
Forest Diagrams for Elements of

Thompson’s Group F

James M. Belk and Kenneth S. Brown

June 25, 2004

Abstract

We introduce forest diagrams to represent elements of Thompson’s

group F . These diagrams relate to a certain action of F on the real

line in the same way that tree diagrams relate to the standard action of

F on the unit interval. Using forest diagrams, we give a conceptually

simple length formula for elements of F with respect to the {x0, x1}
generating set, and we discuss the construction of minimum-length

words for positive elements. Finally, we use forest diagrams and the

length formula to examine the structure of the Cayley graph of F .

1 Introduction

Thompson’s group F is defined by the following infinite presentation:

F = 〈x0, x1, x2, . . . | xnxk = xkxn+1 for n > k〉

It is isomorphic to the group PL2 (I) of all piecewise-linear, orientation-
preserving homeomorphisms of the unit interval satisfying the following con-
ditions:

1. All slopes are integral powers of 2, and

2. All breakpoints have dyadic rational coordinates.

The first author was partially supported by an NSF Graduate Research Fellowship.

The second author was partially supported by NSF grant #0071428.

1

The group F was first studied by Richard J. Thompson in the 1960s. The
standard introduction to F is [CFP].

This paper is organized as follows:

• In Section 2, we give the necessary background regarding F . In par-
ticular, we review how elements of PL2(I) can be described by tree
diagrams.

• In Section 3, we introduce a group PL2(R) of piecewise-linear home-
omorphisms of the real line that is isomorphic with F . We then show
how to represent elements of PL(R) by forest diagrams.

• In Section 4, we use forest diagrams to examine the lengths of elements
of Thompson’s group with respect to the {x0, x1} generating set. We
begin by studying positive elements, where the situation is quite simple,
and then move on to the general length formula.

• In Section 5, we give some further applications of forest diagrams and
the length formula.

Note. Throughout this paper, we will use the following convention for com-
position of functions:

(f ◦ g)(x) = f(g(x))

This disagrees with Thompson’s original notation, but it agrees with the
notation in [CFP].

We are grateful to the referee for reading the original version of this paper
so carefully and making many helpful suggestions and comments.

2 Background on F

Most of the results in this section are stated without proof. Details can be
found in [CFP].

2

2.1 Tree Diagrams

Suppose we take the interval [0, 1] and cut it in half, like this:

��� �

We then cut each of the resulting intervals in half:

��� ��� ��

and then cut some of the new intervals in half:

��� ��� ���� 	�

to get a certain subdivision of [0, 1]. Any subdivision of [0, 1] obtained in
this manner (i.e. by repeatedly cutting intervals in half) is called a dyadic

subdivision.
The intervals of a dyadic subdivision are all of the form:

[

k

2n
,
k + 1

2n

]

k, n ∈ N

These are the standard dyadic intervals. We could alternatively define a
dyadic subdivision as any partition of [0, 1] into standard dyadic intervals.

Each element of PL2(I) can be described by a pair of dyadic subdivisions:

Proposition 2.1.1. Let f ∈ PL2(I). Then there exist dyadic subdivisions

D,R of [0, 1] such that f maps each interval of D linearly onto an interval

of R.

Example 2.1.2. Consider the element f ∈ PL2(I) with graph:

0 1/4 1/2 1
0

1/4

3/4

1

3

Then f maps intervals of the subdivision:

��� ��� ��

linearly onto intervals of the subdivision:

��� ��� ��

We can represent dyadic subdivisions of [0, 1] by finite binary trees. For
example, the subdivision:

��
� ��� ���� 	� �����

corresponds to the binary tree:

Each leaf of this tree represents an interval of the subdivision, and the root
represents the interval [0, 1]. The other nodes represent standard dyadic
intervals from intermediate stages of the dyadic subdivision.

Combining this observation with proposition 2.1.1, we see that any ele-
ment f ∈ PL2(I) can be described by a pair of binary trees. This is called a
tree diagram for f .

Example 2.1.3. Let f be the element of PL2(I) from example 2.1.2. Then
f has tree diagram:

4

We have aligned the two trees vertically so that corresponding leaves match
up. By convention, the domain tree appears on the bottom, and the range

tree appears on the top.

