dimension of its support. The
cells of maximal dimension n are called chambers; they are the connected
components of the complement of H in V. Cells have faces, with properties
similar to those proven in Chapter I.

The supports of the codimension 1 faces of a chamber C are called the
walls of C, and C is defined by the inequalities corresponding to its walls.
[Warning: This is the first place where it is not entirely a routine matter
to generalize the proof given in Chapter I; the basic idea remains the same,
but the proof needs to be rearranged.)

Everything we have said so far applies to any locally finite collection of
affine hyperplanes. Now let’s bring W into the picture. Choose a chamber C
and let S be the set of reflections with respect to the walls of C. Note
that S, a priori, might be infinite; we’ll return to this question below.
Let H, for s € S be the hyperplane fixed by s, and let e; be the unit
vector perpendicular to H, and pointing toward C. Thus e, is the linear
hyperplane parallel to H,, and one of the defining inequalities for C' has
the form (e,,—) > c. Let m(s,t) for s,t € S be the (possibly infinite) order
of st.

The following basic facts proved in the finite case remain valid:
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(a) W is simply-transitive on the chambers.

(b) W is generated by S.

(c) M necessarily consists of all affine hyperplanes H with si € W.

(d) (W,S) is a Coxeter system.

(e) (es,e1) = — cos(m/m(s,t)) for all s,t € S. Moreover, m(s,t) = co if
and only if H, and H; are parallel.

(f) C is a fundamental domain for the action of W on V, and the
stabilizer of a point z € C' is the special subgroup of W generated
by {s€S:sz==z}.

Everything except (d) is proved as in Chapter I. For (d), one can ar-
gue as in §II.2A, or one can verify the exchange condition as a byproduct
of the proof of (a). Incidentally, the possibility m(s,t) = oo mentioned
in (e) hardly ever occurs. In fact, we will see in §1D below that the infi-
nite dihedral group provides the only irreducible example whose Coxeter
matrix involves co. [Alternatively, instead of appealing to §1D, one can ap-
ply Corollary 3 in §II1.2; for we will see below that the Coxeter complex
L(W, S) triangulates V if W is infinite and irreducible.]

1C Finiteness results

Let’s now settle the question of the finiteness of S, along with some related
questions:

Theorem.

(1) C has only finitely many walls, hence S is finite.

(2) The hyperplanes H € ‘H fall into finitely many classes under the
relation of parallelism; in other words, there are only finitely many
linear hyperplanes Hy such that H contains a translate of Hy.

(3) Let W C GL(V) be the set of linear parts of the elements w € W,
i.e., the image of W under the projection Aff(V) - GL(V). Then
W is a finite reflection group.

PROOF: (1) The inner product formula in (e) above shows that the angle
4(es,e;) between e, and e, satisfies L(e,,e;) > m/2 for s # t. But if S
were infinite, then the e, would have a cluster point on the unit sphere and
hence there would be s,t with £(e,, e;) very small.

(2) Let R={+en : H € H }, where ey is the unit vector perpendicular
to H and pointing toward C. We must show that R is finite. As in the proof
of (1), it suffices to show that £(e,e’) is bounded away from 0 for e # e’
in R. We will show that, in fact, there are only finitely many possibilities
for this angle. Let H and H’ be elements of H perpendicular to e and ¢/,
respectively. If H and H' are parallel, then 4(e,e’) = 7 [since e # ¢'].
Otherwise, choose z € H N H' and choose w € W such that wz € C;
this is possible by (f) above. Then wH and wH’ are elements of % which
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meet C, and they are perpendicular to the vectors we,we’, where w is the
linear part of w. Since £(e, e’') = £(we, we'), the proof will be complete if
we show that only finitely many elements of H meet C. Now C has only
finitely many walls by (1); so it is defined by finitely many inequalities and
hence has only finitely many faces. And each face meets only finitely many
elements of H by local finiteness and the definition of “cell”. The union C
of the faces therefore meets only finitely many elements of H.

(3) The set R defined in the proof of (2) is W-invariant. Since it was
proven to be finite, W is a finite reflection group by the proposition in

§I.1. a

1D The structure of C

Call W essential if the associated finite reflection group W is essential. It
is easy to reduce the general case to the essential case, as in Chapter I.
Similarly, we can decompose V according to the irreducible components of
the Coxeter diagram of (W, S) and thereby reduce to the irreducible case.
In this case we will prove:

Theorem. Assume that W is essential and irreducible. Then C is either
a simplex or a simplicial cone. More precisely, one of the following holds:

(a) W is finite and has a fixed point. In this case C' has exactly n walls,
where n = dimV, and C is a simplicial cone.

(b) C has exactly n + 1 walls, and any n of the n + 1 vectors e, are
linearly independent. The essentially unique linear relation 3, esAses =0
among the e, has all of its coefficients A\; non-zero and of the same sign.
The chamber C is a simplex, and W is infinite.

Remarks

1. If W has a fixed point z, then we can always assume that £ = 0; for
we can replace W by its conjugate 7_,W ;. But if W fixes 0, then W is
linear. Thus case (a), for practical purposes, is precisely the “spherical” case
treated in Chapter 1. Case (b), then, describes the “genuinely Euclidean”
irreducible reflection groups. '

2. It follows from the theorem that the numbers m(s,t) are always finite
when W is irreducible, unless n = 1 and W = D ; for an n-simplex with
n > 2 cannot have parallel walls.

3. If we drop the assumption that W is essential and irreducible, then C
is a product of a vector space [corresponding to the inessential part of V],
a simplicial cone [corresponding to the product of the finite irreducible
factors of W], and simplices [one for each infinite irreducible factor of W].

PrOOF oF THE THEOREM: Let Hy,...,H, be the walls of C, and let
e1,...,er be the corresponding unit vectors (pointing toward C). Then
e1,...,er span V; for [e1,...,e.]* is the fixed point set of W, hence it is

the trivial subspace. We therefore have r» > n.
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Suppose r = n, so that the vectors e;,...,e, form a basis. Then C is
defined by n inequalities (e;,—) > ¢;, hence it is a simplicial cone; its cone
point is the unique z € V such that (e;, z) = ¢; for all i. Replacing W by
a conjugate, we may assume that £ = 0. Then the generating reflections
of W are linear, so W = W and we are in case (a).

Now suppose r > n, so that ey,...,e, are linearly dependent. Choose a

linear relation
Z/\,-e; =0
iel

with @ # I C {1,...,r} and X; # 0 for all i € I. Since (e;,e;) < 0 for
i # j, we can replace I by a subset, if necessary, to get a relation with
Ai > 0 for all ¢ € I; this follows from the first paragraph of the proof
in §1.4D. We can now deduce from the irreducibility assumption that I is
the entire set of indices {1,...,r}. For suppose it is not, and let J be the
complementary set. Then for any j € J we have 3, ; Ai(ei, e;) = 0, which
implies that (e;,e;) = 0 for all ¢ € I. But then the parts of the Coxeter
diagram corresponding to I and J are disjoint, contradicting irreducibility.

Our relation now has the form Z::l Ase; = 0, with A; > 0 for all 7. But
we arrived at this relation by starting with an arbitrary relation among a
subset of the e; and then possibly passing to a further subset. It follows
that every proper subset of the e; is linearly independent, hence r = n 4 1.

Since ey,...,e, form a basis for V, the intersection (), H; consists of
a single point, which we may take to be the origin as in the discussion of
case (a). The chamber C is therefore defined by inequalities {e;, —) > 0 for
i=1,...,nand (e,41,—) > ¢ for some constant c. Since e, 4, is a negative
linear combination of ey,...,e,, the last inequality can be rewritten in
the form Y ., pi(ei,—) < ¢ with p; > 0. The constant ¢’ is necessarily
positive [and hence our original ¢ was negative], since otherwise C would
be empty. So we may multiply the inequality by a scalar in order to arrange
that ¢/ = 1. Thus C is defined by inequalities f; > 0 for ¢ = 1,...,n and
> fi < 1, where f; = p;{e;,—). Since the f; form a basis for the dual
space V*, these inequalities define an open n-simplex.

Everything in (b) has now been proved except for the assertion that W
is infinite. But this follows from the fact that W has compact fundamental
domain C; for if W were finite, then V = Uvew wC would be compact. O

By a Fuclidean reflection group we will mean an essential irreducible
infinite affine reflection group, as in case (b). In this case we will denote
by X, or (W, V), the poset consisting of the cells in V together with the
empty set. Since the chambers are simplices, it is easy to see (as in §1.5QG)
that ¥ is an abstract simplicial complex and that there is a canonical
bijection |X| & V. If you know how to topologize the geometric realization
of an infinite simplicial complex (cf. [48], §3.1), then you can easily check
that this bijection is a homeomorphism. But we will not need this fact; for
the only topology on |X| that we will use is the one that is defined so as to
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make the bijection above a homeomorphism.
Finally, we record the following consequence of property (f) of §1B:

Proposition. If W is a Euclidean reflection group, then the complex ¥ =
(W, V) is isomorphic to the Coxeter complex (W, S). ]

1E The structure of W

Let W be a Euclidean reflection group as above. Recall that we have a
surjection W —» W, where W is the finite reflection group consisting of the
linear parts of the elements of W. The first result about the structure of W
is that this surjection always splits:

Proposition 1. There exist points x € V such that the stabilizer Wy
maps isomorphically onto W.

PROOF: Let H be the set of linear hyperplanes H such that H is parallel
to some element of H. Then W is generated by {sy : H € H}. Since W
is essential, it follows from Chapter I that W is actually generated by n
such reflections sy, whose hyperplanes form the walls of a simplicial cone.
Choose H,,...,H, € H parallel to these walls, and let s; = sg,. Then
(i_, H; consists of a single point z, which is fixed by each s;, and the
linear parts of the s; generate W. This shows that W, surjects onto w.
But W, also injects into W; for ker{W, — W} consists of translations
which fix z, hence it is trivial. O

Replacing W by a conjugate, if necessary, we may assume that z = 0.
The elements of W, = Wy are then linear, and the isomorphism Wy — w
above is the identity map. Thus W contains the linear part of each of its
elements. It follows that W also contains the translation component of each
of its elements, so we have

W =Lx W CVxGL(V),

where L = {v € V : 1, € W}. We will complete our analysis of the
structure of W by showing that L is a lattice in V, by which we mean a
subgroup of the form Ze; & - - - @ Ze, for some R-basis e1,...,e, of V.

Lemma 1. L is a discrete subgroup of the additive group of V, i.e., there
is a neighborhood U of 0 in V such that U N L = {0}. The quotient group
V/L, with the quotient topology, is compact.

Proor: Pick a chamber C and a point y € C. Since the transforms wC
for w € W are all disjoint, the same is true of the translates C+1 forl € L.
Soif weset U = {veV:y+veC}, then U is a neighborhood of 0
in V such that U N L = {0}. Recall now that the closed simplex C is a
fundamental domain for the action of W. It follows that every point of V
is equivalent mod L to a point of the compact set |, 3w wC, hence V/L
is compact. O
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Lemma 2. If L is a discrete subgroup of a finite dimensional vector space
V,then L = Ze;®- - -®Ze, for some linearly independent vectorse,, ..., e,.
If, in addition, V/L is compact, then L is a lattice.

ProoF: The second assertion follows immediately from the first. The fol-
lowing proof of the first assertion is taken from Pontryagin [39], Chapter 3,
§19, Example 33, where a more general result is proved. We argue by in-
duction on dimV. If L = 0 there is nothing to prove, so assume L # 0.
Give V an arbitrary inner product and choose (by discreteness) a non-zero
vector e € L of minimal length é. Then any [ € L which is not in Ze has
distance at least 6/2 from the line Re. For if y € Re, then we can find
I € Ze with d(y,l") < 6/2; since d(I,1') = ||l = I'|| > &, the triangle in-
equality implies that d(I,y) > 6/2, as claimed. Consider now the subgroup
L/(LNRe) = L/Ze C V/Re. If we give V/Re the metric induced by the
canonical isomorphism e+ & V/Re, then what we have just proven is that
every non-zero element of L/Ze has distance at least §/2 from the origin
of V/Re. So L/Ze is a discrete subgroup of V/Re. The lemma now follows
easily from the induction hypothesis. O

Returning now to our group L = {v € V : 1, € W }, the lemmas yield:

Proposition 2. L is a lattice in V. In particular, the Euclidean reflection
group W is isomorphic to a semi-direct product Z" x W. O

Remarks

1. There is a fairly obvious way to topologize the affine group Aff(V),
and the proof of Lemma 1 shows that an affine reflection group W is a dis-
crete subgroup of Aff(V). Conversely, any discrete subgroup W of Aff(V)
generated by reflections is an affine reflection group. For one can use the dis-
creteness assumption to prove that the set of hyperplanes H with sy € W
is locally finite. Details are left to the interested reader.

2. Proposition 2 shows that there is a non-trivial condition satisfied by
the finite reflection group W, namely, it leaves a lattice invariant. One says
that W is crystallographic. It turns out that this condition characterizes
the groups W among the essential irreducible finite reflection groups. More
precisely, the following conditions on an essential irreducible finite reflection
group W) are equivalent:

(1) W, is the group W associated to some Euclidean reflection group.

(2) W1 is crystallographic.

(3) W is the Weyl group of a root system.

(4) Wi is not of type Hg, Hy, or Io(m).
A proof can be found in Bourbaki [16], VI.2.5. The equivalence of (1)
and (3) suggests that there might be a connection between Euclidean re-
flection groups and root systems. We will return to this at the end of the
next subsection, after looking at an example.
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1F Ezample

Let W be the symmetric group on n letters (n > 2). Recall that W is an
essential irreducible finite reflection group acting on the (n—1)-dimensional
space

V={(z1,...,z,) ER": > z; =0}.

The associated linear hyperplanes in V are defined by the equations

zi—x; =0 (i#7).

We wish to construct an affine analogue of this example by introducing a
lattice of translations.

Let L = Z" NV. Then L is a W-invariant lattice in V. It is generated,
as an abelian group, by the vectors e; — €; (i # j), where {e1,...,e,} is
the standard basis for R". We now set

W =Lx W CVx GL(V) = Aff(V).

Note that W, as an abstract group, is the Weyl group that arose in §V.8.
To see that W is a Euclidean reflection group, let H be the set of affine
hyperplanes in V of the form z; — z; = k with ¢ # j and k € Z. It is easy
to check that H is locally finite and W-invariant. It is also easy to compute
the reflection with respect to the hyperplane z; — z; = k; one finds that it
is given by

z— sijz+ k(e —ej),

where s;; is the transposition which interchanges the ith and jth coordi-
nates. Thus W contains the reflections sy for H € H.

The subgroup generated by these reflections contains W, and hence it
contains the translations z +— z + k(e; — e;). It follows that this subgroup
is the whole group W, which is therefore an affine reflection group. We
will compute its Coxeter diagram below and see that W is irreducible;
alternatively, the irreducibility of W follows from that of W. Since W is
obviously infinite, it is a Euclidean reflection group.

As fundamental chamber C' we take the subset of V defined by

1< - <zp<z1+1.

This is an intersection of half-spaces associated to n of the elements of H,
and it lies on one side of every H € H. So it is indeed a chamber. The
reflections with respect to the walls z; = ;4 are the basic transpositions
si = siiy1 (1 =1,...,n—1). And the reflection s, with respect to the wall
tn, = &1 + 1 is the map z +— s, 1z + (en — €1). The canonical unit vectors
fi,-.., fn associated to C are given by

€i41 — €

V2

€1 —€n

V2

fi<n-1
fi=

if i = n.



148 VI. Euclidean Buildings

Notice that they satisfy the linear relation ) f; = 0, which has positive
coeflicients.

One can now find the Coxeter diagram of W, either by computing the
orders of the products s;s; or by computing the inner products (f;, f;).

The diagram is -2 if n = 2 and

(with n vertices) if n > 3. In case n = 3, the diagram shows that the
fundamental triangle C has all of its angles equal to 7/3. Thus the Coxeter
complex X in this case can be visualized as the Euclidean plane tiled by
equilateral triangles. A

We finish the discussion of this example by indicating briefly how to get
an explicit isomorphism between X(W, V) and the fundamental apartment
for SL,(K) (cf. §V.8). We will need such an isomorphism in §9F below. For
this purpose it is convenient to replace V' by the canonically isomorphic
vector space R*/V+ = R®/R. - (1,1,...,1). One can check that the set of
vertices of X(W, V') is the subset Z"/Z-(1,...,1) of this quotient. A further
calculation yields the following description of (W, V):

Given u = (u1,...,u,) and v = (vy,...,v,) in Z", write u < v if

u; <v; Sup+1

for all i. Call two elements of Z" /Z-(1,...,1) incident if they admit repre-
sentatives u, v with u < v. This incidence relation is symmetric, and one can
check that the resulting flag complex is X(W, V). Recall now that we gave
a description of the building for SL,(K) in terms of classes of A-lattices
in K™. The fundamental apartment ¥ of this building has as vertices the
classes [[% e;y,...,m%e,]], where ey,...,e, is the standard basis for K.
In view of the definition of the incidence relation on the set of lattice classes,
it is now evident that there is an isomorphism ¥ — X(W, V') which sends
the vertex [[7%e1,..., 7% e,]] to the class of (a1,...,a,) mod (1,...,1).

Remarks

1. The group W we have been discussing is called the affine Weyl group
of the root system of type A,_1. The other root systems (types By, Cj,, etc.)
also give rise to affine Weyl groups, and one obtains all Euclidean reflection
groups in this way. Details can be found in Bourbaki [16], Chapter VI.
Incidentally, the affine Weyl groups W of types B,, and C,, are not the
same, even though they have the same associated finite reflection group W.

2. We have already seen that the affine Weyl group of the root system
of type A, _; arises from a BN-pair in SL,(K) (which is the matrix group
of type A,—1), where K is a field with a discrete valuation. The other
Euclidean reflection groups arise similarly from matrix groups over K.
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3. In view of Remark 1, there are two 2-dimensional Euclidean reflection
groups besides the example we have given. They correspond to the root
systems By and G, and they have Coxeter diagrams

4 4 6

o——o0—*o0 and o—o—o,

respectively. The chambers of the first group have angles /2, /4, and n/4,
so its Coxeter complex ¥ corresponds to the tiling of the plane by isosceles
right triangles. The chambers of the second have angles n/2, /3, and =/6;
its complex ¥ is the barycentric subdivision of the honeycomb tessellation
of the plane (by regular hexagons).

2 Euclidean Coxeter Complexes

Suppose X is an abstract Coxeter complex which is isomorphic to the com-
plex (W, V) associated to a Euclidean reflection group (W,V). We then
say that ¥ is a Fuclidean Cozeter complez. Choose such a (W, V) and an
isomorphism ¥ =~ X(W, V). Since there is a canonical bijection between
|Z(W,V)| and V (cf. §1D), we obtain a bijection |X| &~ V. We wish to use
this bijection to transport to || the notions of Euclidean geometry. The
lemma below will enable us to show that these notions are independent of
the choice of (W, V) and the choice of isomorphism X &~ L(W, V).

The intuitive content of the lemma is that one can reconstruct the Eu-
clidean space V' (up to a dilation of its metric) from the abstract simplicial
complex X(W, V). Here is the precise statement:

Lemma. Let (W,V) and (W',V') be Euclidean reflection groups. Let ¢ :
E(W,V) — (W', V') be a simplicial isomorphism. Then the composite
bijection

V& (W, V)] L (S, V)| & V!

is a similarity map, i.e., an affine isomorphism whose linear part g satisfies
(gv,gv’) = A(v, v’) for some positive constant .

