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In 1962 G. Baumslag and D. Solitar introduced an interesting family of groups,
each presented by two generators a, b and one relation of the form bamb−1 = an.
Each particular choice of the pair m,n yields a specific group. If (m,n) = (1, 1), for
example, the relation just says that ab = ba, and we get the free abelian group on
two generators, isomorphic to Z×Z. (Compare Exercise 6.3.11 on p. 221.) Another
easy case is (m,n) = (1,−1). This is isomorphic to the semidirect product Z o Z
with the (unique) nontrivial action of Z on Z; it is well-known to topologists as the
fundamental group of the Klein bottle. Here we will treat the case (m,n) = (1, 2)
that occurred in the extra-credit problem 4 on Assignment 9. The relation in this
case says bab−1 = a2.

Let G :=
〈
a, b | bab−1 = a2

〉
. Consider the conjugates an := b−nabn:

. . . , a−2, a−1, a0, a1, a2, . . . .

Note that conjugation by b−1 shifts every element in this list one place to the right
(i.e., b−1anb = an+1), and conjugation by b shifts left. The defining relation, with
this notation, becomes a−1 = a2

0. Conjugating by positive and negative powers
of b, we deduce that a2

n = an−1 for all n. Thus each element in the list is a square
root of the preceding one. [Intuitively, then, we might think of an as a1/2n

.] Since
an−1 ∈ 〈an〉, we have a chain of cyclic subgroups

· · · 〈a−1〉 ≤ 〈a0〉 ≤ 〈a1〉 ≤ 〈a2〉 · · · .
Let A be the union. It is an abelian subgroup of G, in which each element can be
written in the form am

n . [Intuitively, this is ar, where r = m/2n.] Note also that
bam

n b
−1 = am

n−1 = a2m
n . [Intuitively, barb−1 = a2r.]

The next observation is that G = AB, where B = 〈b〉. To see this, use the
relations bam

n = a2m
n b and b−1am

n = am
n+1b

−1 to move all powers of b to the right
in any

{
a±1, b±1

}
-word. Initially, of course, the only an that occurs is a = a0; but

the first time we move a b−1 past an a, we introduce a1, and then higher subscripts
can creep in as we continue.

It should now seem quite plausible that A is isomorphic to the additive group
Z[1/2] of dyadic rationals, that B is infinite cyclic, and that G is the semidirect
product of A and B. In other words, we are guessing that

G ∼= Z[1/2] o 〈2〉 < Q o Q×,

where the multiplicative group acts on the additive group by multiplication. Recall
that this semidirect product consists of pairs (r, 2i) with r ∈ Z[1/2], with group law

(r, 2i)(s, 2j) = (r + 2is, 2i+j).

This group contains Z[1/2] as an abelian normal subgroup, embedded by r 7→
(r, 20), and the element β := (0, 21) acts on this subgroup by

β(r, 20)β−1 = (2r, 20) = (r, 20)2.

In particular, if α := (1, 20), then β−nαβn = (1/2n, 20) for all n ∈ Z.
We can now prove the guess. Use the universal mapping property associated

to the presentation of G to construct φ : G → Z[1/2] o 〈2〉 with φ(a) = α and
φ(b) = β. We know that any g ∈ G can be written as g = am

n b
i, and the formulas
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in the previous paragraph show that φ(g) = (r, 2i), where r = m/2n. It follows at
once that φ is 1–1 and onto.