The tree diagram for an element f ∈ PL2(I) is not unique. For example,
all of the following are tree diagrams for the identity:

In general, a reduction of a tree diagram consists of removing an opposing
pair of carets, like this:

Performing a reduction does not change the element of PL2(I) described by a
tree diagram: it merely corresponds to removing an unnecessary “cut” from
the subdivisions of the domain and range.

Definition 2.1.4. A tree diagram is reduced if it has no opposing pairs of
carets.

Proposition 2.1.5. Every element of PL2(I) has a unique reduced tree dia-

gram.

5

2.2 Positive Elements and Normal Form

Recall that F has presentation:

F = 〈x0, x1, x2, . . . | xnxk = xkxn+1 for k < n〉

We have previously asserted that F is isomorphic with PL2(I). One such
isomorphism is defined as follows:

%�
%�

%�

Ä

Note that the domain trees of the xi’s all have the property that no caret
has a left child. Such a tree is called a right vine:

Definition 2.2.1. An element of F is positive if it lies in the submonoid
generated by {x0, x1, x2, . . .}.

Proposition 2.2.2. An element of F is positive if and only if the bottom

tree of its reduced tree diagram is a right vine.

It turns out that F is the group of fractions of its positive monoid, in the
sense that any element of F can be written as pq−1 for some positive p and q.
More precisely:

Proposition 2.2.3 (Normal Form). Every element of F can be expressed

uniquely in the form:

xa0

0 · · · xan

n x−bn

n · · ·x−b0
0

where a0, . . . , an, b0, . . . , bn ∈ N and:

6

1. Either an > 0 or bn > 0, but not both.

2. If both ai > 0 and bi > 0, then either ai+1 > 0 or bi+1 > 0.

The first half of the normal form is called the positive part of an element,
and the second half is called the negative part. These halves correspond to
the two halves of the tree diagram:

Proposition 2.2.4. Let

[

T+

T−

]

be the reduced tree diagram for an element

f ∈ F , and let V be a right vine with the same number of leaves as T+ and

T−. Then

[

T+

V

]

is a tree diagram for the positive part of f , and

[

V
T−

]

is a

tree diagram for the negative part of f.

3 Forest Diagrams

It is immediate from the presentation of F that:

xn = x1−n
0 x1x

n−1

0

for all n ≥ 1. Therefore, F is generated by the two elements {x0, x1}.
In this section, we describe a group PL2(R) of self-homeomorphisms of

the real line that is isomorphic to F , and develop forest diagrams in analogy
with the development of tree diagrams in the previous section. These forest
diagrams seem to interact particularly nicely with the {x0, x1}-generating
set.

The existence of forest diagrams was noted by K. Brown in [Bro], but the
pictures themselves have not previously appeared in the literature. They are
similar to the “diagrams” of V. Guba and M. Sapir (see [GuSa] and [Guba]).

3.1 The Group PL2(R)

Let PL2(R) be the group of all piecewise-linear, orientation-preserving self-
homeomorphisms f of R satisfying the following conditions:

1. Each linear segment of f has slope a power of 2.

7

2. f has only finitely many breakpoints, each of which has dyadic rational
coordinates.

3. The leftmost linear segment of f is of the form:

f(t) = t − m

and the rightmost segment is of the form:

f(t) = t − n

for some integers m,n.

The following is well-known:

Proposition 3.1.1. PL2(R) is isomorphic with PL2(I).

Proof. Let ψ : R → (0, 1) be the piecewise-linear homeomorphism that maps
the intervals:

�c� c� ��

linearly onto the intervals:

��� �� �� �	�
 �Ä������
Ä

Then f 7→ ψ−1fψ is the desired isomorphism PL2(I) → PL2(R).