PROOF: Choose a chamber C in V, with faces A; (i = 1,...,n+1). Let H;
be the support of A;, let e; be the canonical unit normal to H; (pointing
toward C), and let s; be the reflection with respect to H;. As in the proof
in §1D above, we may conjugate W by a translation in order to arrange that
H; is defined by (e;,—) = 0if i < n and by (ep41,—) = cif i = n+1, where
¢ < 0. Conjugating W by a dilation, we can further arrange that ¢ = —1.
Let C' = ¢(C) and A} = ¢(A;). Let H], €}, and s} be the associated wall,
unit vector, and reflection, respectively. We may assume that H] is defined
by (ej,—) =0if i <n and by (e, ;;,—) =—-1ifi=n+1.

Recall now that the Coxeter matrix M = (myj)i<ij<nt1 of W is a
combinatorial invariant of the Coxeter complex (cf. §II1.2); namely, m;; is
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the diameter of the link of A; N A;. In view of the isomorphism ¢, it follows
that M is also the Coxeter matrix of W’. Consequently, we have
(eise.i) = (eg!e‘,i)

for all 7, j. We can now construct a linear isometry a : V — V’ such that
a(e;) = ¢ for all i. For if we take a to be the linear map such that a(e;) = €}
for i < n, then o preserves inner products and satisfies (a(en41),—) =
(éhg2,), whence alenss) = chr

Note that a(H;) = H/, so that as;a™! = s} and aWa~! = W’. Thus a
induces an 1somorph1sm of pairs (W,V) — (W', V'), and hence a simpli-
cial isomorphism X(W,V) — (W', V’). This isomorphism takes C to C’
and A; to A}, so it coincides with our original isomorphism ¢ by the stan-
dard uniqueness argument. The lemma now follows from the commutative
diagram

=W, V)l — =W, V)

! !

|4 — 1%
where the vertical arrows denote the canonical bijections and the horizontal
arrows are induced by a. O

We now have a “Euclidean structure” on |X| for any Euclidean Coxeter
complex X, by which we mean that we can apply to |X| any notion of
Euclidean geometry which is invariant under similarity maps. In particu-
lar, |X| has a well-defined equivalence class of metrics, where two metrics
are equivalent if one is a positive scalar multiple of the other. It will be
convenient in what follows to have a canonical representative of this equiv-
alence class. We can achieve this in many ways; for definiteness, let’s agree
to choose the representative which makes the chambers have diameter 1.
Thus |X| is now a metric space, and any abstract isomorphism ¢ : ¥ — ¥’
of Euclidean Coxeter complexes induces an isometry || — |Z/].

We close this section by introducing one last bit of terminology: By a
Fuclidean space we will mean a metric space F which is isometric to R"
for some n. What we have done above, then, is to give |X| a canonical
Euclidean space structure.

Note that we are making a somewhat pedantic distinction between the
notions of “Euclidean space” and “Euclidean vector space”; recall that we
have defined the latter to mean “vector space with an inner product”. As
a practical matter, the only difference between the two notions is that
a Euclidean vector space comes equipped with a preferred origin. More
precisely, suppose E is a Euclidean space and zg is an arbitrary point in E.
Then we can give E the structure of Euclidean vector space with z, as
origin by choosing an isometry a : R® — E with a(0) = z¢ and using «
to transport the vector space structure and inner product from R” to F.
It follows from Exercise 3 of §1A that this structure is independent of the
choice of a.
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EXERCISE

Convince yourself that the following assertion is meaningful and true: If £ is
a Euclidean Coxeter complex, then the Euclidean space £ = |X| contains a
canonical locally finite collection H of hyperplanes, from which one can recover
the decomposition of F into simplices.

3 FEuclidean Buildings as Metric Spaces

This section, as well as most of the rest of the chapter, is based on the
paper of Bruhat and Tits [22].

Let A be a building, equipped with an arbitrary system of apartments A.
Nothing we do in this section will depend on the choice of 4. We will say
that A is Fuclidean if its apartments are Euclidean Coxeter complexes.
One also says that A is an affine building, or a building of affine type. In
view of the previous section, we then have a Euclidean structure on every
apartment X. The purpose of the present section is to see what sort of
geometry these Euclidean structures impose on the building as a whole.

Assume throughout this section that A is a Euclidean building and that
A is a fixed system of apartments.

3A Construction of a metric on |A|

Let X be the geometric realization |A| of the Euclidean building A. For
the moment, X is just a set, with no topology. It is the union of open
simplices |A|, one for each A € A (cf. Appendix to Chapter I). To avoid
cumbersome notation, we will omit the vertical bars and simply denote by
A this open simplex and by A the corresponding closed simplex. Thus A
now denotes the geometric realization of the subcomplex A¢4 that we have
sometimes called A in earlier chapters.

It will be convenient to apply to X terminology that we have previously
used for the abstract complex A. In particular, we will refer to X itself as
a building and to the subsets £ = |X| as apartments (¥ € A). For any
such apartment F and any chamber C of F, the geometric realization of
ps,c : A — X is a retraction X — F, denoted pg c.

In view of §2, each apartment E of X is a Euclidean space, with a
metric dg. Moreover, the isomorphisms between apartments given by the
building axiom (B2) are isometries. We now wish to piece the metrics dg
together to make the entire building X a metric space.

Given two points z,y € X, axiom (B1) implies that there is an apart-
ment E containing both £ and y. Choose such an F and set

d(z,y) = de(z,y).

If E' is another apartment containing z and y, then (B2) gives us an
isometry FE — E’ fixing z and y, so d(z,y) is independent of the choice of
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apartment. We therefore have a well-defined function
d: X xX—R.

This should not be confused with the combinatorial distance function that
we have used before (defined via galleries), although, as we will see, the
two kinds of distance functions have some similar properties. To avoid
confusion, we will write d(—, —) from now on for the combinatorial distance
function.

Theorem.

(1) The functiond : X x X — R is a metric.

(2) The metric space X is complete.

(3) The retraction p = pgc : X — E is distance-decreasing for any
apartment E and chamber C of E, i.e.,

d(p(z), p(y)) < d(2,y)

for all z,y € X. Equality holds if z € C.

(4) For any z,y € X, choose an apartment E containing z and y and
let [z, y] be the line segment joining them in the Euclidean space E.
Then [z, y] is independent of the choice of E and can be characterized
by

[,y ={z€ X : d(z,y) = d(z,2) + d(z,y) }

(5) Given z,y € X andt € [0,1)], let (1 — t)z + ty denote the point z
in [z,y] such that d(z,z) = td(z,y). Then the function (z,y,t) —
(1 —t)x + ty is a continuous map X x X x [0,1] — X, where X
is topologized by means of the metric d. In particular, the metric
space X is contractible.

PROOF: We begin by proving (3), which makes sense even before we know
that d is a metric. The second assertion of (3) follows immediately from the
fact that p maps every apartment containing C isometrically onto E. This
fact also implies that, for any chamber C’, p maps C’ isometrically onto
its image. Suppose now that z and y are arbitrary points of X. Choose an
apartment E’ containing them, and let [z,y] be the line segment joining
themin E’. It is easy to see that we can subdivide this segment in such a way
that each subinterval is contained in a closed chamber. [Use the fact that the
decomposition of E’ into simplices is induced by a locally finite collection H
of hyperplanes.] Let the subdivision points be £ = zg,z1,..., 2, = y. We
then have

m m

d(p(x), p(v)) < 3 d(p(eir), p(2)) = 3 d(micr, 2) = d(z, y),
i=1 i=1

where the inequality follows from the triangle inequality in the Euclidean

space E, and the first equality follows from the fact that p is an isometry

on each closed chamber. This proves the first assertion of (3).
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It is now easy to prove (1), the content of which is that d satisfies the
triangle inequality: Given z,y,z € X, choose an apartment E containing
z and y, and let p = pg ¢ for some chamber C of E. Using (3) and the
triangle inequality in E, we find

d(z,y) < d(z, p(2)) + d(p(z), y) < d(z,z) + d(z,y),

as required.

Continuing with the same notation, suppose d(z,y) = d(z, z) + d(z,y).
Then both inequalities above must be equalities. From the first equality
and elementary Euclidean geometry we conclude that p(z) € [z,y], the
latter being the line segment joining z and y in E. And from the second
equality and (3) we conclude that

d(z,p(2)) = d(z,2) and d(p(=),y) = d(z,).
Consequently, p(z) must be the point p; = (1 — t)z + ty of [z,y], where
t = d(z,2)/d(z,y). Recall that p here is pg,c for any chamber C of E. In
particular, we can take C to be a chamber with p; € C; this is legitimate,
since the definition of p; is independent of the choice of C. Then the equa-
tion p(z) = p; implies, in view of the second assertion of (3), that z = p,.
This proves the characterization of [z,y] stated in (4), and the rest of (4)
follows at once.

The proof of (5) will be based on the following formula from Euclidean
geometry: Given points z,y in a Euclidean space E, and given t € [0, 1],
let p, = (1 —t)z + ty € [z,y]; then for any z € E,

d*(z,p) = (1 = t)d*(z,z) + td*(z,y) — t(1 — t)d%(z,y). (*)

(You have probably seen this, or a slight variant of it, in case ¢t = 1/2; the
result in this case is essentially the parallelogram law.) To prove (x) we
may assume that F is a Euclidean vector space with z as the origin. Then

d*(z,p) = |Ipl)* = (1 = 0)?||=||® + £3||y]]? + 2¢(1 — t)(z, v);

one obtains () from this by using the formula

&(z,9) = |12l + Igl2 - 2(z,)
to eliminate (z,y).

Now suppose z,y, z are points of our building X, and define p; € [z,y] as
above. Choose an apartment E containing z and y (and hence [z,y]), and
choose a closed chamber C in this apartment containing p;. Let p = pg c.
Applying () to the points z,y, p(2) € E, we obtain

d*(p(2),p1) = (1 = t)d?(p(2), z) + td*(p(2), y) — t(1 — t)d*(z, y).
In view of (3), it follows that
d*(z,p,) < (1 = t)d?(z,z) + td*(z,y) — t(1 — t)d*(z, y). (*x)

To prove (5), we will apply this inequality to z = (1 — t')z’ + t'y’ for
(z',y',t') close to (z,y,t). Since d(z, z) is close to d(z,2') = t'd(z',y/), it is
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clear that d(z,z) — td(z,y) as (z',y',t') — (z,y,t); hence the first term on
the right side of (+*) approaches (1—t)t2d?(z,y). Similarly, the second term
approaches (1 — t)2d%(z, y). The right side of (**) therefore approaches

(1 = t)t2d?(z,y) + t(1 — t)2d%(z, y) — t(1 — t)d*(z,y) = 0,

whence d(z,p;) — 0 and (5) is proved.

Finally, we must prove (2). Fix a chamber C and let A : X — C be the
geometric realization of the unique retraction A — A<c (which exists by
the labellability of A). Then A maps any closed chamber C' of X isomet-
rically onto C. To see this, choose an apartment E = || containing C
and C’ and let w be the unique type-preserving automorphism of ¥ such
that wC’ = C. Then )\IC'—’ is induced by the restriction of w to C’ and its
faces, and the assertion now follows from the fact that w is an isometry
of E.

It now follows easily that ) is distance-decreasing; the proof is the same
as the proof of the analogous fact about retractions onto apartments. So if
we are given a Cauchy sequence (£m)m>1 in X, then the image sequence
(AM(zm)) is a Cauchy sequence in C. The latter being a closed subset of a
Euclidean space, it follows that there is a point y € C such that A(zp,) — ¥
as m — o0o. Choose for each m a chamber C,, with z,, € Cp, and let y,
be the unique point in Cy, such that A(ym) = y. (We will then say that yp,
is of type y.) Since /\|—C—m is an isometry, we have

d(Zm, Ym) = d(A(zpm),y) = 0 as m — oo,

hence (ym) is also a Cauchy sequence. On the other hand, we will prove
below that the set of points of a given type y is discrete. [Draw a picture
of the tree case to see why this is intuitively plausible.] Hence the Cauchy
sequence (Y, ) is eventually constant, and the fact that d(z,,,ym) tends
to 0 now says that z,, — v/, where ¥y = y,, for large m. This completes
the proof of the theorem, except for the discreteness assertion.

Recall that the star of a point 2 € X, denoted stz or stx z, is the
union of the closed simplices A containing z. If our metric on X is at all
reasonable, we expect the star of z to be a neighborhood of . In fact, a
more precise statement is true:

Lemma. Given y € C there is a § > 0 with the following property: For
any z € X of type y, st x contains the closed ball of radius é centered at .

Now stz contains no point distinct from z and having the same type
as z. So the lemma implies that d(z,z’) > é for any two distinct points
z,z’ of type y. This proves the discreteness assertion, modulo the lemma.

Proor or THE LEMMA: Choose an apartment E containing C, and let H
be the locally finite collection of walls that defines the simplicial decom-
position of E. Let § be the minimum distance from y to a wall H € ‘H
not containing y. Then for any 3’ € E with d(y,y’) < 6, the open segment
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(y,y') does not cross any wall. We therefore have (y,y’) C A for some open
cell A, hence y,y' € A and y Estg y.

Now suppose z and z’ are points of X with z of type y and d(z,z’) < 6.
We can find an apartment E’ containing z and z’ and an isomorphism
¢ : E' — E such that ¢(z) = y. Then d(y,¢(z')) < 8, so ¢(z') € stgy by
the previous paragraph and hence z' € stgr ¢ C stx . O

EXERCISES

1. The open star of z is the union of the open simplices A such that = € A.
State and prove an analogue of the lemma for open stars.

2. Let X' be a subcomplex of X, i.e., X' = |A'| for some subcomplex A’ of A.
[Equivalently, X' is a subset of X which is a union of closed simplices.] Deduce
from Exercise 1 that X’ is a closed subset of X.

3. Deduce from Exercise 1 or 2 that any chamber C is an open subset of X.

3B Negative curvature

The segment [z, y] defined in the theorem will be called the geodesic joining
z and y. Comparing the inequality (**) with the equality () above, we see
that a typical point z € X is closer to points of [z,y] than it “ought” to
be. This suggests the picture

z

Yy

which will be familiar to readers who have studied Riemannian manifolds
of negative curvature (e.g., the hyperbolic plane). For this reason we will
call (xx) the negative curvature inequality. [Note: One should interpret
“negative” here as meaning “non-positive”, since equality might hold; e.g.,
X might consist of a single apartment and hence be a Euclidean space.]
If you know enough Riemannian geometry, you might enjoy the following
exercise:

EXERCISE
Show that the negative curvature inequality holds in a complete simply-connected
manifold M of negative curvature. [HINT: Let V be the tangent space to M at

pe and let p: M — V be the inverse of the exponential map. Then p is distance-
decreasing and preserves distances from p,.]

In what follows we will only need the special case ¢t = 1/2 of the negative
curvature inequality; letting m be the midpoint p; /5 of [z, y], we can write
this special case as

&2(z,m) < % (P(2,2) + d*(z,y)) - 7i—d?(ag,y). (NC)



156 VI. Euclidean Buildings

For brevity we will say that a metric space X has property (NC) if for
any two points z,y € X there is a point m such that the inequality (NC)
holds for all z. Thus Euclidean buildings and complete simply-connected
Riemannian manifolds of negative curvature are examples of spaces with
property (NC).

Note that any point m as in the definition of property (NC) necessarily
satisfies ‘

d(e,m) = d(y,m) = 3d(z,y);

this follows from (NC) applied to z = z and z = y. Moreover, m is the
only point satisfying these equations; for if m’ satisfies the equations, then
(NC) applied with z = m' implies that d(m’,m) = 0. We will call m the
midpoint of the pair {z, y}.

A final comment about the intuition behind negative curvature: One of-
ten interprets negative curvature as meaning that two geodesics emanating
from a given point separate faster than they ought to. The first exercise
below gives a precise version of this statement.

EXERCISES

Assume throughout these exercises that X is a metric space with property (NC).

1. Given three points a,b,c € X, let m; be the midpoint of {a,b} and let m>
be the midpoint of {a,c}. Show that d(b, ¢) > 2d(m1,m2). [HINT: Start by using
(NC) to say something about d*(mi,m2).]

2. Fix z,y € X and let ¢t € [0, 1] be a dyadic rational number, i.e., a rational
number whose denominator is a power of 2. Show that there is a point p; € X
such that the inequality (**) of §3A holds for all z € X. Show further that any
such p: can be characterized as the unique point satisfying the equations

d(z,p:) = td(z,y)
d(y,pe) = (1 - t)d(z,y).
Extend all this to arbitrary t € [0, 1] if X is complete.

3. A subset Y of X will be called midpoint convez if it contains the midpoint
of any pair of its points. Suppose that Y is midpoint convex, let z € X be
arbitrary, and let d = d(z,Y) = infyey d(z,y). If there is a point y € Y such
that d(z,y) = d, show that d(y,y’) < d(z,y’) for all ¥’ € Y. [HINT: First draw a
picture to see why the assertion is plausible. For the proof, consider the points p;

“between” y and y' as in Exercise 2, where t ranges over the dyadic rationals in
[0,1]. Then

d*(@,pe) < (1= )d* + td*(2,y") — (1 - O)d*(y, ¥/').

The right-hand side of this inequality would be a decreasing function of ¢ for
small ¢ if d(y,y') > d(z,y’).]
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4 The Bruhat—Tits Fixed-Point Theorem

If G is a compact group of isometries of a complete simply-connected Rie-
mannian manifold M of negative curvature, then a famous theorem of
E. Cartan says that G fixes a point of M. Cartan’s fixed-point theorem is a
fundamental tool in the theory of Lie groups. In this section we will prove
a generalization of Cartan’s theorem to complete metric spaces with prop-
erty (NC). This generalization, due to Bruhat and Tits [22], then applies
to Euclidean buildings as well as to complete simply-connected manifolds
of negative curvature. Like Cartan’s theorem, the Bruhat—Tits theorem has
applications to group theory; we will explore these in the next section.

Theorem 1. Let G be a group of isometries of a complete metric space
X with property (NC). If G stabilizes a non-empty bounded subset of X,
then G has a fixed point.

Remarks

1. In the situation of Cartan’s theorem, where G is compact, any orbit
Gz is a bounded set stabilized by G. So Cartan’s theorem is indeed a special
case of the Bruhat-Tits theorem.

2. The geometric realization of a tree is a metric space with property
(NC). The theorem in this case can be found in Serre’s book on trees ([46],
§1.4.3, Proposition 19), which also contains applications to group theory.

3. Theorem 1 is of interest even when X is a Euclidean space or, more
generally, a Hilbert space (real or complex, possibly infinite dimensional).
The result in this case has a cohomological interpretation, which is often
used in representation theory; see Exercise 2 below.

The Bruhat-Tits proof of Theorem 1 consists of associating to every non-
empty bounded subset A C X a point ¢ = ¢(A) € X which, intuitively, is
some sort of “center” of A. The construction of ¢ depends only on the metric
on X, so it is compatible with isometries. In particular, if A is invariant
under a group G of isometries of X, then c is fixed by G.

We will give a variant of this proof due to Serre. The basic idea remains
the same, but Serre’s definition of ¢(A) is different from that of Bruhat and
Tits. Namely, ¢(A) is defined to be the center of the sphere circumscribed
about A. Here are the details.

