Recall that we can compute powers mod m by repeatedly squaring and multiplying, reducing mod m at every step to keep the numbers from getting too big. One way to organize this is to use the equations

$$a^{2k+1} = a^2 \cdot a, \quad a^{2k} = (a^2)^k.$$

An algorithm for computing a^e mod m then takes the following form in pseudocode:

```plaintext
answer = 1;
while (e > 0)
{
    if e is odd
        answer = (answer * a) mod m;
    e = e / 2 (with fractional part discarded);
    a = a^2 mod m;
}
```

At the end of the loop the variable `answer` contains a^e mod m.

The next page contains a C program that implements this algorithm, with rudimentary input and output. It should handle a modulus of about 32 bits on most machines. You can adapt it to your favorite programming language if you want.
#include <stdio.h>

unsigned long long power (unsigned long long a, unsigned long long e, unsigned long long m);

int main ()
{
 unsigned long long a, e, m;
 printf ("This program computes a^e mod m.\n");
 while (1)
 {
 printf ("Enter m (or 0 to quit): ");
 scanf ("%llu", &m);
 if (m == 0)
 return 0;
 printf ("Enter a: ");
 scanf ("%llu", &a);
 printf ("Enter e: ");
 scanf ("%llu", &e);
 printf ("%llu\n", power (a, e, m));
 }
}

unsigned long long power (unsigned long long a, unsigned long long e, unsigned long long m)
{
 unsigned long long ans = 1;
 while (e > 0)
 {
 if (e % 2 != 0)
 ans = (ans * a) % m;
 e /= 2;
 a = (a * a) % m;
 }
 return ans;
}