Corollary 3.1.2. PL2(R) is isomorphic with F . The generators {x0, x1} of

F map to the functions:

x0(t) = t − 1

and:

x1(t) =











t t ≤ 0
1

2
t 0 ≤ t ≤ 2

t − 1 t ≥ 2 2

1

%�

8

3.2 Forest Diagrams for Elements of PL2(R)

We think of the real line as being pre-subdivided as follows:

�c� c� ��

A dyadic subdivision of R is a subdivision obtained by cutting finitely many
of these intervals in half, and then cutting finitely many of the resulting
intervals in half, etc.

Proposition 3.2.1. Let f ∈ PL2(R). Then there exist dyadic subdivisions

D,R of R such that f maps each interval of D linearly onto an interval of

R.

A binary forest is a sequence (. . . , T−1, T0, T1, . . .) of finite binary trees.
We depict such a forest as a line of binary trees together with a pointer at T0:

A binary forest is bounded if only finitely many of the trees Ti are nontrivial.
Every bounded binary forest corresponds to some dyadic subdivision of

the real line. For example, the forest above corresponds to the subdivision:

�c� c� ���� ����c 	� ����c

Each tree Ti represents an interval [i, i + 1], and each leaf represents an
interval of the subdivision.

Combining this with proposition 3.2.1, we see that any f ∈ PL2(R) can
be represented by a pair of bounded binary forests, together with an order-
preserving bijection of their leaves. This is called a forest diagram for f .

Example 3.2.2. Let f be the element of PL2(R) with graph:

9

–2 2

–2

2

–1
1

Then f has forest diagram:

Again, we have aligned the two forests vertically so that corresponding leaves
match up. By convention, the domain tree appears on the bottom, and the
range tree appears on the top.

Example 3.2.3. Here are the forest diagrams for x0 and x1:

x0:

x1:

Of course, there are several forest diagrams for each element of PL2(R).
In particular, it is possible to delete an opposing pair of carets:

10

without changing the resulting homeomorphism. This is called a reduction of
a forest diagram. A forest diagram is reduced if it does not have any opposing
pairs of carets.

Proposition 3.2.4. Every element of PL2(R) has a unique reduced forest

diagram.

Remark 3.2.5. From this point forward, we will only draw the support of
the forest diagram (i.e. the minimum interval containing both pointers and
all nontrivial trees), and we will omit the “· · · ” indicators.

Remark 3.2.6. It is fairly easy to translate between tree diagrams and forest
diagrams. Given a tree diagram:

we simply remove the outer layer of each tree to get the corresponding forest
diagram:

11

The pointers of the forest diagram point to the first trees hanging to the
right of the roots in the original tree diagram.

3.3 The Action of {x0, x1}

The action of {x0, x1} on forest diagrams is particularly nice:

Proposition 3.3.1. Let f be a forest diagram for some f ∈ F . Then:

1. A forest diagram for x0f can be obtained by moving the top pointer of

f one tree to the right.

2. A forest diagram for x1f can be obtained by attaching a caret to the

roots of the 0-tree and 1-tree in the top forest of f. Afterwards, the top

pointer points to the new, combined tree.

If f is reduced, then the given forest diagram for x0f will always be
reduced. The forest diagram given for x1f will not be reduced, however,
if the caret that was created opposes a caret from the bottom tree. In this
case, left-multiplication by x1 effectively “cancels” the bottom caret.

Example 3.3.2. Let f ∈ F have forest diagram:

Then x0f has forest diagram:

and x1f has forest diagram:

12

Example 3.3.3. Let f ∈ F have forest diagram:

Then x0f has forest diagram:

and x1f has forest diagram:

13

Note that the forest diagrams for x0f and x1f both have larger support than
the forest diagram for f .

Example 3.3.4. Let f ∈ F have forest diagram:

Then x1f has forest diagram:

Note that left-multiplication by x1 canceled the highlighted bottom caret.

Proposition 3.3.5. Let f be a forest diagram for some f ∈ F . Then:

1. A forest diagram for x−1

0 f can be obtained by moving the top pointer of

f one tree to the left.

2. A forest diagram for x−1

1 f can be obtained by “dropping a negative

caret” at the current position of the top pointer. If the current tree is

nontrivial, the negative caret cancels with the top caret of the current

tree, and the pointer moves to the resulting left child. If the current

tree is trivial, the negative caret “falls through” to the bottom forest,

attaching to the specified leaf.