Let X be an arbitrary metric space and A a non-empty bounded subset.
For any z € X, let r(z, A) be the smallest real number r such that A is
contained in the closed ball of radius r centered at x; equivalently,

r(z,A) = Slelﬁ d(z,a).
a

The circumradius of A, denoted r(A), is defined by
r(A) = ;{S} r(z, A).
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If r(A) = r(z, A) for some £ € X, then any such z will be called a circum-
center of A. Note, for example, that the midpoint m discussed in §3B above
is a circumcenter (and even the unique circumcenter) of the two-point set
{z,y}.

If X is a sphere, which is a space of positive curvature, then circum-
centers always exist but are not necessarily unique (see Exercise 1 below).
In Euclidean space, however, it is known that circumcenters exist and are
unique. More generally, we have the following observation of Serre:

Theorem 2. If X is a complete metric space with property (NC), then
every non-empty bounded subset A admits one and only one circumcenter.

As we explained above, Theorem 1 follows immediately from Theorem 2;
for the circumcenter of A will clearly be fixed by any group of isometries
of X that stabilizes A. It remains to prove Theorem 2.

PrRoOOF OoF THEOREM 2: For any two points z,y € X, we can apply the
inequality (NC) with z € A to get

P(m, 4) < 3 ((2,4) + (3, 4) - 782,9),
where m is the midpoint of {z,y}. Hence
d*(z,y) <2(r*(2, 4) + r*(y, A) — 2r*(m, 4)) .
Since r(m, A) > r(A), this implies
d*(z,y) < 2 (rz(:z:, A) +ri(y, A) - 27'2(A)) .

Uniqueness of the circumcenter is now immediate; for if z and y are both
circumcenters, then the right-hand side is 0, hence z = y. To prove exis-
tence, take a sequence of points z, € X such that r(z,, A) — r(A4), and
apply the inequality above with * = z,, and y = z,,. Then the right-hand
side can be made arbitrarily small by taking n and m sufficiently large, so
(zn) is a Cauchy sequence. Hence (z,) has a limit z € X, and it is easy to
check that r(z, A) = r(A). O

We close this section by proving one more result about circumcenters.
This will not be needed in what follows, but it provides a nice illustration
of the negative curvature inequality. In Euclidean geometry, it is known
that the circumcenter of a bounded set A is contained in the closure of
the convex hull of A. We will show that this too generalizes to spaces
with property (NC). The precise statement uses the notion of “midpoint
convexity” defined in Exercise 3 of §3B.

Theorem 3. Under the hypotheses of Theorem 2, let Y be the smallest
closed, midpoint convex subset of X which contains A. Then the circum-
center of A is contained in Y.

At first glance it might seem that this is a formal consequence of The-
orem 2. For Y, in its own right, is a complete metric space with property
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(NC), so Theorem 2 implies that A has a circumcenter in Y. What is
not obvious, however, is that the circumcenter of A in Y is the same as
its circumcenter in X . In other words, it is conceivable that the circumra-
dius ry(A) of A in Y is bigger than the circumradius rx(A) of A in X.
Theorem 3 will follow as soon as we prove that this cannot happen:

Lemma. Let X be a metric space with property (NC), and let Y be a
midpoint convex subset. Then ry(A) = rx(A) for any non-empty bounded
subset ACY.

PRrRoOF: Given any z € X and any r > r(z, A), we must find y € Y such
that 7(y, A) < r. This is easy if there is a y € Y with d(z,y) = d(z,Y);
in this case we have r(y,A) < r(z,A) < r by Exercise 3 of §3B. In the
general case, let d = d(z,Y), and choose a sequence of points y, € Y
such that d, = d(z,yn) — d. We will show that r(y,, A) < r for some n.
Suppose this is false. Then for each n we can find a point a,, € A such that
d(yn,an) > r. As in the exercise just cited, consider the points p; between
yn and a,, where ¢ ranges over the dyadic rationals in [0, 1]. These points
are in Y, and we have

d? < d¥(z,p;) < (1 = t)d2 +tr¥(z, A) —t(1 - t)r’.
Fixing ¢ and letting n — oo, we conclude that
d? < (1-t)d? + tri(z, A) — t(1 — t)r? = d® + ot + r?t?,

where o = —d? + r?(z, A) — r2. But this is absurd; for « is negative, so
at + r?t? < 0 for small ¢ > 0. This contradiction shows that r(y,,A4) < r
for some n, as required. O
EXERCISES

1. (a) If X is a compact metric space, show that every non-empty subset
admits a circumcenter.

(b) If X is a sphere (of any dimension > 0), show that X has subsets with
more than one circumcenter. In fact, there is even a subset such that every point
of X is a circumcenter. (More generally, this happens whenever X is a metric
space of finite diameter which admits a transitive group of isometries.)

2. Let V be a real or complex Hilbert space on which a group G acts by linear
isometries. A 1-cocycle on G with values in V is a function ¢ : G — V such that
c(gh) = c(g) + gec(h) for all g,k € G. It is called a coboundary if there is a vector
v € V such that ¢(g) = gv — v for all g € G. Deduce from Theorem 1 that a
cocycle is a coboundary if and only if it is bounded. [HINT: Use the given cocycle
to define an action of G on V by affine isometries.]

5 Application: Bounded Subgroups

There is a classical application of Cartan’s fixed-point theorem to the study
of compact subgroups of a Lie group G: Under suitable hypotheses on G,
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one constructs a complete simply-connected Riemannian manifold X of
negative curvature, on which G acts as a group of isometries; the fixed-point
theorem then implies that any compact subgroup of G must be contained in
the stabilizer G of some point z € X. If G = SL,(R), for instance, then
G acts transitively on the associated X and has the special orthogonal
group SO, (R) as one of the stabilizers. The conclusion, then, is that every
compact subgroup of SL, (R) is conjugate to a subgroup of SO,,(R.). [Note:
The group SO, here is defined with respect to the standard inner product
on R", not the one used in §V.7.] In this section we will use the Bruhat-Tits
fixed-point theorem to prove similar results for groups acting on Euclidean
buildings. These results then apply to certain “p-adic Lie groups” such as
SLa(Qy).

Let G be a group with a BN-pair and let A be the associated building.
We will say that the BN-pair is Fuclidean if A is Euclidean. It is then
immediate from the definition of the metric on X = |A| that G acts as a
group of isometries of X. In many cases G has a natural topology, so that
the notion of compact subgroup makes sense. In general, however, it is more
convenient to deal with “bounded” subgroups. We begin by figuring out
what that should mean.

Lemma. The following conditions on a subset F' C G are equivalent:

(1) F is contained in a finite union of double cosets BwB.

(2) For some z € X, the set Fx = {gz : g € F} is a bounded subset of
the metric space X .

(3) For every bounded set Y C X, the set FY = J, ¢y Fy is a bounded
subset of X .

Proor: (1) = (2): It suffices to consider the case where F is a double
coset BwB. Let C be the fundamental chamber of X; it is fixed pointwise
by B. Let @ be a representative of w in N. Then for any g = bwbd’ € F and
any z € C, we have

d(z,g9z) = d(bz, gz) = d(z, wb'z) = d(z, wz).

Hence Fz is contained in the sphere of radius r = d(z, wz) centered at z.

(2) = (3): This is left as an exercise; it is valid for any set of isometries
of any metric space.

(3) = (1): By (3) applied with Y equal to the fundamental chamber C,
the set F'C' is bounded. Let F be the fundamental apartment, and let p =
pE,c : X — E. Since p is distance-decreasing, p(FC) is a bounded subset
of E. In view of the local finiteness of the set ‘H of hyperplanes defining
the simplicial decomposition of E, a bounded subset meets only finitely
many chambers; hence p(FC) is a finite union of chambers. The geometric
interpretation of the Bruhat decomposition (cf. §V.1E) now implies that F
is contained in a finite union of double cosets. a

We will call F bounded if it satisfies the equivalent conditions of the
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lemma. The following exercises should convince you that this definition is
reasonable.

EXERCISES

1. Suppose G = SL,(K) as in §V.8. Show that a set F is bounded if and only
if there is an upper bound on the absolute values of the matrix entries of the
elements of F. If K is complete and the residue field k is finite (e.g., K = Qp),
show further that F is bounded if and only if it is relatively compact. Here G is
topologized as a subset of the vector space of n X n matrices, and a set is called
relatively compact if its closure is compact.

2. Show that our notion of “bounded set” satisfies the following conditions,
which are the axioms for a bornology on a set:

(i) Every singleton is bounded.
(i1) If F' C F and F is bounded, then F' is bounded.
(iii) A finite union of bounded sets is bounded.
Show further that the following two axioms for a bornological group are satisfied:

(iv) If F; and F; are bounded, then so is their product Fi F,.
(v) If F is bounded, then so is F 1.

We are now ready to apply the fixed-point theorem. Note that the sta-
bilizers of the points of X are the same as the stabilizers of the non-empty
simplices; hence they are the proper parabolic subgroups. In particular,
the maximal elements among these stabilizers are the maximal (proper)
parabolic subgroups, which are the stabilizers of the vertices. We will omit
the word “proper” in what follows, since the notion of “maximal parabolic
subgroup” would be of no interest otherwise.

Theorem. The following conditions on a subgroup H C G are equivalent:

(1) H is bounded.

(2) H fixes a point of X.

(3) H fixes a vertex of X.

(4) H is contained in a maximal parabolic subgroup.

Proor: It is immediate that (4) <= (3) <= (2) = (1). The
content of the theorem, then, is that (1) = (2), and this follows from
the fixed-point theorem. O

Corollary. Every bounded subgroup is contained in a maximal bounded
subgroup, and the maximal bounded subgroups are the maximal parabolic
subgroups. G contains precisely n+ 1 conjugacy classes of maximal bounded

subgroups, where n = dim X ; they are represented by the special subgroups
BW'B with W' = (S — {s}) for some s € S. O

Remark. Suppose we are in the situation where G is a topological group
and “bounded” is the same as “relatively compact” (e.g., G = SLn(Q,)).
Then a maximal bounded subgroup is necessarily compact, since otherwise
its closure would be a bigger bounded subgroup. Consequently, the corollary
remains valid with “bounded” replaced by “compact”.
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EXERCISE

Describe the n conjugacy classes of maximal bounded subgroups of SL,(K).
[HINT: Recall that the building can be described in terms of lattices. What is the
stabilizer of a vertex?]

We close this section by proving that the building A can be entirely
reconstructed from the group G, viewed simply as a bornological group. In
particular, in the situation of the remark above, A can be reconstructed
from G as a topological group. The precise statement will be given below,
after a sequence of lemmas.

Lemma 1. Every apartment ¥ is a flag complex.

ProoOF: The proof given in §B of the Appendix to Chapter I for spherical
Coxeter complexes goes through verbatim in the Euclidean case. [In fact,

essentially the same proof works for any Coxeter complex, cf. Tits [56],
Corollary 2.28.] O

Lemma 2. Every apartment ¥ is a full subcomplex of A. In other words,
if a simplex A € A has all of its vertices in ¥, then A € X.

PROOF: Let p: A — X be a retraction. Then p fixes all the vertices of A,
so A =p(A) € T. O

Lemma 3. A is a flag complex.

ProoF: We must show that if vy,...,v; are pairwise joinable vertices,
then {v1,...,vx} is a simplex of A. Arguing by induction on k, we may
assume that {vy,...,vx_1} is a simplex. Choose an apartment ¥ containing
{v1,...,vx-1} and vi. Then v,,...,v; are pairwise joinable vertices of ¥ by
Lemma 2, applied to each of the 1-simplices {v;, v;}. Lemma 1 now implies
that {v1,...,vx} is a simplex of ¥ and hence also of A. O

Recall that A can be identified with the poset of parabolic subgroups
of G, ordered by the opposite of the inclusion relation. Lemma 3 therefore
implies that A is the flag complex of the incidence geometry consisting of
the maximal parabolic subgroups, with two maximal parabolics P, Q inci-
dent if and only if PNQ contains a parabolic subgroup. [This says precisely
that the corresponding vertices of A are joinable.] Since any subgroup of G
containing a parabolic subgroup is itself parabolic, we can state this more
simply: P and @ are incident if and only if P N Q is parabolic.

Lemma 4. If P and @ are distinct maximal parabolics, then PN Q is
parabolic if and only if P N Q is a maximal (proper) subgroup of P.

PROOF: Let z (resp. y) be the vertex fixed by P (resp. Q). If PN Q is
parabolic, then z and y are joinable and P N Q is the stabilizer of the
edge A that they determine. Any subgroup P’ with P > P’ > PNQ
would be parabolic and would therefore correspond to a simplex A’ with
r < A’ < A. So no such P’ can exist, i.e., PN Q is maximal in P.
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Conversely, suppose that PN(Q is a maximal subgroup of P, and consider
the geodesic [z, y]. It is fixed pointwise by PN @, since the latter is a group
of isometries fixing  and y. For any z’ € (z, y] sufficiently close to z, the
segment (z,z'] is contained in some simplex A of positive dimension having
z as a vertex; hence the stabilizer P’ of ' (which is the same as the stabilizer
of A) is properly contained in P. We therefore have P > P’ > PNQ, which
implies that P N @ is equal to the parabolic subgroup P’. O

We have now proved:

Theorem. The building A associated to a group G with a Euclidean BN-
pair is isomorphic to the flag complex of the incidence geometry consisting
of the maximal bounded subgroups of G, where two distinct such subgroups
P, @ are incident if and only if P N Q is a maximal subgroup of P. O

There is an analogous theorem about Lie groups. Under suitable hy-
potheses on a Lie group G, the associated manifold X of negative curvature
can be identified with the set of maximal compact subgroups of G, and the
structure of Riemannian manifold on X depends only on G as a topological

group.

6 Bounded Subsets of Apartments

We return to the study of a general Euclidean building X = |A|. The
theorem of this section is the analogue for Euclidean buildings of the fact
that a spherical building admits a unique system of apartments, consisting
of the convex hulls of pairs of opposite chambers (cf. §IV.5).

Given chambers C,C’ of X, let B(C,C") be the union of all closed cham-
bers C” such that C” occurs in some minimal gallery from C to C'.

Theorem. Let B be the collection of bounded subsets Y C X such that
Y is contained in an apartment. Then B is independent of the system of
apartments A. In fact, B consists of all subsets Y C X such that Y is
contained in B(C,C") for some pair C,C’ of chambers.

Remark. It can be shown that B(C, C’) is the smallest convex subcomplex
containing C and C’; here “convex” can be interpreted either combinatori-
ally (in terms of minimal galleries), or geometrically (in terms of geodesics
[z,y]). If you want to try to prove this as an exercise, start by reviewing
Exercise 2 in §1.4E.

The proof of the theorem requires a result about Euclidean Coxeter com-
plexes analogous to the lemma in §IV.5. We need some terminology before
we can state it.

Let E = |X| be the geometric realization of a Euclidean Coxeter complex,
and let  be the associated set of hyperplanes in E. Fix z € E and let H be
the set of hyperplanes through = and parallel to some element of . Then
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H is finite (cf. §1C above) and defines a decomposition of E into conical
cells A with = as the cone point. These cells will simply be referred to as
conical cells based at z. Here is another description of them that we will
often use:

Choose an identification of ¥ with the complex (W, V) associated to
a Euclidean reflection group. This yields an identification of E with V.
Let W be the finite reflection group consisting of the linear parts of the
elements of W. The conical cells based at z, then, are simply the translates
A =2 +9D, where D is a cell associated to W. We will call ® the direction
of A.

Suppose the W-cell D is a chamber (hence a simplicial cone). Then the
conical cell z +® will be called a sector (“quartier” in [22]). If the n walls
of ® are defined by linear equations f; = 0, where f; > 0 on D, then a
sector € with direction ® is given by linear inequalities of the form f; > ¢;
(1=1,...,n). It is clear from this that the intersection of two sectors with
direction D is again a sector with direction D.

If € and €’ are sectors with €’ C €, then we will say that €’ is a subsector
of €. Note that € and €’ then necessarily have the same direction. For
suppose € =z +D and €' = 2’ +D’. Letting D be defined by inequalities
fi > 0 as above, we conclude that the f; are bounded below on D’, hence
no f; can be negative on the cone ®’. Thus f; > 0 on D’ for all 7, which
implies that ®’ C D and hence D' =9.

Consider now two sectors €; = z +D and €, = y — D having opposite
directions ® and —D. Let €; and €5 be the closures z + D and y— D.
Assume that £ € €, and y € €, so that the two closed sectors €, €,
overlap, as in the following picture:

We will show that if Cy and C are chambers which are “sufficiently far
out” in €, and &,, respectively, then B(Ci,C3) contains €1 N&,. Let €
be the subsector of €, based at y and let €5 be the subsector of €4 based

at z, as indicated by the dotted lines in the picture below; in other words,
zy+DandC)=z-9.

Lemma. With the notation above, suppose C) and C, are chambers in E

such that Cy meets €| and Cy meets €. If C is any chamber of E such

that C meets €, N €4, then C occurs in some minimal gallery from C
to C2.
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(Note: Since sectors are open sets, the hypothesis that C'i meets €/ implies
that C; meets €}.)

PrROOF: As in the proof of the analogous lemma in §IV.5, we must prove
that no wall (i.e., element of H) separates C from both C; and C,. Let H
be a wall, defined by a linear equation f = ¢. We may choose f so that
f > 0 on D, in which case we will say that the closed half-space f > ¢
(resp. f < c¢) is the positive (resp. negative) side of H. (In the pictures
above, you should think of €; and €] as opening in the positive direction.)

The closed chamber C is on one side of H. Suppose first that it is on
the positive side. Then y must be on the positive side of H. For if y were
strictly on the negative side, then €5 would be strictly on the negative
side, contradicting the fact that €, meets C. It follows that ¢! is strictly
on the positive side of H, hence C} is on the positive side. Thus H does not
separate C from Cj. A similar argument shows that H does not separate
C from Cs if C is on the negative side of H. a

EXERCISE

Take £ = y in the lemma, so that €; and €, meet only at the basepoint z. Deduce
that B(C;, C,) contains a neighborhood of z if C; meets €; and C; meets €.

PROOF OF THE THEOREM: Suppose Y is a bounded subset of an apart-
ment F. Take an arbitrary direction ®. Then we can find a pair of sectors
€1,C5 as in the lemma, with Y C €; NE,. In fact, with the notation above,
we need only choose constants ¢;,¢; (¢ = 1,...,n) such that ¢; < f; < ¢}
on Y for all i. Consequently, there is a pair of chambers Cy, C in E such
that Y C B(Ci, C3). Conversely, given chambers C,C’ of X, choose an
apartment E containing C and C’. Then the combinatorial convexity of
apartments (cf. §IV.4) implies that E contains B(C, C'); the latter is there-
fore a bounded subset of E [since there are only finitely many minimal
galleries from C to C’ in EJ, hence so is any subset of it. O

7 A Metric Characterization of the Apartments

Assume from now on that A is the complete system of apartments in our
Euclidean building X = |A|. In view of §6, of course, anything we say
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concerning bounded subsets of apartments will then apply to an arbitrary
apartment system. Recall that we gave two combinatorial characterizations
of the apartments in §1V.4. We now characterize them from the metric space
point of view.

Theorem 1. Let n = dim X. Then a subset E C X is an apartment if
and only if E is isometric to R"™.

Another way to say this is that (a) a subset isometric to R” is neces-
sarily a subcomplex, and (b) the collection of all such subcomplexes is a
system of apartments. These assertions can be viewed as generalizations to
arbitrary X of elementary facts about trees.

