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Recall that we gave an ad hoc proof in class that A5 is simple. This proof is also
in the book (p. 128), and there is a second ad hoc proof on p. 145. The book goes
on in Section 4.6 to prove the simplicity of An for n > 5. I’ll give here a different
proof, based on fairly general principles that are used in a lot of simplicity proofs.

The key idea is to play with the commutator [g, h] := ghg−1h−1. Notice that
we can think of this either as g times a conjugate of g−1 or as a conjugate of h
times h−1. We will exploit these two ways of thinking about the commutator in
our proof. [You’ve actually seen this idea already in Exercise 3.1.42, where you
proved that if two normal subgroups have trivial intersection, then the elements of
one commute with those of the other.]

The first step is to find a set of generators for An having small support (i.e.,
moving few points): I claim that An is generated by 3-cycles; moreover, any two
3-cycles are conjugate if n ≥ 5. For the first assertion, it suffices to observe that a
product of two distinct transpositions is either a 3-cycle or a product of two 3-cycles.
The typical cases are (1 2)(2 3) = (1 2 3) and (1 2)(3 4) = (1 4 3)(1 2 3). For
the second assertion, recall first that any two 3-cycles σ, τ are conjugate in Sn, say
gσg−1 = τ . If g happens to be an odd permutation, replace it by gh, where h is a
transposition that centralizes σ. [This exists because n ≥ 5.]

Now suppose 1 6= H E An (n ≥ 5). In view of the claim that we’ve just proved,
the simplicity of An will follow if we can show that H contains a 3-cycle. So our
strategy will be to try to find an element h ∈ H with the simplest possible cycle
structure, until we eventually find a 3-cycle in H.

Start with any nontrivial h ∈ H, say h(1) = 2. Let g be any 3-cycle that
doesn’t involve 2, e.g., g = (1 3 4), and consider the commutator [g, h]. Thinking
of the commutator as kh−1, where k is a conjugate of h, we see that it is in H.
But we can also view [g, h] as g(hg−1h−1), so it is a product of two 3-cycles,
(1 3 4)(2 h(4) h(3)). The presence of 2 in only one spot shows that [g, h] 6= 1.
Replacing h by this commutator, then, we now have a nontrivial h ∈ H that is a
product of two 3-cycles! Let’s try to simplify it further.

Suppose first that the two 3-cycles are disjoint, so that h has a cycle decompo-
sition of the type h = (1 2 3)(4 5 6). All permutations of this type are conjugate
in An, since (1 2 3)(4 5 6) is centralized by the odd permutation (1 4)(2 5)(3 6).
So H contains all of them. In particular, H contains k := (1 2 3)(4 5 6)−1, and
the product kh is a 3-cycle in H, as desired.

Suppose now that the two 3-cycles are not disjoint. Then h moves at most 5
points, so h is contained in an isomorphic copy of A5 inside An. Thus H ′ := H∩A5

is a nontrivial normal subgroup of A5 and hence is all of A5, since we already know
that the latter is simple. In particular, H ′ contains a 3-cycle, and the proof is
complete.

What made this proof work, aside from some ad hoc arguments once we got
down to A5? I see two general principles: (a) If H E G, then H is closed under
the operation of forming commutators with arbitrary elements of G. (b) If g has
“small support”, then [g, h] is often simpler than h [because it is the product of g
and something that resembles g].
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