Example 3.3.6. Let f and g be the elements of F with forest diagrams:

and

14

Then x−1

1 f and x−1

1 g have forest diagrams:

and

In the first case, the x−1

1 simply removed a caret from the top tree. In the
second case, there was no caret on top to remove, so a new caret was attached
to the leaf on the bottom. Note that this creates a new column immediately
to the right of the pointer.

3.4 Positive Elements and Normal Form

There is a close relationship between the normal form of an element and its
forest diagram. It hinges on the following proposition:

Proposition 3.4.1. Let f be the forest diagram for some f ∈ F , and let

n > 1. Then a forest diagram for xnf can be obtained by attaching a caret

to the roots of Tn−1 and Tn in the top forest of f.

Proof. For n > 1, xn = x1−n
0 x1x

n−1

0 .

Corollary 3.4.2. Let f ∈ F , and let f be its reduced forest diagram. Then

f is positive if and only if:

1. The entire bottom forest of f is trivial, and

2. The bottom pointer is at the left end of the support of f.

Using proposition 3.4.1, it is easy to construct the forest diagram for any
positive element. It is also possible to find the normal form when given the
forest diagram:

Example 3.4.3. Suppose f ∈ F has forest diagram:

15

Then:
f = x2

0x1x
2

3x4x
3

8

Since the top pointer of f is two trees from the left, the normal form of f has
an x2

0. The powers of the other generators are determined by the number of
carets built upon the corresponding leaf. Note that the carets are constructed
from right to left.

It is not much harder to deal with mixed (non-positive) elements:

Example 3.4.4. The element:

x3

0x2x
2

5x7x
−1

6 x−1

5 x−2

1 x−1

0

has forest diagram:

4 Lengths in F

In this section, we derive a formula for the lengths of elements of F with
respect to the {x0, x1}-generating set. This formula uses the forest diagrams
introduced in section 3.

Lengths in F were first studied by S. B. Fordham in his 1995 thesis
(recently published, see [Ford]). Fordham gave a formula for the length of an
element of F based on its tree diagram. Our length formula can be viewed
as a simplification of Fordham’s work.

V. Guba has recently obtained another length formula for F using the
“diagrams” of Guba and Sapir. See [Guba] for details.

16

4.1 Lengths of Strongly Positive Elements

We shall begin by investigating the lengths of strongly positive elements.
The goal is to develop some intuition for lengths before the statement of the
general length formula in section 4.2.

An element f ∈ F is strongly positive if it lies in the submonoid gener-
ated by {x1, x2, . . .}. Here is a forest diagram for a typical strongly positive
element:

Note that the entire bottom forest is trivial, and that both pointers are at
the left end of the support of f .

Logically, the results of this section depend on the general length formula.
In particular, we need the following lemma:

Lemma 4.1.1. Let f ∈ F be strongly positive. Then there exists a minimum-

length word for f with no appearances of x−1

1 .

This lemma is intuitively obvious: there should be no reason to ever create
bottom carets, or to delete top carets, when constructing a strongly positive
element. Unfortunately, it would be rather tricky to supply a proof of this
fact. Instead we refer the reader to corollary 4.3.8, from which the lemma
follows immediately.

From this lemma, we see that any strongly positive element f ∈ F has a
minimum-length word of the form:

xan

0 x1 · · ·x
a1

0 x1x
a0

0

where a0, . . . , an ∈ Z. Since f is strongly positive, we have:

a0 + · · · + an = 0

and
a0 + · · · + ai ≥ 0 (for i = 0, . . . , n − 1)

17

Such words can be represented by words in {x1, x2, . . .} via the identifications
xn = x1−n

0 x1x
n−1

0 . For example, the word:

x−5

0 x1 x−2

0 x1 x4

0 x1 x−3

0 x1 x6

0

can be represented by:
x6 x8 x4 x7

More generally:

Notation 4.1.2. We will use the word:

xin · · ·xi2xi1

in {x1, x2, . . .} to represent the word:

x1−in
0 x1 · · · xi3−i2

0 x1 xi2−i1
0 x1 xi1−1

0

in {x0, x1}.