We will deduce Theorem 1 from the more precise Theorem 2 below. A
subset of X is called convez if it contains the geodesic [z, y] connecting any
two of its points z, y.

Theorem 2. Let Y be a subset of X. Assume either that Y is convex or
that Y has non-empty interior. If Y is isometric to a subset of R®, then Y
is contained in an apartment.

To deduce Theorem 1 from Theorem 2, suppose E is isometric to R".
Then E is easily seen to be convex; this follows from the characterization
of geodesics in terms of the metric (cf. part (4) of the theorem in §3A).
So Theorem 2 implies that E is contained in an apartment E’. But E’
cannot be isometric to a proper subset of itself, so E must be the entire
apartment E’.

The rest of this section will be devoted to the proof of Theorem 2. The
proof will use some of the ideas introduced in the exercises of §IV.4 (and
in the “hints” following them). The first lemma is the analogue of Exer-
cise 4(a) of §IV.4. For any chambers C,D of X, let Acp : C — D be
the unique type-preserving simplicial isomorphism. It is an isometry; this
follows from the discussion of the map called A in the proof in §3A above.

Lemma 1. Suppose Y contains a non-empty open subset U of some cham-
ber C. Let E be any apartment and D any chamber of E. IfY is isometric
to a subset of R™, then there is a unique isometry o from Y into E such
that a|U = Ac,p|U. Moreover, @ = p|Y, where p is the canonical map
X — E taking C to D.

(The notion of “canonical map” was introduced in Exercise 4 of §IV.4.)

ProoOF: Suppose first that there exists an isometry o from Y into E such
that a|U = AU, where A = A¢c,p. Then pa~! : a(Y) — E fixes the open
set A(U) pointwise and preserves distances from points of A(U). Hence
pa~l = idq(y) by Exercise 1 of §1A. This proves the last assertion of the
lemma, as well as the uniqueness of a. To prove the existence, start with
an arbitrary isometry § from Y into E. Then S(U) and A(U) are isometric
subsets of F, and the isometry A3~ : (U) — A(U) extends to an isometry
v: E — E by Exercise 5 of §1A. So we may take a = v0. a
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The next lemma is the crucial step in the proof. It is the analogue of
Exercise 4(b) of §IV .4.

Lemma 2. Suppose thatY contains a closed chamber C and that « is an
isometry from Y into an apartment E such that o maps C onto a closed
chamber D by the map Ac,p. Let D’ be a chamber of E adjacent to D. Then
there is a chamber C' adjacent to C such that o extends to an isometry
fromY U C' into E taking C' to D’ by the map A

Proor: We know from Lemma 1 that @ = p|Y, where p : X — FE is
the canonical map taking C to D. We wish to find a chamber C’ adjacent
to C such that « is also equal to p'|Y, where p’ : X — E is the canonical
map taking C’ to D’. If we can find such a C’ we will be done. For then
P'|(Y U C") will extend «, will be Acr pr on C, and will be an isometry
because p’ satisfies d(p'(z), ¢'(v)) = d(z,y) for any z,y € X with z € C".

We may assume D # I. Choose a labelling of A, and let ¢ be the label
such that D and D’ are i-adjacent. Let C’ be any chamber distinct from
C and i-adjacent to it, and let p’ : X — E be the canonical map taking C’
to D’'. The hint to Exercise 4(b) of §IV.4 essentially contains a complete
analysis of the relation between p and p’. Namely, for any chamber C”
of X, we have the following three possibilities:

(a) p(C") is on the same side of H as D, where H is the wall of E
separating D from D’. In this case there is a minimal gallery of the form
C',C,...,C", and we have p/(C") = p(C"). [This equality was proved in
the hint cited above via a distance-function § with values in the reflec-
tion group W associated to E; alternatively, one could use the standard
uniqueness argument.]

(b) p(C") is on the same side of H as I, and there is a minimal gallery
of the form C,C’,...,C". Once again, p'(C") = p(C") in this case.

(c) p(C") is on the same side of H as I, and there is a chamber C}
which is i-adjacent to both C and C’ and satisfies d(C,C") = d(C’,C") =
d(C1,C") + 1. Thus there are minimal galleries of the form (C,T’) and
(C',T), where I is a minimal gallery from C; to C”. In this case p'(C") =
sp(C"), where s is the reflection of E with respect to H. [As before, this
was proved via 6 in the hint to Exercise 4(b) of §IV.4, but one could also
apply the standard uniqueness argument to see that p’ = sp along I'\]

It follows that for any y € Y we have p'(y) = a(y) except possibly if a(y)
is in the open half-space U bounded by H and containing D’, in which case
we might have p’(y) = sa(y). Let Z = o(Y)NU andlet f = p'a”!: Z - E.
Then f is distance-decreasing, and for all 2 € Z we have f(z) = z or sz.
We must show that C’ can be chosen so that f(z) = z for all z € Z. Note
first that we can choose C’ so that f(z) = z for at least one z € Z (unless
Z = 0, in which case we’re already done). For let z be a point of Z, and
let C” be a closed chamber containing = !(z). Then C” satisfies either (b)
or (c). If (b) holds, then f(z) = z. If (¢) holds, then we can simply change
the choice of C’ and use the chamber C; instead; with this new C’, then,
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we are in case (b) and hence f(2) = z.

We now use the fact that d(z,sz’) > d(z,2’) for any 2,2’ € U. [This
has a proof similar to that of the analogous combinatorial fact, given in
Exercise 1 of §II1.4A; namely, consider the line segment [z, sz2’], and fold
it back onto U to obtain a path from z to z’ which has the same length
but is not straight] Since f(z) = z for some z € Z, this fact implies
that f(z') = 2’ for all 2/ € Z, as required; for otherwise we would have
J(2") = sz’, contradicting the fact that f is distance-decreasing. O

Lemma 3. If Y contains a closed chamber and is isometric to a subset
of R®, then Y is contained in an apartment.

(This is a special case of the theorem we are trying to prove; for a closed
chamber has non-empty interior by Exercise 3 of §3A.)

PROOF: Suppose C C Y, and let E be any apartment containing C. By
Lemma 1 there is an isometry a from Y into E which fixes C' pointwise.
By repeated application of Lemma 2, we can successively adjoin closed
chambers to a(Y) and extend a~! to an isometry A from E into X which
is simplicial on each closed chamber of E. But then f is a type-preserving
simplicial map, and its image G(F) is therefore an apartment containing Y
by Exercise 2 of §IV 4. 0

PROOF OF THEOREM 2: In view of Lemma 3, it suffices to show that we
can enlarge the given Y to a set which contains a closed chamber and is still
isometric to a subset of R"™. Suppose first that Y has non-empty interior.
Then Y contains a non-empty open subset of a chamber C. Let E be an
apartment containing C and let p = pg ¢ : X — E. Lemma 1 implies that
p maps Y isometrically into E. But then p also maps Y U C isometrically
into E, since p is the identity on C and preserves distances from points
of C. So we are done in this case.

Suppose now that Y is convex. Choose a simplex A which is maximal
among the simplices meeting Y. Let C be a chamber having A as a face,
and let E be an apartment containing C'. We will show that p = pg ¢ maps
Y UC isometrically into E. As above, it suffices to show that d(p(y), p(2)) =
d(y,z2) for all y,z € Y. We may assume y,z ¢ C. Choose z € Y N A, and
let T CY be the convex hull of {z,y, z}. Note that any isometry o from Y
into R™ must take T to the convex hull of {a(z), a(y),a(2)}; this follows
from the metric characterization of geodesics. So T is, in an obvious sense,
a FEuclidean triangle. Since y # z and 2z # z, it follows that there is a
well-defined angle @ at the vertex x, with 0 < 8 < .

If we take any y’ € (z,y] and 2’ € (z, 2], then the triangle 7' determined
by {z,y, 2’} has the same angle at . In particular, we will take y’ and z’
close enough to z that they are in A and hence in C. [This is possible
because of the maximality of A; for if [z,y], say, does not stay in A for a
little while, then it enters a simplex having A as a proper face.] Now p maps
[z,y] (resp. [z, 2]) isometrically onto [z, p(y)] (resp. [z, p(z)]) and fixes T".
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The angle 0 is therefore equal to the angle between [z, p(y)] and [z, p(2)].
By elementary geometry (“two sides and the included angle”) we conclude
that T is congruent to the triangle in E with vertices z, p(y), p(z). Hence

d(p(y), p(2)) = d(y, z), as required. O

EXERCISES

1. Extract the following fact from the proof above: Given z,y,z € X with
z # y and z # z, there is a well-defined angle § between [z, y] and [z, z]. [HINT:
Take y' € (z,y] and z' € (z, 2] close enough to z that [z,y'] and [z, 2’] are each
contained in a closed simplex. Then [z,3y']U [z, 7] is contained in an apartment,
so the convex hull of {z,y,2'} is a Euclidean triangle.]

2. With z,y, z as in Exercise 1, prove the following cosine inequality:
dz(y, z) > d? (z,y) + d? (z,2) — 2d(z, y)d(z, z) cos b,

with equality if and only if {z,y, 2} is contained in an apartment. This reinforces
the negative curvature intuition again: Two geodesics emanating from z tend
to separate faster than they ought to. [HINT: To prove the inequality, take an
apartment E containing {z,y’,2'} as in the hint to Exercise 1, and consider
p = pe,c, where z € C. If equality holds, then p is an isometry on {y, 2} UC.]

3. Let F be an apartment and U a half-space of F bounded by a wall H. Let
C be a chamber of X having a codimension 1 face in H. Show that there is an
apartment E' containing U and C. [HINT: For any chamber D in U, there is a
minimal gallery from D to C of the form (T, C), where I is a gallery in U. Deduce
that U U C is isometric to a subset of E.]

4. If A is thick, show that the simplicial decomposition of X = |A| is com-
pletely determined by the metric. [HINT: With the notation of Exercise 3, what
is ENE'?)

8 Construction of Apartments

We continue to denote by X a Euclidean building, equipped with its com-
plete system of apartments. As an illustration of Theorem 2 above, we will
prove two results (parts (1) and (2) of the theorem below) asserting the
existence of apartments containing given subsets of X.

By a sector in X we will mean a subset € which is contained in some
apartment F and is a sector in E (cf. §6). € is then a sector in any apartment
E’ that contains it. To prove this, note first that £ N E’ is a subcomplex
with non-empty interior, hence it contains a chamber; the general theory
of buildings therefore implies that there is an isomorphism E’ — F fixing
E N E’' pointwise, and our assertion follows easily.

Remark. Note, for future reference, that we can similarly treat arbitrary
conical cells & in X, not just sectors (which are conical cells of maximal
dimension). The point is that there is still an isomorphism E’ — E fixing
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ENE' evenif E and E’ do not have a common chamber. In fact, it suffices
to take an isomorphism ¢ : E/ — E which fixes pointwise a maximal
simplex A of the subcomplex E N E’. One then proves that ¢ fixes E N E’
pointwise by a geometric analogue of the standard uniqueness argument.
[Choose any z € A. Given y # z in E N E’, consider the geodesic [z,y]. It
is contained in £ N E’, and a non-trivial initial segment of it is contained
in A by maximality; hence [z,y] and its image [z, #(y)] have a common
initial segment. But these are geodesics of the same length in the Euclidean
space E, so they must coincide. In particular, ¢(y) = y.]

Let’s return now to sectors, which are the only conical cells that will
concern us in this section.

Theorem.

(1) Given a sector € and a chamber C in X, there is a subsector €' C €
such that €' and C are contained in some apartment.

(2) Given two sectors €; and €,, there are subsectors €] C €; and
€4, C €, such that €] and €/, are contained in some apartment.

(You should think about trees to see why the theorem is plausible; a sector,
in this case, is simply a ray tending toward an “end” of the tree.)

PRrROOF OF (1): Choose an apartment E containing €. In view of the pre-
vious section, it suffices to find a subsector €’ C € and a chamber Cj in E
such that the retraction p = pg ¢, : X — E is an isometry on €' UC. Note
first that there is a bounded subset Z of E such that, for any choice of Cy,
we will have p(C) C Z. In fact, let z be any point of E and let Y be any
ball in X centered at z and containing C; then we can take Z = Y N E.
[This works because our retractions are distance-decreasing.] Now let €”
be a sector in E containing Z and having direction opposite to that of €.
We can choose €" so that its basepoint z is in €. The desired €’ and Cy
are now obtained as follows: €' is the subsector of € based at z, and Cy is
any chamber of £ whose closure contains z.

To prove that these choices work, we will show that p = pg ¢, is an
isometry on C"UC for any chamber C’ which meets €’. Now we know that
pE.c' is an isometry on C’UC, so it suffices to show that p(C) = pg ¢/ (C).
Let T be a minimal gallery from Cy to C and let IV be a minimal gallery in E
from C’ to Cp. Then p(T') is a minimal gallery from Cy to p(C). Now apply
the lemma of §6 to the two opposite sectors €' €  with y = z. Recalling
that p(C) C Z C €”, we conclude that I'"p(T') is a minimal gallery from C’
to p(C), where the star denotes composition of galleries. Since this gallery
is the image under p of IV * I'), the latter must be a minimal gallery from
C’ to C. But then its image under pg ¢ is also minimal, so the standard
uniqueness argument shows that p(C) = pg,c (C). This completes the
proof of (1). O

As a consequence of (1) we can define a new kind of retraction onto an
apartment, which will be useful in the proof of (2). Given an apartment £
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and a sector € in E, (1) implies that X is the union of the apartments E’
which contain a subsector of €. We now define p = pg ¢ : X — E to be
the map whose restriction to any such E’ is the isomorphism ¢g : E/ — E
which fixes £ N E’ pointwise. It is easy to check, as in the construction of
the “ordinary” retractions pg ¢ in Chapter IV, that p is well-defined. Note,
for future reference, that for any chamber C of X there is a subsector €’
of € such that pg,¢(C) = pg,c/(C) for any chamber C' of E which meets
¢’; indeed, if we take €’ to be a subsector such that €’ and C are contained
in an apartment E’, then both sides of the equality to be proved are equal

to ¢ (C).

EXERCISES
1. Describe pg ¢ if X is a tree.

2. Prove that for any bounded subset Y of X there is a subsector €' of €
such that pg,c|Y = pg,c|Y for any chamber C of E which meets €'. [HINT:
Use the method of proof of (1) to find a € such that pg,c|Y is the same for all
chambers C which meet €' ]

3. Prove or disprove the following purported generalization of (1): Given a
sector € and a bounded subset Y of an apartment, there is a subsector €' C €
such that €’ and Y are contained in some apartment.

We will use this new kind of retraction in the proof of part (2) of the
theorem. More precisely, we will choose an apartment E; containing €,
and we will find subsectors €} of €; (i = 1,2) such that p = pg, ¢, is an
isometry on €4 U€4. The key step in the proof is to figure out how to
choose €. Consider, for example, the case where X is a tree. The following
picture shows a typical configuration:

<2

>

|
< . E
¢, !
Note that p(€3) heads toward the same end of E; as €, at first, but then
it reverses direction and heads toward the opposite end. So if we want to
find a subsector €/, on which p is an isometry, we need only start €5 at
any chamber C in €5 such that p(C) is already heading in the opposite
direction from €;.
It turns out that a similar idea works in higher dimensions also. Here are
the details:

PRrROOF OF (2): Choose apartments E; and F, containing €; and €5, re-
spectively, and let p = pg, ¢, as above. Identify E; with a vector space V
as in §6, so that €, has a direction D ; the latter is a chamber in the Coxeter
complex associated to a finite reflection group W. We will use combinatorial
distances d(—, —) in this Coxeter complex in order to compare directions.
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The intuitive idea to keep in mind is that the bigger d(D,D’) is, the more
nearly opposite ® and D’ are.

We wish to associate to any chamber C of E5 a W-chamber D' in Ej,
which we think of as the direction of p(€2) at C. It is defined as follows:
Choose a directed line segment zy in C which is parallel to €4, in the sense
that it is a translate of a segment going from the cone point of €, to some
point of €5. Then D’ is defined to be the unique W-chamber such that p(Zg)
is parallel to D’. One can easily check (by using a suitable isomorphism
E; — E;) that D’ is independent of the choice of zy.

Let’s focus now on those chambers of E3 which meet €,. Choose among
these a chamber Cy such that the resulting direction D’ makes d(D,D’)
as big as possible. Such a Cj exists because d(D,D’) is bounded by the
diameter of the spherical Coxeter complex associated to W. Let zg be
any point in Cp, and let €, be the subsector of €5 based at zp. As we
noted above while defining p, we can find a subsector €] C €; such that
p(Co) = pE, ,c(Co) for any chamber C which meets €{. Passing to a further
subsector if necessary, we can also arrange that €} C p(zo) +D. We will
show that p is an isometry on €] U€%. In view of §7, this will complete the
proof.

Let C’ be any chamber of Ey which meets €. Choose z € C' N €Y, and
consider the directed line Zgz. It crosses exactly those walls Hy, ..., H;
of E3 which separate Cy from C’. By moving z slightly, if necessary, we
can make sure that zy# does not simultaneously cross two walls. For if
ZoZ meets H; N H; for some i # j, then z is in the affine span of zo and
H; N Hj; this affine span is a hyperplane, so we need only choose z so as to
miss finitely many hyperplanes. With such a choice of z, then, Zo# passes
through chambers Cy, ...,C; = C’ which form a minimal gallery from Cy
to C'.

I claim that p maps Cy, ..., C; to a non-stuttering gallery in E; and that,
in addition, p(C;) = pg, c¢(C;) for each ¢ = 1,...,! and any chamber C
that meets €. Once the claim is proved, we will be done. For the first
assertion of the claim implies [by the standard uniqueness argument] that
p coincides on €% with the type-preserving isomorphism Ey — E; taking
Co to p(Cp). Hence p is an isometry on €5. And the second assertion of the
claim implies that p preserves distances between points of €} and points
of €4. It remains to prove the claim.

Arguing by induction on [, we may assume that | > 0 and that the
claim is known for the subgallery Cy,...,Ci-1. Hence p is an isometry on

1UCoU- - -UC_1, and the latter is therefore contained in an apartment E’.
Note, then, that p maps E’ isomorphically onto E;. Moreover, p|E' =
pE, c|E’ for any chamber C of E; N E’ and hence, in particular, for any
chamber C which meets €). Let A be the common face of Cj_; and (i,
and let C] be the chamber of E’ distinct from Cj-; and adjacent to it
along A. Let H be the support of A in E’, i.e., the wall of E’ separating
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Ci-1 from Cj. As in the proof of the lemma in §6, it will be convenient to
refer to the two closed half-spaces of E’' determined by H as the positive
and negative sides, the positive side being defined by a linear inequality
f > c with f bounded below on €). We can similarly define the positive
and negative sides of the wall p(H) in E;.

We now consider three cases:

(a) C] = C. In other words, E’ contains C;. Since p|E’ is an isomorphism
and coincides with pg, ¢|E’ for any C meeting €}, the claim is trivial in
this case.

(b) C} # Ci, and Cj is on the positive side of H. The following picture
illustrates this case when X is a tree:

!
° E’

@ @ 7
/ Co ey Ci-i . C]
] El
<y

Since zq is on the positive side of H, p(zo) is on the positive side of p(H);
hence all of p(z) + D is on the positive side of p(H). In view of our choice
of €/, it follows that €/ is on the positive side of p(H) in E;, whence € is
on the positive side of H in E’.

