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In 1962 G. Baumslag and D. Solitar introduced an interesting family of groups,
each presented by two generators a,b and one relation of the form ba™b~! = a™.
Each particular choice of the pair m, n yields a specific group. If (m,n) = (1,1), for
example, the relation just says that ab = ba, and we get the free abelian group on
two generators, isomorphic to Z x Z. (Compare Exercise 6.3.11 on p. 221.) Another
easy case is (m,n) = (1, —1). This is isomorphic to the semidirect product Z x Z
with the (unique) nontrivial action of Z on Z; it is well-known to topologists as the
fundamental group of the Klein bottle. Here we will treat the case (m,n) = (1,2)
that occurred in the extra-credit problem 4 on Assignment 9. The relation in this
case says bab~! = a?.

Let G := (a,b|bab™' = a?). Consider the conjugates a, := b="ab™:

ey _2,0_-1,00,01,02,....

Note that conjugation by b~! shifts every element in this list one place to the right
(i.e., b ta,b = an41), and conjugation by b shifts left. The defining relation, with
this notation, becomes a_; = a2. Conjugating by positive and negative powers
of b, we deduce that a2 = a,,_; for all n. Thus each element in the list is a square
root of the preceding one. [Intuitively, then, we might think of a,, as a'/2".] Since
an—1 € {ap), we have a chain of cyclic subgroups

- {a1) < ao) < (a1) < (ag)--- .
Let A be the union. It is an abelian subgroup of G, in which each element can be
written in the form a!*. [Intuitively, this is a”, where r = m/2".] Note also that
bamb~t = a™ | = a?™. [Intuitively, ba"b~! = a?" ]

The next observation is that G = AB, where B = (b). To see this, use the
relations ba?" = a?™b and b~ 'al = a?’ ;b to move all powers of b to the right
in any {ail, bil}—word. Initially, of course, the only a, that occurs is a = ag; but
the first time we move a b~! past an a, we introduce a;, and then higher subscripts
can creep in as we continue.

It should now seem quite plausible that A is isomorphic to the additive group
Z[1/2] of dyadic rationals, that B is infinite cyclic, and that G is the semidirect
product of A and B. In other words, we are guessing that

G=7[1/2] % (2) < Q% Q,
where the multiplicative group acts on the additive group by multiplication. Recall
that this semidirect product consists of pairs (r,2) with r € Z[1/2], with group law

(r,29)(5,27) = (r 4 2's,2"19).

This group contains Z[1/2] as an abelian normal subgroup, embedded by r +—
(r,29), and the element 3 := (0,2') acts on this subgroup by
B(r, 20671 = (2r,2%) = (r,29)%
In particular, if o := (1,2°), then 8~"aB" = (1/2",2°) for all n € Z.
We can now prove the guess. Use the universal mapping property associated
to the presentation of G to construct ¢: G — Z[1/2] x (2) with ¢(a) = « and

¢(b) = 8. We know that any g € G can be written as g = al'b*, and the formulas
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in the previous paragraph show that ¢(g) = (r,2%), where r = m/2". It follows at
once that ¢ is 1-1 and onto.