Suppose now that C is any chamber which meets €]. Then C is on
the positive side of H, so there is a minimal gallery in E’ of the form
C,...,Ci—1,C]. Replacing C; by Cj, we obtain a gallery which is still min-
imal; you can prove this either by considering types of galleries (cf. Exer-
cise 1 in §IV.4) or by using a suitable retraction of X onto E’. So pg, ¢ maps
this gallery to a minimal gallery in E,; in particular, pg, ¢ maps our orig-
inal gallery Cy,...,C; to a non-stuttering gallery. Since pg, ¢(C;) = p(Cj)
for ¢ < I, it follows that pg, ¢(Ci) is independent of C. This common value
of pg,,c(Ci) for C meeting € must equal p(Ci), and the claim is now
proved in case (b).

(c) C1 # Ci, and Cj is on the negative side of H. The following picture
illustrates this case when X is a tree; it suggests that p changes direction
as one goes from Cj_; to C].

o]

/ ¢ G v Co
E,

1

]

We will show that our choice of Cy prohibits this case from occurring. Let
€/ C €/ be the subsector based at some point of €} on the positive side
of H. Then €Y lies entirely on the positive side of H. Considering galleries
as in case (b), we conclude that pg ¢(Ci) = pg,c(Ci-1) for any chamber C
that meets €. Consequently, p(Ci) = p(Ci-1).

[ ]
[ ]
&y
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Recall now that we have a directed line segment zo2 which is parallel
to €, and which passes through Cy, ..., C;. The initial portion of this seg-
ment is mapped by p to a directed segment in E parallel to a W-chamber
that we called D’. Let z; be the point where o2 crosses A, and let yp,
y1, and y be, respectively, p(zo), p(z1), and p(z). Let z = sy, where s is
the reflection of E; with respect to p(H). Then p maps Zo2 to the path
obtained from 7z by folding it onto the negative side of p(H). In par-
ticular, 772 has the same direction as yoy; = p(Toz1), hence it is parallel
to ®’. Thus y; +D’ is on the positive side of p(H), i.e., on the same side as
y1 +D. Moreover, since p(Z12) = s(y12), the direction of p(€2) at Cj is 5D/,
where § is the linear part of s. But d(D,5D’) > d(D,D’) by Exercise 1
in §II1.4A, contradicting the maximality of d(®,®’). This contradiction
completes the proof of the claim and hence of the theorem. ]

Remark. It is not really necessary to use the existence of the apartment E’
above, although this does make it easier to follow the proof. You might want
to try, as an exercise, to carry out the inductive step without using E’. If
you get stuck, see Bruhat—Tits [22], Proposition 2.9.5.

9 The Spherical Building at Infinity

At the end of Chapter V we suggested the possibility of constructing a
spherical building by attaching a “sphere at infinity” to every apartment
of a Euclidean building. In this section we carry out the details of that con-
struction. X continues to denote a Euclidean building, and “apartment”
continues to refer to the complete apartment system unless the contrary is
explicitly stated.

9A Ideal points and ideal simplices

A ray in X is a subset v which is isometric to the half-line [0, 00). The point
z € t which corresponds to 0 under the unique such isometry will be called
the origin or basepoint of t. We will also say that t emanates from z. A
ray is easily seen to be convex, so §7 implies that it is contained in some
apartment E. As a subset of F, it is necessarily a ray in the usual sense,
i.e., a subset of the formv={(1—-t)z+ty:t > 0} for some y # z.

We will say that two rays t,s are parallel if the sets of real numbers

{d(y,s):y€r} and {d(z,x):z€s}

are bounded. In other words, we require that there be a number M such
that for each y € v there is a 2z € s with d(y, z) < M, and similarly with the
roles of t and s reversed. If v and s are subsets of some apartment F, one
can easily check that they are parallel if and only if there is a translation
of E taking one to the other. It is also easy to check that the relation of
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parallelism is an equivalence relation. An equivalence class of rays will be
called an ideal point of X.

If v is a ray emanating from = and representing an ideal point e, one
thinks of e as sitting “at infinity”, or at the “end” of t. To reinforce this
intuition, we will write t = [z, e); this notation is justified by the following
lemma, which shows that an ideal point admits a unique representative ray
emanating from a given point z.

Lemma 1. Given a point z and a ray $, there is a unique ray v which is
based at x and parallel to s.

ProoF: To prove existence, let £ be an apartment containing s. Let € be
a sector in E, based at the origin of s, such that the closure of € contains s.
By §8 we can find a subsector €’ of € such that €’ and z are contained in
some apartment E’. Since €’ is a translate of € in E| its closure contains a
ray s’ parallel to s; we can now translate s’ in E’ to obtain the desired .

We must now show that there cannot exist distinct parallel rays with the
same origin. Suppose, to the contrary, that ty and vy are distinct parallel
rays based at z. Then t; Nt,, being closed and convex, must be an interval
[z,2']. Replacing t; and ty by the subrays based at z/, we are reduced to
the case where ty Nty = {z}. By the exercises in §7, there is then a well-
defined angle § > 0 between t; and t5 at z, and the cosine inequality holds:
For any s,t > 0 let p, (resp. ¢:) be the point of t; (resp. v2) at distance s
(resp. t) from z; then

d?(ps, q1) > s° + 1% — 2st cos .

Fix s and consider the right-hand side of this inequality as ¢ varies. If
9 > 7/2, then the minimum value of the right-hand side is s%, which is
achieved when ¢t = 0. If § < 7/2, then the minimum value is s? sin? 6,
which is achieved when ¢ = scosf. In either case, lim,_, o d(ps, t2) = 00,
contradicting the assumption that v; and t, are parallel. O

Let X, be the set of ideal points. We wish to decompose X, into “ideal
simplices”. Let 2 be a conical cell in X, as defined at the beginning of §8.
The face of A at infinity, denoted A, is defined to be the set of ideal
points e such that & contains the open ray (z,e) = [z,e) — {z}, where z is
the cone point of A. Note that we can recover A from its cone point z and
its face at infinity F' = A, ; namely, 2 is the “open join” z * F', where the
latter is defined as follows:

{;c} lf F= ﬂ
zx F = U (z,e) otherwise.
eeF

We now define an ideal simplez of X to be a subset F' of X such that
F =2, for some conical cell .

Lemma 2. If F is an ideal simplex and z is an arbitrary point of X, then
there is a conical cell A based at z such that F = A,,. Consequently, there
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is a 1-1 correspondence between the set of ideal simplices of X and the set
of conical cells based at any given point x € X.

ProoOF: The proof is similar to that of Lemma 1: Write F = B, for some
conical cell B, let E be an apartment containing B, and choose a sector €
in E (based at the cone point of B) such that B is a face of €. Replacing
€ by a subsector and B by a translate, we may assume that B and z are
contained in an apartment E’. The desired A is then a translate of B in E’.
This proves the first assertion, and the second follows at once. O

Lemma 3. The ideal simplices partition X,.

PROOF: Any open ray (z,e€) is contained in an apartment E. It is therefore
contained in some conical cell & in F based at =, whence e € 2. This
shows that X, is the union of the ideal simplices. Suppose now that we
have two distinct ideal simplices F' = A, and F’ = A/ . Then A (resp. ')
is a face of a sector € (resp. €’) in some apartment E (resp. E’). By §8, there
is an apartment E” containing subsectors of € and €’. We may therefore
replace & and 2’ by translates (in E and E’), in order to reduce to the
case where F' and F' are represented by conical cells in E”. But now it is
evident that F' and F’ are disjoint; in fact, we can represent F' and F’ by
conical cells z * F and z x F' with £ € E”, so our assertion follows from the
fact that the conical cells in E” based at a given point z partition E”. O

In the theory of trees, one usually defines an end of a tree X to be
an equivalence class of rays, where two rays are equivalent if they have a
common subray. If you are familiar with this theory, then you have probably
already thought about how it relates to the theory being developed here.
The answer is that if our Euclidean building X is a tree, then the ideal
points of X are the same as its ends. In other words, two rays represent
the same ideal point if and only if they have a common subray. Here is a
generalization of this fact to Euclidean buildings of arbitrary dimension:

Lemma 4. Two sectors of X have the same face at infinity if and only if
they have a common subsector.

ProoOF: It is obvious that a sector has the same face at infinity as any
subsector, whence the “if” part. Conversely, suppose €; and €, are sectors
with the same face at infinity. Let E be an apartment containing subsec-
tors €{ and €5. Then these subsectors have the same face at infinity, so
they have the same direction D (defined with respect to some vector space
structure on F). The intersection €} NCY is then a sector with direction D,
so it is a common subsector of €; and €. O

9B Construction of the building at infinity

Let A be the set of ideal simplices of X. The first step is to define a face
relation on this set. Recall that there is a face relation on the set of conical
cells in an apartment E based at a given point . We extend this to conical
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cells in X based at x by saying that 2’ is a face of A if A’ is contained in
the closure of A and is a face of A in some apartment containing . In this
case A’ is a face of A in every apartment containing 2.

We can now use the 1-1 correspondence in Lemma 2 to define a face
relation on A,. Thus we say that F’ is a face of F if z x F' is a face of
z * F for some ¢ € X. A glance at the proof of Lemma 2 shows that z * F’
is then a face of z * F for every z € X. For any apartment E = |X| of X,
let ¥, be the set of ideal simplices F' such that F' = A, for some conical
cell A in E. Note that ¥, is a subset of Ay, closed under passage to faces.
(So we can call it a subcomplex, as soon as we have proven that A is a
simplicial complex.) Note further that X, with the face relation that it
inherits from A, is a finite Coxeter complex. In fact, if we identify ¥ with
(W, V) as we have done before, then X, is isomorphic to Z(W, V). We
will call ¥, an apartment of Ao,.

Theorem. A is a spherical building. Its apartments are in 1-1 corre-
spondence with those of X.

PrOOF: The proof of Lemma 3 showed that any two elements F, F’ of A,
are contained in an apartment X,. Since the latter is a simplicial complex
and is closed under passage to faces, it follows that (a) for any F' € A,
the poset (A )<F is isomorphic to the set of subsets of a finite set; and
(b) any two elements of A, have a greatest lower bound. Thus A is a
simplicial complex (cf. Appendix to Chapter I), and each ¥, is a sub-
complex. Moreover, in the course of proving this we have already verified
the building axioms (B0) and (B1). To complete the proof that A, is a
building, we will prove the variant (B2") of (B2).

Suppose E = |X| and E' = |X'| are two apartments of X such that
Yo and X have a common chamber. This means that there are sectors
€ C E and €' C E’ such that €, = €. By Lemma 4 above, € and ¢’
have a common subsector; in particular, ENE’ # 0. Let ¢ : E/ — E be
the isomorphism which fixes this intersection pointwise. Then ¢ induces
an isomorphism ¢ : L., — X, and we will show that ¢, fixes every
simplex F' € £o, N XL, . Choose any £ € EN E’. Then z x F is the unique
conical cell in E based at z with F' as its face at infinity, and similarly for
E'.So z+ F C ENE'. Hence ¢ fixes z *x F pointwise, and ¢, therefore
fixes F'. This completes the proof that A, is a spherical building.

Continuing with the same notation, suppose that £o, = ¥/ . Then the
previous paragraph shows that z * F C ENE’ for any F € L, = X,
hence E = E’. The function E +— X, is therefore a bijection from the set
of apartments of X to the set of apartments of A. |

We will call Ay the building at infinity. Its geometric realization is a
union of spheres, one for each apartment E of X

EXERCISES
1. Show that there is a bijection |Aw| ~ Xo. [HINT: For any apartment
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E = |Z|, you can use “radial projection” from any point z € E to get a bijection
from the unit sphere centered at z to the “sphere at infinity” E., where the
latter is the set of ideal points e with a representative ray * C E. Deduce that
there is a bijection |Zo | & Eoo, Which is independent of z.]

2. The following questions are deliberately stated in a vague way, in order to
give you something to think about. We will return to them in the next chapter
(§VIL.2A), where a reference will be given for some partial answers.

Is there a reasonable way to topologize X II Xoo? Under what hypotheses will
this yield a compactification of X, with X as an open subset? Should one expect
the bijection in Exercise 1 to be a homeomorphism? [Start by thinking about the
case of a tree, such as the one pictured in §V.8B. That tree was drawn with its
edges getting smaller and smaller, so as to suggest the possibility of compactifying
it.]

9C Type-preserving maps

Since buildings are labellable, it makes sense to ask whether a map between
subcomplexes of X or of A, is type-preserving. The following result will
be used when we look at type-preserving automorphism groups below.

Proposition. Let ¢ : E — E’ be a type-preserving isomorphism between
apartments E = |X| and E' = |¥'| of X. Then the induced isomorphism
Poo : Too — XL, Is type-preserving. In particular, a type-preserving auto-
morphism of A induces a type-preserving automorphism of A,.

PROOF: Assume first that £ and E’ have a common sector € and that ¢ is
the isomorphism that fixes EN E’ pointwise. Then ¢, fixes €, and all its
faces, so it is type-preserving. For arbitrary E, E’, choose an apartment E'/
such that ENE’ and E'NE" each contain a sector. Let ¢ : E — E’ be the
composite of the isomorphisms E — E” — E’ of the type just considered.
Then 1o, is type-preserving. Now the automorphism w = ¥~ 1¢ of E is
in the Coxeter group W = Auto(X) of type-preserving automorphisms
of ¥, and we, is simply the image of w in the finite reflection group W =
Aut(Es). So Wy is type-preserving and hence $0 1S $oo = Yoo Woo - O

9D Incomplete apartment systems

If A is now an incomplete apartment system, it is reasonable to try to define
a building at infinity by using only the apartments in .A. This is of some
interest because incomplete apartment systems arise quite often (e.g., from
BN-pairs). Let Ao be the set of apartments X, in Ay with ¥ € A. Let
A (A) be the union of these apartments ¥q,. It is a subcomplex of Ay,
and we would like to know whether it is a building, with A, as system of
apartments. Since A is already known to be a building, the only issue is
whether axiom (B1) holds. The following result is immediate:

Proposition. A (A) is a building with Ay, as system of apartments if
and only if A has the following property: Given apartments E,,E, € A
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and sectors €; C E; (i = 1,2), there is an apartment E € A containing
subsectors of €, and €,. O

We will say that A is good if it satisfies the condition of the proposition.
By thinking about trees, you can easily convince yourself that there are
many good apartment systems besides the complete one, but that not all
apartment systems are good.

9E BN-pairs

Suppose that X is the building |A(G, B)| associated to a group with a
Euclidean BN-pair. Let A be the corresponding apartment system (with
respect to which G is strongly transitive). If A is good, then we have a
spherical building A,,(A), and the action of G on X induces an action of
G on A, (A). Let E = |Z| be the fundamental apartment of X, let € be a
fixed sector in E, and let B C G be the stabilizer of €.

Proposition 1. Assume that A is good. Then the action of G on the
building A, (A) is type-preserving and strongly transitive. Consequently,
the pair of subgroups (8, N) is a BN-pair in G whose associated building
is Ao (A).

PRroOOF: The action of G on A, is type-preserving (cf. §9C), so the same
is true of the action on the subcomplex A (A). Clearly G acts transitively
on A.. The subgroup N stabilizes ¥, and acts on the latter via the
quotient map N -» W —» W, so N is transitive on the chambers of X,
and G is therefore strongly transitive on Ay (A). In view of Chapter V,
we now have a BN-pair (8, N*) in G, where N* is the stabilizer of ¥ (and
hence also of £,). Since N surjects onto the associated Weyl group W, it is
easy to check that the BN-pair axioms still hold if we replace N* by N. [J

Two obvious questions remain: (a) How can we decide whether A is good,
or, equivalently, whether the set of apartments A, in A, (A) satisfies
axiom (B1)? (b) How can we compute B? Question (a) reduces to the
question of whether, for any g € G, there is an apartment in A, containing
Cw and ¢g€,. Now it is clear from the proof above that the G-action
on A (A) is strongly transitive (which makes sense whether (B1) holds
or not). The methods of Chapter V therefore show that €, and g€, are
contained in an apartment if and only if g € BN ‘B. Consequently:

Proposition 2. A is good if and only if G = ‘BNB. O

To answer question (b), suppose we are given g € ‘B. Then g€ and € have
a common subsector. In particular, gF and E have a common chamber.
Since G is strongly transitive and type-preserving on X, it follows that
there is an element ¢’ € G which maps gF to E by the unique isomorphism
which fixes ENgFE pointwise. Then ¢’ is in the subgroup B’ C B consisting
of those elements of G which fix some subsector of € pointwise. Now ¢'g
stabilizes E and €, so its action on E' is given by an element w € W' =
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ker{W -» W}. Let T* be the set of elements of G that fix £ pointwise,
and let @ be a representative of w in N. Then we have ¢'gw~! € T* C B/,
whence g € B’w. As in Chapter V, we will write B’w instead of B’w (this
being independent of the choice of w). So what we have proven so far may
be written as
B =B'W. (*)
Now let’s look more carefully at B’. Let By C B’ be the set of elements
of G that fix € pointwise. We will show that

B = U wBow™ L. (*%)
weW'’

Note first that wBow™?! is the set of elements of G which fix w€ pointwise.
So wBow! fixes the subsector €Nw€ of €, and the right-hand side of (**)
is therefore contained in the left-hand side. For the opposite inclusion, it
suffices to show that any subsector €’ of € contains a translate w€ for some
w € W'. Now it is easy to check that €’ contains a fundamental domain for
the (translation) action of W’ on E; this follows from the fact that there
is a bounded fundamental domain. In particular, we can find a w € W’
which maps the cone point of € into €', whence w€ C €. This completes
the proof of (*x). As an immediate consequence of (x) and (xx) we have:

Proposition 3. B is generated by By and any set of representatives for
W' in N. O

EXERCISES

1. Show that there is a short exact sequence 1 — B' - B — W' — 1.

2. Let W' be the submonoid of W’ consisting of those w € W' such that
wC€ C €. [Equivalently, if we identify E with a vector space V and W' with a
lattice L in V, then W” = LND, where D is the direction of €.] Show that (¥%)
remains valid if W' is replaced by W".

Remark. If you know about ascending HNN extensions (cf. [49], §1.2),
then the situation in these exercises should look familiar. This suggests that
B is, in some sense which I won’t make precise, a “generalized ascending
HNN extension with base group B,”.

9F FEzample

Let K be a field with a discrete valuation, and consider the Euclidean BN-
pair in G = SL,(K) constructed in §V.8. Its Weyl group W is the Euclidean
reflection group studied in §1F of the present chapter. We already know
that there is a second BN-pair in G, obtained by forgetting that K has
a valuation and applying §V.5; its Weyl group is the symmetric group
on n letters, which is the finite reflection group W associated to W. The
following result is therefore not surprising:
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Proposition. Let X be the Euclidean building |A(G, B)| associated to
G = SL,(K).

(1) There is a sector € in the fundamental apartment E = |X| such that
the stabilizer B of €, is the upper triangular subgroup of G.

(2) The apartment system A associated to (G, B, N) is good. The sub-
complex Ay (A) of Ay is therefore isomorphic to the spherical
building associated to G in §V.5.

(3) A is the complete apartment system if and only if K is complete
with respect to the given valuation.

SKETCH OF THE PROOF: Identify the fundamental apartment X with the
complex X(W,V) studied in §1F above. [Recall that we gave an explicit
way of making this identification.] Then E = |X| is identified with V. As
“fundamental sector” € we take the subset of V defined by z; < --- < z,.
Its closure is a subcomplex of E whose vertices, from the point of view
of A-lattices, are the classes [[7* ey,...,7%"e,]] with a; < --- < a,. The
group B, which fixes € pointwise is therefore given by

Bo= (] d-SLa(4)-d7},

deD
where D is the set of matrices in GL,(K) of the form diag(x®,...,#%")
with a; < ... < a,. An easy computation shows that this intersection is

the upper triangular subgroup of SL,(A).

Now apply the formula (+*) above to get B’ = |J,cp tBot™!, where T
is the diagonal subgroup of G. Another easy computation then shows that
this union consists of all upper triangular matrices in G whose diagonal
entries are units in A. Finally, (%) says that we get B by adjoining 7. Thus
B is indeed the full upper triangular subgroup of G.

Statement (1) is now proved, and (2) follows immediately from (1) and
Propositions 1 and 2 of §9E. Turning now to (3), suppose first that K is
not complete. Let K be the completion of K, and let G, B, and N be the
analogues of G, B, and N over K. Then G is dense in G and B is an open
subgroup of G; it follows that A(G, B) = A(G, B). On the other hand, it is
easy to see that G/N is strictly bigger than G/N, so we definitely get more
apartments using (G, B, N) than we get from (G, B, N). The apartment
system associated to (G, B, N) is therefore not complete.

Finally, suppose K is complete, and let E’ be an arbitrary apartment in
the complete system. We will show that £’ € A by constructing a ¢ € G
such that £’ = gF, where E is the fundamental apartment. We may assume
that E’ contains the fundamental chamber C, in which case we will find
the desired ¢ in B.

Let ¢ : E — E’' be the isomorphism which fixes £ N E’. In view of §6,
every bounded subset of E’ is contained in an apartment in A. So if we
exhaust E by an increasing sequence of bounded sets F; containing C, then
we can find b; € B such that b; maps F; into E’ by the map ¢|F;. I claim
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that the F; and b; can be chosen so that b;41 = b; mod . Accepting this
for the moment, we can easily complete the proof. For the completeness of
K implies that b; converges to some b € B as ¢ — 0o, whence E/ = bF and
we are done. It remains to prove the claim.

By looking at the stabilizers of the vertices of E, one sees first that the
F; can be chosen so that any element of G that ﬁxes F; pointwise is in
SL,(A) and is congruent to a diagonal matrix mod #*. In particular, for
any. ch01ce of the b; we will have b +1b congruent to a diagonal matrix
mod 7¢. Now assume inductively that 4y, ...,b; have been chosen and that
they satisfy the required congruences. Let b be any element of B such
that b|F;;11 = ¢|Fi41. Then there is a diagonal matrix ¢ € SL,(A) such
that b~!b; = t mod #*. Since ¢ fixes E pointwise, we can complete the
inductive step by setting b;+; = bt. O



VII

Applications to Group
Cohomology

This final chapter is a survey, without proofs, of a few of the applications of
buildings to the cohomology theory of groups. A prerequisite for this chap-
ter is a familiarity with the basic facts about group cohomology, as given
for instance in [17]. I will also use some algebraic topology (fundamental
group, covering spaces, homology theory of manifolds, etc.).

A less serious prerequisite involves the theory of algebraic groups. In
order to make accurate statements, I will need to use standard terminology
about linear algebraic groups. But I hope that it is possible to get the
flavor of the results by thinking of familiar examples. For example, if you
see “Let G be a linear algebraic group” you can think “Let G = SL,”.
Symbols like G(Q) or G(R) can then be interpreted as SL,(Q) or SL,(R).
Any technical assumptions about G (semisimplicity, simple connectivity,
etc.) can be ignored, since they are all satisfied by the example G = SL,,.

For the benefit of the reader who is not content to think about SL,,
there is an appendix to this chapter which defines most of the terms that
are used.

1 Arithmetic Groups Over the Rationals

1A Definition

An arithmetic group, roughly speaking, is a group of integral matrices de-
fined by polynomial equations. For example, SL,,(Z) is an arithmetic group,
defined by the single equation det(a;;) = 1. For the precise definition of
“arithmetic group”, start with a linear algebraic group G defined over Q
(e.g., G = SL,). We can think of G as a subgroup of GL, for some n, de-
fined by polynomial equations (with rational coefficients) in the n? matrix
entries. The rational matrices satisfying the given equations then form a
group G(Q) (e.g., SL,(Q)). And for any extension field K O Q, the matri-
ces in GL,(K) satisfying the defining equations form a group G(K) (e.g.,
SL.(R), SL,(C), SLa(Qp), etc.).

We can also consider the invertible integral matrices satisfying the defin-
ing equations. These form a group G(Z) = G(Q) N GL,(Z), which is said
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to be an arithmetic group. More generally, suppose I' C G(Q) is a subgroup
which is commensurable with G(Z), by which we mean that the intersec-
tion I' N G(Z) is of finite index in both I' and G(Z); then T is also said
to be arithmetic. For example, if I' C SL,(Z) is the subgroup consisting
of matrices which are congruent to the identity matrix mod m for some
integer m > 2, then I has finite index in SL,(Z) and hence is arithmetic.
For future reference, we remark that I' is torsion-free if m > 3 (cf. [17],
§I1.4, Exercise 3).

Technical Remark. If you have read the appendix, you might legiti-
mately object to the notation G(Z). For G is only assumed to be defined
over Q, and Z is not a Q-algebra. Indeed, we were only able to define the
group G(Z) above because we assumed we were given a specific embed-
ding of G in a linear group GL,, and a different embedding can lead to a
different group G(Z). It turns out, however, that the new G(Z) is commen-
surable with the old one. So the notion of “arithmetic subgroup of G(Q)”
is well-defined in spite of our abuse of notation.

1B The symmetric space

The way to get homological information about an arithmetic group I is
to view it as a subgroup of L = G(R). The latter is a closed subgroup
of GL,(R), hence it is a locally compact topological group. In fact, L is
known to be a Lie group and to have only finitely many connected compo-
nents. And T is a discrete subgroup. (It suffices to verify this assertion for
I' = G(Z), in which case it is an immediate consequence of the fact that Z
is discrete in R.) The significance of having I' embedded as a discrete sub-
group of a Lie group is that it enables us to exhibit an Eilenberg-MacLane
space of type K(I',1) for computing the cohomology of I, provided T is
torsion-free.

The starting point for constructing a K(TI',1) is the existence of a con-
tractible manifold X associated to L, on which L acts by diffeomorphisms.
If G = SL,, for example, then X is the hyperbolic plane, which we may take
to be the upper half-plane with SL2(R) acting by linear fractional transfor-
mations (cf. §I1.2C). In general, X can be constructed as the homogeneous
space L/H, where H is a maximal compact subgroup of L. (Such an H
exists and is unique up to conjugacy.)

Remark. We will soon specialize to the case where the algebraic group G
is connected and semisimple. The space X is then a complete simply con-
nected Riemannian manifold of negative curvature, and L acts by isome-
tries. X is called the symmetric space associated to L. The fact that all
maximal compact subgroups are conjugate to H follows from Cartan’s
fixed-point theorem in this case (cf. §VI.4). One also knows that H is
equal to its own normalizer in L. Hence X can be identified with the set of
maximal compact subgroups of L, with L acting by conjugation.
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The compactness of the subgroup H implies that the action of L on
X is proper. This means that for every compact subset C C X, the set
{9 € L:gCNC # 0} is a compact subset of L. The action remains proper
if we restrict it to any closed subgroup of L. In particular, the discrete
subgroup T' of L acts properly on X. But then the compact subsets of T
which occur in the definition of “proper” are finite. One easily deduces that
the I'-action satisfies the following condition, which is sometimes taken as
the definition of properness for a discrete group action: For every z € X,
the stabilizer I'; of z in I is finite, and z has a neighborhood U such that
gUNU =0forallgel -T,.

Suppose now that the arithmetic group I is torsion-free. [This assump-
tion is relatively harmless, since we can always achieve it by passing to
a subgroup of finite index; we have already seen this for SL,(Z).] The fi-
nite stabilizers T'; are then trivial, and properness reduces to a familiar
condition from covering space theory. Thus if we form the quotient space
Y =T\ X, then X is a regular covering space of Y, with I" as group of deck
transformations. Since X is contractible, it follows that Y is an Eilenberg-
MacLane space of type K(T',1). Consequently, the homology and cohomol-
ogy groups of I are the same as those of the manifold Y.

Now it is no easy matter to actually calculate the cohomology of the
manifold Y. But it is at least possible to get some qualitative results. For
example, since Y is finite-dimensional, we immediately conclude that the
cohomological dimension c¢dT is finite:

cdT < d, (%)

where d = dimY = dim L — dim H. This means that H*(T') = 0 for i > d
and any coefficient module.

If Y happens to be compact, we can say a lot more. We will spell this
out now, for motivation, before returning to the more typical non-compact
case.

1C  The compact case

Assume that Y is compact, in which case I is said to be cocompact. Then Y
is a closed manifold, so it has non-zero cohomology in the top dimension d
(with Z/2Z coefficients, for instance). Thus equality holds in (x).

Another consequence of compactness is that the groups H*(T', M) are
finitely generated whenever the coefficient module M is finitely generated
as an abelian group; for one knows that H(Y, M) is finitely generated.
And if we use the triangulability of Y, then we can deduce a stronger
homological finiteness property of I'. Namely, the ZI'-module Z admits a
free resolution (F;) such that Fj is finitely generated for all ¢ and zero for
all sufficiently large i. One expresses this by saying that I' is of “type FL”.

Note next that there is a Poincaré duality isomorphism between the
homology and cohomology of I'. More precisely,

HY(T,M) ~ Hq_(T,Q® M)
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for any I'-module M, where Q is the orientation module of X, i.e.,, Q is a
free abelian group whose two generators correspond to the two orientations
of X. The tensor product above is over Z and is given the diagonal I'-
action. We can get rid of Q by replacing I' by its subgroup (of index 1 or 2)
consisting of the elements whose action on X is orientation-preserving.

Finally, the compactness of Y implies that I' is a finitely presented group.
This is not really a homological result, but it is usually discussed along with
homological finiteness properties such as the FL property.

Unfortunately, it is relatively rare that the results above are applicable
(i.e., that T' is cocompact). If G = SLy,, for instance, then I is not cocom-
pact except in the trivial case n = 1. In the case of SL; you can see the
non-cocompactness directly from the discussion in §I1.2C. For if I' were
cocompact, then W\X would be compact, where W = PGLy(Z); but we
know that W\X is homeomorphic to a closed 2-simplex with one vertex
removed.

1D The general case

It is remarkable that all of the properties mentioned above generalize to the
case where T is not cocompact. Most surprising, perhaps, is that there is
a generalization of the duality theorem. It is in proving this that buildings
come into the picture.

To avoid uninteresting technicalities, we will state the results under the
assumption that the algebraic group G is connected and semisimple. We
denote by ! the Q-rank of G, i.e., the rank of a maximal Q-split torus
(cf. Appendix). The number ! is significant for us for two reasons: (a) T is
cocompact if and only if | = 0; thus §1C was really a discussion of the very
special case I = 0. (b) The group G(Q) has a BN-pair and an associated
spherical building, and [ is the rank of that building. In other words, [ is the
number of vertices of a chamber, or, equivalently, the number of generating
reflections of the Weyl group W. If G = SL,,, for example, then | = n — 1.

The first step in dealing with the general case is to prove that the man-
ifold Y can be compactified by the adjunction of a boundary, i.e., Y is
diffeomorphic to the interior of a compact manifold Y with boundary. This
was first proved by Raghunathan [41]. The inclusion Y < Y is a homo-
topy equivalence, so Y is still a K(T',1) manifold. This implies as above
that T is finitely presented and of type FL. Raghunathan’s proof, however,
yields no information about the boundary 8Y that is adjoined to Y, so we
get no further homological properties of I'. In particular, we do not get a
calculation of ¢d T’ or a duality theorem yet.

Borel and Serre [14] give a more explicit construction of Y. They in
fact work directly with X (independent of any particular I') and adjoin a
boundary to it. The construction is canonical enough that the action of
G(Q) on X extends to the resulting manifold X with boundary, and the
action of any arithmetic subgroup T is still proper and yields a compact
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quotient. This quotient is then the desired Y when T is torsion-free. If
G = SL,, for example, X is obtained from X by adjoining a disjoint union
of lines, one for each cusp that you see in the pictures in §11.2C. If you have
trouble visualizing this, see [45], p. 216, for a picture. [If you have trouble
visualizing any example of a 2-dimensional manifold whose boundary is
a disjoint union of infinitely many lines, you can draw one yourself: First
draw a picture of an infinite tree which branches at every vertex. Now trace
over that tree using a marker with a very wide tip. You will then have a
picture of a surface whose boundary consists of infinitely many lines.]

The crucial feature of the Borel-Serre construction is that one is able
to understand the algebraic topology of the boundary 8X: It is homotopy
equivalent to the spherical building A associated to the BN-pair in G(Q).
The idea behind the proof of this is that 8X is constructed as a disjoint
union of contractible pieces ep, indexed by the proper parabolic subgroups
P C G(Q). These pieces fit together in a manner that reflects the inclu-
sion relations among the parabolic subgroups, and the desired homotopy
equivalence then follows from a consideration of nerves of covers.

In view of the Solomon-Tits theorem (§§IV.5 and IV.6), we now know
that X has the homotopy type of a bouquet of (I—1)-spheres. This leads to
the calculation of ¢cd T and to the duality theorem. A detailed explanation
of the method can be found in [17], §§VIIL.7-10, so I will be brief. Let H}?
denote cohomology with compact supports and let H, denote reduced ho-
mology. We take Z coefficients in both cases. Combining Poincaré-Lefschetz
duality and the contractibility of X, one finds

Hi(X)~ Ha_i(X,0X) ~ Ha_i_1(8X).

Hence Hi(X) = 0 unless i = d — I, and HI'(X) is free abelian. Since
H}(X) =~ H*(T',ZT), one concludes, first, that

edlF=d-—-1.

The point here is that the cohomological dimension of a group T of type FL
can be computed as the top dimension in which H*(T, ZI') is non-trivial.

In the present case, the top dimension is the only dimension in which
H*(T',ZT) is non-trivial. Using this, together with the fact that the non-
trivial cohomology group is Z-torsion-free, one deduces that I' satisfies
“Bieri-Eckmann duality”:

HY(T,M)~ Hyq_1_i(I',D® M)

for any I'module M and any i. Here D, the “dualizing module”, is a
fixed I'-module, independent of M. In the present situation, D is simply
the T-module H3~'(X); it is isomorphic to Hi_;(A) ® Q, where Q is the
orientation module of X as in §1C.

If ] = 0, then fI;-l(A) = ﬁ_l(ﬂ) = Z, so D = Q and Bieri~-Eckmann
duality reduces to Poincaré duality. If { > 0, on the other hand, D is a free
abelian group of infinite rank.

To summarize, we have:
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Theorem. Let G be a connected semisimple linear algebraic group defined
over Q. Let d be the dimension of the symmetric space associated to G(R),
and let | be the Q-rank of G. Let T' be a torsion-free arithmetic subgroup
of G(Q). Then T is finitely presented and of type FL and is a (d — I)-
dimensional duality group. It is a Poincaré duality group if and only if
1 =0, i.e., if and only if T is cocompact.

Remarks

1. I have said practically nothing about the actual construction of X,
which is extremely difficult. Grayson ([29], [30]) has given an alternate
approach which avoids some of the technical problems faced by Borel and
Serre. Instead of explicitly attaching a boundary to X, he finds his X
inside of X. In other words, he constructs the sort of manifold one would
get from the Borel-Serre X by removing an open collar neighborhood of
the boundary.

2. The theorem generalizes to an arbitrary linear algebraic group defined
over Q, but one has to define the integers d and [ slightly differently in the
general case.

1E  Virtual notions

One says that a group “virtually” has a certain property if a subgroup of
finite index has that property. It is sometimes convenient to use this lan-
guage in order to avoid the assumption that I is torsion-free. For example,
any arithmetic subgroup I' C G(Q) is “virtually torsion-free”, and we can
speak of its “virtual cohomological dimension” vedT; this is the common
cohomological dimension d — [ of its torsion-free subgroups of finite index.
Similarly, we say that I' is “virtually of type FL”, or that T is of “type
VFL”, because it has a subgroup of finite index which is of type FL. Fi-
nally, we say that I is a “virtual duality group”. Note that we can dispense
with “virtual” when talking about finite presentation: T' is itself finitely
presented since it has a finitely presented subgroup of finite index.

For our canonical example of SL,, one has d = n(n + 1)/2 — 1 and
l=n-1,s0

ved (SLn(2)) = 1‘—(~"—2'—"—1—)

There is an easy way to remember this result-—it says that vcd(SL,(Z)) is
equal to the “obvious” lower bound on this ved that one gets by looking at
the strict upper triangular subgroup of SL,(Z).

In order to explain this, we need to recall some facts about solvable
groups. Let I’ be an abstract solvable group. Choose a normal series

1=Tg<xT1<---«qTI,=T
with abelian quotients I'; /T';_;, and set

h= dimqQ® (I's/Ti-1).

1=1
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Then h is independent of the choice of normal series. It is called the Hirsch
rank of I'; and it is closely related to the homological and cohomological
dimension of I'. In particular,

h<cdT'<h+1

if T is torsion-free (cf. [11], §7.3).

Returning now to the strict upper triangular group, it is a torsion-free
nilpotent group of Hirsch rank n(n —1)/2, whence the “obvious” inequality
ved(SLn(2)) > n(n —1)/2.

Here’s another example to illustrate this principle. Consider the group
SL,(Z[1/p]), where p is a prime number. (This is not arithmetic, but we
are about to enlarge our framework so as to allow groups like this.) Its
full upper triangular subgroup is a virtually torsion-free solvable group of
Hirsch rank n(n — 1)/2 4+ n — 1, so we get

ved(SLa(Z[1/p))) > ﬂ'{—ﬁ +n—1.

We will see in the next section how to use a Euclidean building to prove
that equality holds.

2 S-Arithmetic Groups

Let S be a finite set of prime numbers, and let Zg C Q be the ring of
rational numbers a/b (a,b € Z) such that the primes dividing b are in S.
Thus the elements of Zg are “integral except possibly at S”. If we go back
to the definition of “arithmetic group” and replace Z by Zg everywhere,
then we get the notion of “S-arithmetic group”. For example, SL,,(Z[1/p])
is an S-arithmetic subgroup of SL,(Q), with S = {p}. In this section we
will indicate how Borel and Serre [15] extend their results about arithmetic
groups to the S-arithmetic case.

2A A p-adic analogue of the symmeltric space

Fix a prime number p, and let L now denote the “p-adic Lie group” G(Q,).
Assume that the algebraic group G is simply connected and absolutely
almost simple. These assumptions guarantee that L admits a Euclidean
BN-pair, analogous to the one we have studied for G = SL,,. We therefore
have a Euclidean building X on which L acts by type-preserving simplicial
automorphisms. X is a locally finite simplicial complex and is contractible
(by §IV.6 or §VI.3). Its dimension is the Q,-rank of G (or, more precisely,
of the linear algebraic group over Q, obtained from G by extension of
scalars). Recall that this dimension is n — 1 for the case G = SL,. The
stabilizers of the simplices are compact open subgroups of L, and it follows
easily that the action of L on X is proper.
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For applications to the cohomology of discrete groups, we will want to
know H}(X). This is computed by Borel and Serre [15], using a method
remarkably similar to the method used for the symmetric space associated
to G(R). The first step is to embed X as a dense open subspace of a
compact contractible space X = X U 8X. The compact space X that is
adjoined to X is, as a set, the geometric realization of the spherical building
at infinity. The exercises in §VI.9B hinted at the possibility of doing this
and also suggested that the topology on X should not be expected to be
the usual simplicial topology.

If X is 1-dimensional, for example, then it is a tree and X is its endpoint
compactification. Thus X is the space of ends of X in this case; it is a
Cantor set, whose points are in 1-1 correspondence with the vertices of the
(0-dimensional) spherical building at infinity. If this spherical building were
given the simplicial topology, however, then it would be discrete.

The significance of the Borel-Serre compactification X is that it en-
ables one to compute H}(X). Using a suitable cohomology theory (e.g.,
Alexander-Spanier cohomology), one finds

Hi(X)~ H'(X,0X) ~ H'"1(8X).

Borel and Serre go on to prove an analogue of the Solomon-Tits theorem for
the Alexander—Spanier cohomology of the compactly topologized spherical
building 0X: This cohomology is zero except in the top dimension (which

is dim X —1), and it is free abelian in that dimension. The end result, then,
is that H(X) vanishes for i # dim X and is free abelian for i = dim X.

2B Cohomology of S-arithmetic groups: Method 1

In §1 our emphasis was on using proper actions of discrete groups to get
homological information. We will return to that point of view in §2C below.
But first, for the sake of variety, we will show how to get the same kind of
information from an action that is not proper. The method we will follow
here is based on [43] and [20]. To keep the discussion as simple as possible,
‘we begin with the familiar case G = SL,, and we assume that S is a
singleton {p}. Thus an S-arithmetic group, for the moment, is simply a
subgroup of SL,(Q) commensurable with SL,(Z[1/p]).

Let I' = SL,(Z[1/p]), viewed as a subgroup of L = SL,(Q,). Note
that T' is not discrete in L; in fact, it is dense in L. But we can still
consider the (non-proper) simplicial action of I' on the Euclidean building X
associated to L. Because of the density of I' (and the fact that the stabilizers
of the simplices are open in L), a fundamental domain for the L-action
on X will still be a fundamental domain for the I'-action. Hence T has a
closed chamber C as fundamental domain. Moreover, the stabilizers of the
faces of C are commensurable with SL,(Z). For example, if v is the vertex
corresponding to the standard lattice, then we know that the stabilizer of v
in L is SLn(Z,), where Z, is the ring of p-adic integers, hence the stabilizer
of v in I is SL,(Z[1/p]) N SL,(Z,) = SLn(Z). Thus the stabilizers are not
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finite as they would be in a proper action, but they are groups which are
known to have good finiteness properties.

Now let I' be a torsion-free subgroup of SL,,(Q) commensurable with
SL,(Z[1/p]), e.g., a torsion-free subgroup of SL,(Z[1/p]) of finite index.
Then T' acts on X with compact quotient and torsion-free arithmetic sta-
bilizers. Since torsion-free arithmetic groups are finitely presented and of
type FL, it follows that T is finitely presented (cf. [18]) and of type FL
([43], Proposition 11).

To calculate ¢dT' and prove duality, we use the equivariant cohomology
spectral sequence for (T', X) with coefficients in ZT" ([17], VII.7.10). All the
stabilizers are duality groups of the same dimension m = vcd(SLn(Z)),
so the spectral sequence is concentrated on the line ¢ = m. Moreover,
one can calculate E]'™ by the method of [20], §§2 and 3, and one finds
that it is C}(X) ® D; here C; denotes simplicial cochains with compact
support, and D is the dualizing module for the torsion-free arithmetic
subgroups of SL,(Z), i.e., D = H;_1(A) ® Q in the notation of §1. In
view of the calculation of H}(X) stated in §2A, the spectral sequence col-
lapses at E3 and gives the following result: H*(I',ZT) is concentrated in
dimension ved(SL,(Z)) + dim X, and in that dimension it is the I'-module
H3mX(X)® D. Thus T is a duality group, and we have calculated its
dimension and its dualizing module. In particular,

ved(SL,(Z[1/p))) = _n(%_‘l_)_ +n-—1.

The method works equally well if S consists of more than one prime.
Simply pick some p € S, let T act on the corresponding X, and note that
the stabilizers are (S — {p})-arithmetic. So the analysis can be done by
induction on the number of primes in S. The method also works equally well
if SL,, is replaced by any G which is simply connected and absolutely almost
simple. To state the result, let X, be the Euclidean building associated

to G(Qp), let d, = dimX,, and let D, = Hg’(Xp). It is convenient to
introduce a fictitious prime oo and to set X, equal to the symmetric space
associated to G(R). Let doo = dim X, — I, where [ is the Q-rank of G, and
let Do = HI*(Xo). Let S’ = SU {00}, and set

d=)» d, and D= (X D,.
pes’ pes’
Then we have:
Theorem. Any torsion-free S-arithmetic subgroup of G(Q) is finitely pre-

sented and of type FL and is a duality group of dimension d with dualizing
module D.

Note that the proof shows more than what was stated—it gives a way of
describing each D, in terms of a spherical building.
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2C Cohomology of S-arithmetic groups: Method 2

We now sketch the method actually used by Borel and Serre [15] to prove
the theorem stated above. Instead of letting the torsion-free S-arithmetic
group I' act on the various X, one at a time, they let it act on them
simultaneously. More precisely, let L, = G(Q,) for p € S/, where Qo = R.
Let L = [[,cs: Lp. Then T can be embedded diagonally in the locally
compact group L, and it is discrete in L. The point here is that Zgs is a
discrete subring of Hpe s Qp, since a sequence of non-zero elements of Zg
which converges to 0 p-adically for all p € S will not converge to 0 in R.
Now T acts properly on the contractible space X = Xoo X Hpe s Xp- Asin
the arithmetic case, the quotient Y = I'\ X is a compact K (T, 1)-space.

A suitable triangulation theorem now implies that I is finitely presented
and of type FL. Moreover, letting d and D be as above, we can apply the
Kiinneth theorem to calculate that H}(X) = H*(T',ZT) is concentrated
in dimension d and is isomorphic to D in that dimension. Thus T is a
d-dimensional duality group with dualizing module D.

Remark. Borel and Serre prove a more general theorem than the one
stated above. First, they work over an arbitrary algebraic number field F,
not just Q. Their L involves the groups G(ﬁ‘ ) for various completions F
of F', which may include several copies of R, several copies of C, and several
p-adic completions. Secondly, their hypothesis on G is weaker than the one
stated above. All they assume is that G is a linear algebraic group (defined
over F) such that the connected component of the identity is reductive.

2D The non-reductive case

The finiteness properties proven by Borel and Serre in the reductive case
hold for some non-reductive groups, but not for all. Consider, for example,
the following subgroups of the 2 x 2 upper triangular group:

o=("1): e (")

Then G is not reductive because it has the connected unipotent group
Gy as a normal subgroup. (See the appendix, §§G and I, for the relevant
definitions.) Nevertheless, it is not hard to show that G(Z[1/p]) is finitely
presented and of type VFL. On the other hand, Go(Z[1/p]) is isomorphic to
the additive group Z[1/p], and so it is not even finitely generated. Another
interesting example is the 3 x 3 group

1 % x
G = * % |
1

one can show that G1(Z[1/p]) is finitely generated but not finitely pre-
sented.
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The groups Gy and G are part of an infinite sequence of groups whose
study was initiated by H. Abels [1]. The next one in the sequence is

1

*
*

* ¥ *
* % *

G2=
1

In general, G, is the subgroup of GL,42 consisting of upper triangular
matrices such that the diagonal entries in the upper left-hand corner and
lower right-hand corner are 1. (The subscript n indicates the rank of the
torus consisting of the diagonal matrices in Gy,.)

We have already noted that Go(Z[1/p]) is not finitely generated, whereas
G1(Z[1/p]) is finitely generated but not finitely presented. And Abels [1]
proved that G2(Z[1/p]) is finitely presented. In order to describe the sit-
uation for arbitrary n, we need to introduce finiteness conditions F,; that
generalize finite generation and finite presentation.

We will say that a group T is of type F, if it is finitely generated. For
any n > 2, we will say that T is of type F,, if it is finitely presented and if
the ZI'-module Z (with trivial I'-action) admits a free resolution (P;) with
P; finitely generated for i < n. If I' is of type F,, for all n, then we say that
I is of type Foo; this is equivalent to saying that I is finitely presented and
that there is a resolution as above with P; finitely generated for all 7 ([17],
VIII.4.5). Finally, we agree that every group I is of type Fy. Let ¢(T") be
the largest n (0 < n < o0) such that T' is of type F,. We call ¢(T') the
finiteness length of T'. It is easy to see that any group of type VFL is of
type Foo ([17], VIIL.5.1). Hence ¢(I') = oo if I' is arithmetic, and the same
is true if [ is S-arithmetic and G is reductive.

Let’s return now to our sequence of non-reductive S-arithmetic groups
I'n = Gn(Z[1/p]). The results stated above can be expressed by saying that
#(To) = 0, ¢(T'1) = 1, and ¢(T'z) > 2. Abels and Brown [4] generalized
these results by showing that ¢(I'y) = n for all n. A slightly different
proof was later given by Brown [19]. Both proofs involve an analysis of
the action of I', on the Euclidean building X associated to SL,42(Qp).
(Recall that GL,4+2(Qp) acts on this building, so 'y, also acts.) As in §2B
above, the stabilizers are arithmetic groups. The problem, however, is that
the quotient is not compact; so it takes some work to deduce finiteness
properties (or the lack thereof) from the action.

At the moment, this application of buildings is not understood in any
systematic way. In other words, one does not know how to find a suitable
building to use for the study of the finiteness properties of an arbitrary
S-arithmetic group.

Remark. Given the action of I';, on the (n + 1)-dimensional building X,
we can interpret the result that ¢(I'y) = n as saying that T, just barely
fails to be of type Fo,. For one has the following general result, which is
a consequence of [19], Theorems 2.2 and 3.2: Suppose a group I acts on a
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d-dimensional contractible complex X . If the stabilizer of every simplex is
of type Fo, then T is of type F, if and only if it is of type Fg.

It should be mentioned, finally, that the F; and F» conditions (i.e., fi-
nite generation and finite presentation) are understood for an arbitrary
S-arithmetic group I'. The results, which are due to Kneser, Borel-Tits,
and Abels, are too complicated to state here. See the introduction to [2]
for a survey.

3 Cohomological Dimension of Linear Groups

A special case of the results of §2 is that ved(SL,(Zs)) < oo for any n
and S. The proof of this does not require the full force of the arguments
sketched in §2, as long as we do not care about the precise value of the
virtual cohomological dimension. In particular, we need the proper action
of SL,(Zg) on the contractible finite-dimensional space X = Hpe st Xp,
but we do not need the spaces )_(p. As a consequence of this result, we have
the following theorem, first pointed out by Serre ([43], Théoréme 5):

Theorem. Let F' be an algebraic extension of Q and let T be an arbitrary
finitely generated subgroup of GL,(F). Then vedT < co.

To prove this, we may assume that F' is finite over Q, and then we can
easily reduce to the case where F = Q. [An n-dimensional vector space
over F is a finite-dimensional vector space over Q.] Then I' C GL,(4A) for
some finitely generated subring A C Q, hence I' C GL,(Zs) for some S.
Finally, we may replace I' by 'NSL,(Zs) since det(T') is a finitely generated
abelian group. The theorem now follows from the result about SL,(Zs)
stated above.

It is natural to ask what can be said if F' is not assumed to be algebraic.
For example, what if F' is a rational function field Q(X)? Easy examples
show that finitely generated subgroups do not necessarily have finite ved
in this case. Suppose, for instance, that I' = G(Z[X]), where G is the 2 x 2
matrix group defined at the beginning of §2D. Then T is finitely generated,
but vedI' = 0o because the unipotent subgroup Go(Z[X]) is free abelian
of infinite rank.

It turns out that this example is essentially the only kind of counter-
example. In other words, the failure of vedTI to be finite can always be
explained in terms of the unipotent subgroups of I'. This is the content of
the following theorem of Alperin and Shalen [7]:

Theorem. Let I' be a finitely generated subgroup of GL,,(F'), where F is
a field of characteristic 0. Then vedT < oo if and only if there is an upper
bound on the Hirsch ranks of the unipotent subgroups of T'.

Recall that any unipotent subgroup U of GL,(F) is torsion-free and
nilpotent by Kolchin’s theorem (cf. Appendix, §G). So the Hirsch rank
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of U is indeed defined and differs from cd U by at most 1 (cf. §1E above).
Thus “Hirsch rank” could be replaced by “cohomological dimension” in
the statement of the theorem. The “only if” part is now obvious. I will
say a few words about the proof of the “if” part, in order to indicate how
buildings enable one to reduce the question of finite vcd to the question
of finding a bound on ¢d U, where U ranges over the unipotent subgroups
of T'.

As in the proof of Serre’s theorem, the finite generation of I' guarantees
that I' C GL,(A) for some finitely generated subring A C F. We may
assume that F' is the field of fractions of A and that I' C SL,(A). The
first step in the proof is pure commutative algebra. One shows that there
is a finite collection {v;} of discrete valuations on F' that can be used to
test integrality of elements of A, in the following sense: Let A; be the
valuation ring of v; and let B be the ring of algebraic integers in F'; then
AN(); 4 C B.

Let X; be the Euclidean building associated to SL,(F') and the valuation
v;. Then I' acts on X; for all .. We can either analyze one of these actions
at a time as in §2B or we can let I' act on the product as in §2C. Either
way, we are reduced to finding a bound on ved IV, where IV ranges over the
subgroups of I' which stabilize a vertex in each X;. Now the stabilizer of a
vertex of X; stabilizes an A;-lattice in F™, hence its characteristic polyno-
mial has coefficients in A;. Consequently, the characteristic polynomial of
each element of I has coefficients in the ring of integers B. One says that
I'" has integral characteristic.

Intuitively, IV resembles a subgroup of the arithmetic group SL,(B),
and so one might hope to be able to bound ved IV by embedding I as a
discrete subgroup of a product SL,(R)™ x SL,(C)". Now this is certainly
not possible in general—unipotent groups again provide counter-examples.
(Note that any unipotent group has integral characteristic.) But Alperin
and Shalen, using techniques introduced by Bass for studying groups of
integral characteristic, show that unipotent groups are the only obstruction.
More precisely, there is a unipotent normal subgroup U < I' such that
I /U is a discrete subgroup of a Lie group as above. Since ved I < cdU +
vedTY /U, we are done by the hypothesis on the unipotent subgroups.

4 S-Arithmetic Groups Over Function Fields

We close with a discussion of the finiteness properties of some matrix groups
in characteristic # 0. Let K be the function field of an irreducible projective
smooth curve C defined over a finite field ¥ = F,. If you don’t know what
this means, you can think of C' as something like a Riemann surface and
K as the field of meromorphic functions on C. The canonical example is
the rational function field K = k(t), which corresponds to the case where
C is the projective line (analogue of the Riemann sphere).
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Let S be a finite non-empty set of (closed) points of C, and let Og C K
be the ring of functions which have no poles except possibly at points in S.
We can also describe Qg in terms of discrete valuations. Each point p of
the curve C gives rise to a discrete valuation v, on K such that v,(f) is the
order to which f vanishes at p. Thus v,(f) < 0 if and only if f has a pole
at p, hence the valuation ring O, associated to v, is the set of functions
which do not have a pole at p. The definition of Og can now be rewritten

as
Os = () O,
pé¢s
Suppose, for example, that K = k(t). Then the curve has a point at infinity
together with one point for every irreducible polynomial in k[t]. If S consists
only of the point at infinity, then Og is the polynomial ring k[t].

Let G be a linear algebraic group defined over K. We can then define
the notion of “S-arithmetic subgroup” of G(K) exactly as in §2, with Zg
replaced by Os. For example, SL,(k[t]) is an S-arithmetic subgroup of
SL,(k(t)) when S = {oo} as above.

Assume now that G is simply connected and absolutely almost simple.
For each p € S we have a locally compact group L, = G(K,), where
K, is the completion of K with respect to v,, and we have a Euclidean
building X, on which L, acts properly. Set

L=J]L, and X=]]x,.

PES PES
As in the number field case, the group I' = G(Ogs) is a discrete subgroup
of L. It therefore acts properly on the contractible space X. And, as in the
number field case again, the quotient I'\ X is compact if and only if { = 0,
where [ is the K-rank of G. One can deduce that T is of type VFL, and
hence of type Foo, when [ = 0. [Note: Part of what has to be proved here
is that I is virtually torsion-free, which is not automatic in characteristic
# 0. The proof in the present case uses the compactness of '\ X, cf. [43],
Théoréme 4.

If I > 0, on the other hand, the situation becomes different from that in
the number field case, at least as far as the F,, properties are concerned.
Indeed, T need not even be finitely generated. The simplest example is I’ =
SLy(k[t]). The space X is a tree in this case, and there is a half-line which
is a fundamental domain for the action. By analyzing the stabilizers along
this half-line (cf. [46], §11.1.6) one can see that I is not finitely generated.
[This is a theorem of Nagao, which had been proved earlier without the
aid of the tree.] More generally, SL,(k[t]) acts on its (n — 1)-dimensional
building with a sector as fundamental domain, and one suspects that this
group is of type F,,_2 but not of type F,,_;. We will return to this example
below.

For arbitrary G, K, and S there are very few results about the finiteness
properties of I' = G(Os). The rest of this section is a summary of what is
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known. Assume throughout this discussion that ! > 0, and set

d=dimX =) dp,
pES

where d, = dim X,, (= the K,-rank of G). Note that d, > I, so we always
have d > 1.

Theorem 1. T is finitely generated if and only if d > 2.

Thus finite generation fails if and only if X is a tree. For example,
SL2(Og) is finitely generated if and only if cardS > 2. For n > 3, on
the other hand, SL,(Os) is finitely generated for any S. See Behr [10] for
further discussion of this theorem and for references.

Turning next to finite presentation, there is a lot of evidence to suggest:

Conjecture. T is finitely presented if and only if d > 3.

See Behr [10] for a list of the cases where this has been verified. They
include G = SL,, (for arbitrary K and S). Thus SL3(Os) is finitely pre-
sented if and only if card S > 3, SL3(Os) is finitely presented if and only
if card S > 2, and SL,(Og) is finitely presented for any S if n > 4.

For SL,, one not only knows when T is finitely generated or finitely pre-
sented, but one in fact knows the precise finiteness length, i.e., the largest
m such that T is of type F,,. This is given by the following theorem of
Stuhler [50]:

Theorem 2. SLy(Ogs) has finiteness length d —1 = card S — 1.

Suppose, finally, that G = SL,, for arbitrary n and that we are in the
simplest possible case: Og = k[t]. Then T' = SL,(k[t]), and X has only one
factor, which is a building of dimension d = n—1. We know from the results
stated above that the finiteness length of I' = SL,(k[t]) is 0 if n = 2, is 1 if
n = 3, and is at least 2 if n > 4. The following result, due independently to
Abels [3] and Abramenko [5], almost settles the question for arbitrary n:

Theorem 3. For any n there is an integer N such that SL,(F,[t]) has
finiteness length n — 2 if ¢ > N.

If n < 5, Abramenko has shown that one can take N = 2, i.e., there
is no restriction on ¢. If n > 6, however, the best known value of N is
N = maxi<i<n-2 ("'{2), again due to Abramenko. In particular, one does
not know the finiteness length of SLe(F,[t]) for ¢ = 2,3,4,5.

For a general G, K, S (with | > 0), the theorems and conjecture stated
in this section suggest the following question:

Question. Is the finiteness length ¢(I') always equal tod — 17

It would be interesting to at least have the inequality ¢(T') < d, i.e., to
know that T is not of type Fg4. In view of a remark near the end of §2D
above, this is equivalent to saying that I' is not of type Fo.
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Remark. In this section we have focused on a particular kind of finiteness
property, for which the function field case seems very different from the
number field case. But if one asks slightly different questions, then the two
cases do not seem quite so different. In fact, Grayson’s version of the Borel-
Serre construction for number fields ([29], [30]), was inspired by homological

finiteness results in the function field case proved by Serre for SL, and
Quillen for SL,,. See [46], §§11.2.8 and I1.2.9, and [28].

Appendix. Linear Algebraic Groups

A typical example of what we want to talk about in this appendix is the
group SL,(k), where k is a field. As a set, this is defined by the equation
det(a;;) = 1, which is a polynomial equation of degree n in the n? vari-
ables a;;. And the group structure is given by the matrix multiplication
map SL, (k) x SL,(k) — SL,(k), which is also describable by polynomials.
In fact, each of the n? components of this map is a quadratic function of
2n? variables. As this example suggests, we will be looking at groups G
of the following form: G is a set defined by polynomial equations, with a
group structure defined by a polynomial map.

We will see later that there are many properties of such groups which are
only revealed when we pass from k to a bigger field k’. Examples are given
in §§F-I below. Thus we will want to take the defining equations for G and
look at their solutions over various extensions k' of k. More generally, there
are reasons (although you won’t see them in this appendix) for looking at
solutions over k-algebras R which are not necessarily fields. [By a k-algebra
here we mean a commutative ring with identity which comes equipped with
a homomorphism k — R. Since k is a field, the given homomorphism is
necessarily 1-1, and we may think of R as a ring which contains k£ as a
subring.] These considerations lead to the notion of “group scheme”.

A  Group schemes

Suppose we are given a collection of polynomial equations in m variables
with coefficients in a field k. For any k-algebra R, let G(R) C R™ be the
solution set of the given equations. Assume further that we are given m
polynomials in 2m variables such that the map R™ x R™ — R™ which they
define sends G(R) x G(R) into G(R) for every R and makes G(R) a group.
What we have, then, is not just a single group, but rather a group-valued
functor on the category of k-algebras. [You should take a moment to verify
this assertion; the essential point is that the formulas defining the group
structure are compatible with k-algebra maps.] A functor G defined in this
way is called an algebraic affine group scheme over k, and the group G(R)
is called the group of R-points of G. The canonical example is G = SL,,
viewed now as the functor R — SL,(R).
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Remark. If you are familiar with topological groups, you might be sur-
prised that we did not require the inversion map g +— ¢g~! to be a polyno-
mial map. The reason for not requiring it is that it turns out to be a formal
consequence of our definition (cf. Waterhouse [64], Chapter 1). In our SL,
example, for instance, Cramer’s rule provides a polynomial formula for the
inverse.

Examples

1. Fix a matrix g € SL,(k). For any k-algebra R, let G(R) be the cen-
tralizer of g in SL,(R). Then G is defined by polynomial equations (which
depend on the given g), and the group law is given by matrix multiplication.
Thus G is an algebraic affine group scheme over k.

2. The multiplicative group is the functor R +— R*, the latter being the
group of invertible elements of R. To describe it by an equation, note that
we have ¢ € R* if and only if there is a y € R with zy = 1. Since y is
uniquely determined by z, we can identify R* with the “hyperbola” zy =1
in the plane RZ%. The group structure is given by

(,9) - (', ) = (z2', y¥').
[Note, incidentally, that we have the polynomial formula (z,y)~! = (y, )
for inversion.] Another way to describe this group by equations is to identify
it with the diagonal subgroup of SL; the latter is defined by the equations
ajz = az; = 0, det(a;;) = 1. The group law is of course matrix multiplica-
tion.

3. The general linear group GL,, can be treated similarly. Namely, we
can identify it with the set of solutions of the equation det(a;;) -y =1 in
n? + 1 variables a;j,y. [EXERCISE: Write down a polynomial formula for
inversion.] Alternatively, we can identify GL, with the matrix group

* ... %

C SLn-}-l;

*

which is defined by adding 2n equations to the determinant equation defin-
ing SLp4+1. When n = 1, this example reduces to Example 2.

4. The additive group is defined by G(R) = R, with addition as the
group law. It is the set of solutions of the empty set of equations in one
variable, and the group structure is clearly given by a polynomial map.

Alternatively, G can be identified with the matrix group ((1) ’;

5. The circle group is the curve z2 4+ y?> = 1 in the plane, with group
structure given by imitating the familiar rule for multiplying complex num-
bers of norm 1:

(2,9) (&', ¢) = (z2’' — v/, 2/ +2'y).
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Once again, our group can be identified with a matrix group; namely, it is

isomorphic to the rotation group, consisting of matrices ‘c' : € SL, with

a=d and b = —ec.

6. For any integer n > 2, there is a group scheme u,,, called the group
of nth roots of unity, defined by p,(R) = {z € R: 2" = 1} with group
structure given by multiplication. This is a group of 1 x 1 matrices.

Remark. It is no accident that we were able to represent every example
as a matrix group. In fact, one of the first theorems of the subject is that
every affine algebraic group scheme is isomorphic to a closed subgroup
of some GLy,, i.e., a subgroup defined by polynomial equations in the n?
matrix entries. See [64], §3.4.

B The affine algebra of G

Let G be an algebraic affine group scheme defined, as above, by a collec-
tion of polynomial equations in m variables. Write the equations in the
form f(zi,...,zm) = 0, and let I be the ideal in the polynomial ring
k[X1,...,Xm] generated by the given f’s. The affine algebra of G is the
quotient A = k[X, ..., X]/I. For example, the affine algebra of the circle
is k[X,Y]/(X2+Y2-1).

The affine algebra A of G “represents” G in the following sense: For any
k-algebra R, the set G(R) is in 1-1 correspondence with the set Hom(A, R)
of algebra homomorphisms A — R. More concisely, G = Hom(4, —-). Of
course this only describes G as a set-valued functor. To describe the group
structure on G we need to impose some extra structure on A, consisting of a
“comultiplication” ¢ : A — A ® A satisfying certain axioms. The algebra A
with this extra structure is called a Hopf algebra. See [64], Chapter 1, for
details.

C Extenston of scalars

Suppose we have a field extension k¥’ D k. Then any polynomial with coef-
ficients in k also has coefficients in ¥’. So if G is a group scheme defined as
~ above by polynomials with coefficients in k, then G yields a group scheme
G' over k' defined by the same formulas. In other words, we simply “re-
strict” G from the category of k-algebras to the category of k'-algebras.
[Any k'-algebra R’ can be viewed as a k-algebra.] The group scheme G’ is
said to be obtained from G by extension of scalars from k to k'. If G is
represented by a Hopf algebra A over k, then G’ is represented by the Hopf
algebra A’ = k' @ A over k'.

Here is an example to show what can happen when one extends scalars.
Let G be the circle group over R. After extending scalars to C, the resulting
G’ is still the circle group, viewed now as a group scheme over C. But the
defining equation for the circle can be written as (z + iy)(z — iy) = 1
over C, and it follows easily that there is an isomorphism G’ — GL; given
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by (z,y) — =+ iy. Thus G becomes isomorphic to the multiplicative group
after extension of scalars, but the two group schemes are easily seen to be
non-isomorphic over R.

D Group schemes from groups

Let’s go back to the naive point of view, as in the first paragraph of the
appendix. Thus we assume that we are given a group Gy C k™ which is the
solution set of a collection of polynomial equations and which has a group
law Gy x Gg — Gy defined by a polynomial map. Assume further that the
inversion map Gy — Gy is a polynomial map. There is then a canonical
way to “extend” Gy to a group scheme G, with G, as the group of k-points
G(k). Namely, consider all polynomial equations which are satisfied by Go,
and define G(R) to be the set of solutions of the same equations in R™. It is
not hard to show that the polynomial formula defining the group structure
on Gy works for arbitrary R and makes G a group scheme (cf. [64], §4.4).

This passage from groups to group schemes has a simple interpretation
in terms of Hopf algebras: Given Gy, let A be the ring of functions Gy — &
given by polynomials. Equivalently, A = k[X},...,Xp]/I, where I is the
ideal consisting of all polynomials which vanish on Gg. Then the group
structure on Gy yields a Hopf algebra structure on A, and the group scheme
G is simply the functor Hom(A, —) represented by A.

A group scheme G over k which arises from a group Gy in this way will
be said to be determined by its k-points. For example, one can show that
GL,, and SL,, are determined by their k-points as long as k is infinite ([64],
§4.5). On the other hand, the group scheme u3 over Q is not determined
by its group of Q-points, which is the trivial group.

It is easy to characterize the group schemes G which are determined by
their k-points: If A is the affine algebra of G, then G is determined by its
k-points if and only if no non-zero element of A goes to zero under all k-
algebra homomorphisms A — k. In case k is algebraically closed, Hilbert’s
Nullstellensatz allows us to restate the criterion as follows (cf. [64], §4.5):
G is determined by its k-points if and only if A is reduced, i.e., if and only
if A has no non-zero nilpotent elements.

E Linear algebraic groups

We are ready, finally, for the main definition. Let k be a field and let k
be its algebraic closure. Let G be an algebraic affine group scheme over k,
and let G be the group scheme over k obtained from G by extension of
scalars. We say that G is a linear algebraic group defined over k if the
group scheme G is determined by its group of k-points. For example, GL,,
and SL,, are linear algebraic groups over k for any k, and p3 is a linear
algebraic group over k unless k has characteristic 3. In characteristic 3, on
the other hand, ps over k is not determined by its group of k-points, which



202 VII. Applications to Group Cohomology

is the trivial group; so p3 is not a linear algebraic group defined over k in
this case.

The following remarks should help you digest the definition.

Remarks

1. Our primary interest here is in actual groups rather than group func-
tors. This is why we insist that we should get an actual group (i.e., the
group scheme associated to an actual group) after extension of scalars. But
it would be too restrictive to demand that G itself be the group scheme
associated to a group, since that would exclude such examples as p3 over Q
or SL,, over a finite field.

2. The word “linear” in the definition above serves as a reminder of the
fact, mentioned at the end of §A, that G is isomorphic to a closed subgroup
of a general linear group.

3. In view of Hilbert’s Nullstellensatz, we can restate the definition of
“linear algebraic group defined over k£” in terms of the affine algebra A
of G (cf. the last paragraph of §D above): The group scheme G is a linear
algebraic group defined over k if and only if k¥ ®; A is reduced. This is
equivalent to a condition called smoothness (cf. [64], Chapter 11), and
there are techniques for checking it. In characteristic 0 it is known that all
algebraic affine group schemes are smooth, so there is nothing to check. In
characteristic p, however, we have already seen that smoothness can fail
(e.g., pa in characteristic 3).

F Tor

Let G be the “n-dimensional torus” over R, i.e., the product of n copies of
the circle group. The example in §C above shows that G becomes isomor-
phic to the direct product (GL;)™ of n copies of the multiplicative group
after extension of scalars to C. This motivates the following terminology:
A linear algebraic group G is a torus of rank n if G becomes isomorphic to
(GL;)™ after extension of scalars to k. The torus is said to be split (or k-
split) if it is already isomorphic to (GL;)™ over k. We saw in Chapter V the
canonical examples where split tori arise “in nature”; namely, the diagonal
groups called T in §§V.5-7 are split tori.

G Unipotent groups

An element g € GL,(k) is called unipotent if g — 1 is nilpotent. This is
equivalent to saying that g is conjugate to an element of U,(k), where
U, is the strict upper triangular group (i.e., the group of upper triangular
matrices with 1’s on the diagonal). A group of n X n matrices is called
unipotent if each of its elements is unipotent. This is equivalent, by a the-
orem of Kolchin (cf. [64], §8.1), to saying that the group is conjugate to a
subgroup of U, (k). Finally, if G is a linear algebraic group over k, choose an
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embedding of G as a closed subgroup of some GL,, and call G unipotent
if G(k) is a unipotent subgroup of GL,(k). This is equivalent to saying
that there is an element of GL,(k) which conjugates G into U, ([64], §8.3).
Moreover, this notion is independent of the choice of embedding of G in a
general linear group.

H Connected groups

There is a topology on k™, called the Zariski topology, in which the closed
sets are the subsets defined by polynomial equations. The subset G(k) C k™
inherits a Zariski topology, and we can therefore apply topological concepts,
such as connectivity, to G(k). More useful for us is the Zariski topology on
G(k) C k™. In particular, we will say that the linear algebraic group G is
connected if G(k) is connected in the Zariski topology. For example, GL,
and SL,, are connected (for any k), but pz over Q is not. Note, however,
that GL,(k) is disconnected if k is a finite field, whereas the disconnected
group pu3 has the property that p3(Q) is connected. Thus it is important
to look at G(k) rather than G(k) in order to get the “right” answer.

I Reductive, semisimple, and simple groups

Let G be a connected linear algebraic group over k. Then G is called reduc-
tive if G(k) contains no non-trivial connected normal unipotent subgroup.
For example, GL,, and SL,, are reductive.

G is called semisimple if G(k) contains no non-trivial connected normal
solvable subgroup. For example, SL,, is semisimple but GL,, is not (because
of its center). Note that any semisimple group is reductive, since unipotent
matrix groups are solvable (and even nilpotent) by Kolchin’s theorem.

If G is semisimple, then G(k) is “almost” a finite direct product of sim-
ple groups. More precisely, G(k) has the following properties: (i) it has
only finitely many minimal non-trivial closed connected normal subgroups
N;; (ii) the N; commute and generate G(k); (iii) the canonical surjection
[1; N: = G(k) has finite kernel; and (iv) each N; is almost simple, which
means that its center Z; is finite and that the quotient N;/Z; is simple as
an abstract group. Proofs can be found in [32], §§27.5 and 29.5. If there is
only one N;, i.e., if G(l_c) is almost simple, then G is said to be absolutely
almost simple. For example, SL,, is absolutely almost simple.

J BN-pairs and spherical buildings

If G is reductive, then the group G(k) has a BN-pair whose associated
building is spherical. I’ll give a brief description of this in the semisimple
case. For more details, see [56] and the references cited there. See also [32],
§28.3, for the case where k is algebraically closed.

A Borel subgroup of G(k) is a maximal connected solvable subgroup
of G(k). Borel subgroups exist and are unique up to conjugacy. If k is
algebraically closed, any Borel subgroup can serve as the B of the BN-pair
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in G(k) = G(k). Let T be a maximal torus in G. These also exist and
are unique up to conjugacy. Since T'(k) is connected and solvable, we can
choose the Borel subgroup B to contain T'(k). Still assuming that k = k,
we can then take the N of the BN-pair to be the normalizer of T'(k) in
G(k). The resulting spherical building has rank ! (dimension ! — 1), where
l is the rank of T'. Its chambers are in 1-1 correspondence with the Borel
subgroups of G, and its apartments are in 1-1 correspondence with the
maximal tori in G. We have seen this construction in Chapter V for the
semisimple groups SL,, Sp,,,, and SOj,.

It is immediate from the definitions above that the parabolic subgroups
with respect to this BN-pair are the subgroups of G(k) which contain a
Borel subgroup. There is another characterization of them, whose statement
involves concepts that we have not defined (and will not define): They are
the subgroups of the form P(k), where P is a closed subgroup of G such
that G/P is a projective variety. For example, let G = SL,, and let P be
the subgroup defined by a;; = 0 for ¢ > 1 (i.e., P is the stabilizer of the
line [e1]); then G/P is (n — 1)-dimensional projective space.

When k # k, the situation is more complicated, the problem being that
G (k) might not have a Borel subgroup which is defined over k (i.e., which
is the group of k-points of a linear algebraic subgroup of G defined over k).
Orthogonal groups provide examples of this phenomenon. We did not see
it in §V.7 because we only considered the orthogonal groups of some very
special quadratic forms.

To get a BN-pair, in general, one has to forget about Borel subgroups and
instead take B to be the group P(k) for some minimal parabolic subgroup
P of G, where now “parabolic” is defined by the property that G/P is a
projective variety. B is again unique up to conjugacy. We can choose B to
contain T'(k), where T is now a maximal k-split torus in G, and we take N
to be the normalizer of T'(k) in G(k). The rank of the resulting spherical
building is again equal to the rank ! of T'. This rank [ is also called the k-
rank of G. It can be strictly smaller than the rank of the building associated
to G(k). In fact, it can be zero, in which case the building is empty (i.e., it
consists only of the empty simplex).

K BN-pairs and Euclidean buildings

Here I will be even more brief. Assume that G is absolutely almost simple
and is defined over a field K with a discrete valuation. Assume further that
G is simply connected. (This is another term that I have not defined; an
example is SL,,.) Then there is a Euclidean BN-pair in G(K'), analogous to
the one we have seen for SL,,(K'). The associated Euclidean building has
dimension [, where [ is again the K-rank of GG; thus the dimension of this
building exceeds by 1 the dimension of the spherical building associated to
G(K). When K is locally compact (e.g., K = Q,), the parabolic subgroups
of G(K) with respect to this BN-pair are open and compact. The theorem at
the end of §VI.5 therefore provides a description of the Euclidean building
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in terms of the maximal compact subgroups of G(K). Here, of course, we
use the locally compact topology that comes from the valuation, not the
Zariski topology. See Bruhat-Tits [22] for more information.

L Group schemes versus groups

I have insisted on thinking of algebraic groups as functors because I find
this point of view useful. But, in so doing, I may have given the misleading
impression that a “typical’ linear algebraic group G defined over k is not
determined by its group of k-points. I will therefore close by stating a theo-
rem which says that G is determined by its k-points much more often than
one might expect. Let G be a linear algebraic group defined over k. Then
G is determined by its k-points whenever the following three conditions are
satisfied: (i) G is connected; (ii) k is infinite; and (iii) either k is perfect or
G is reductive. (Note that (ii) and (iii) hold automatically in characteris-
tic 0.) For a proof of this theorem see Borel [13], Corollary 18.3, where the
result is stated in the following equivalent form: If (i), (ii), and (iii) hold,
then G(k) is Zariski-dense in G(k).



Suggestions for Further
Reading

One way to continue the study of buildings would be to learn more about
their applications to group theory. In particular, there is a very close con-
nection between buildings and algebraic groups, which I have only hinted
at in this book. To learn more about this and other applications, start by
looking at the survey by Tits [57]. You will find many additional references
there.

Proofs of some of the results announced in [57] can be found in [60].
The latter also contains a very interesting generalization of the notion of
Euclidean building. Roughly speaking, Tits considers metric spaces with
“building-like” properties. In the 1-dimensional case, these metric spaces
are essentially the same as “R-trees”, which are the object of much current
research, cf. [6] and [38].

You might also enjoy browsing through the other papers in the volume
that contains [60]. You will discover, for instance, that some finite group
theorists, hoping to find geometric interpretations for the sporadic simple
groups, are currently quite interested in buildings.

Finally, there is the forthcoming book by Ronan [42]. Although that book
has some overlap with the present one, the point of view is quite different.
In addition, Ronan treats a number of topics that I have not touched on.
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