Note then that xin · · · xi2xi1 represents a word with length:

(|1 − in| + · · · + |i3 − i2| + |i2 − i1| + |i1 − 1|) + n

We now proceed to some examples, from which we will derive a general
theorem.

Example 4.1.3. Let f ∈ F be the element with forest diagram:

There are only two candidate minimum-length words for f : x3x8 and x7x3.
Their lengths are:

(2 + 5 + 7) + 2 = 16 for the word x3x8

and (6 + 4 + 2) + 2 = 14 for the word x7x3.

Let’s see if we can explain this. The word x3x8 = x−2

0 x1x
−5

0 x1x
7
0 corresponds

to the following construction of f :

18

1. Starting at the identity, move right seven times and construct the right
caret.

2. Next move left five times, and construct the left caret.

3. Finally, move left twice to position of the bottom pointer.

This word makes a total of fourteen moves, crossing twice over each of seven
spaces:

� � � � � � �

On the other hand, the word x7x3 = x−6

0 x1x
4
0x1x

2
0 corresponds to the

following construction:

1. Starting at the identity, move right twice and construct the left caret.

2. Next move right four more times, and construct the right caret.

3. Finally, move left six times to the position of the bottom pointer.

This word makes only twelve moves:

� � � � � �

In particular, this word never moves across the space under the left caret. It
avoids this by building the left caret early. Once the left caret is built, the
word can simply pass over the space under the left caret without spending
time to move across it.

Terminology 4.1.4. We call a space in a forest interior if it lies under a tree
(or over a tree, if the forest is upside-down) and exterior if it lies between
two trees.

Example 4.1.5. Let f ∈ F be the element with forest diagram:

19

� � � � �

Clearly, each of the five exterior spaces in the support of f must be crossed
twice during construction. Furthermore, it is possible to avoid crossing any
of the interior spaces by constructing carets from left to right. In particular:

x3

6 x5 x2

2

is a minimum-length word for f . Therefore, f has length:

(5 + 1 + 3 + 1) + 6 = 16

It is not always possible to avoid crossing all the interior spaces:

Example 4.1.6. Let f ∈ F be the element with forest diagram:

?� �

Clearly, each of the two exterior spaces in the support of f must be crossed
twice during construction. However, the space marked (?) must also be
crossed twice, since we must create the caret immediately to its right before
we can create the caret above it.

It turns out that these are the only spaces which must be crossed. For
example, the word:

x3 x4 x3 x1

crosses only these spaces. Therefore, f has length:

(2 + 1 + 1 + 2 + 0) + 4 = 10

In this last example, we learned that it is not always possible to construct
carets from left to right. However, if one always constructs the leftmost

possible caret first, then it is never necessary to move more than one space to
the left in the middle of the construction. This is the content of the following
theorem:

20

Theorem 4.1.7 (Anti-Normal Form). Let f ∈ F be strongly positive.

Then f can be expressed uniquely in the form:

xin · · ·xi2xi1

where ik+1 ≥ ik − 1 for all k.

We say that a word:
xin · · ·xi2xi1

is in anti-normal form if ik+1 ≥ ik − 1 for each k. On the forest diagram,
anti-normal form corresponds to constructing the leftmost possible caret at
each stage.

In contrast, the normal form for an element satisfies ik+1 ≤ ik for each k,
and corresponds to constructing the rightmost possible caret at each stage.
This explains our terminology.

The anti-normal form for a strongly positive element of F is clearly
minimum-length, since it crosses only those spaces in the forest diagram
that must be crossed. We can give an explicit length formula by counting
these spaces:

Theorem 4.1.8. Let f ∈ F be strongly positive. Then the length of f is:

2 n(f) + c(f)

where n(f) and c(f) are defined as follows. Let f be the reduced forest diagram

for f . Then:

1. n (f) is the number of spaces in the support of f that are either exterior

or lie immediately to the left of some caret, and

2. c (f) is the number of carets in f.

Example 4.1.9. Let f ∈ F be the element with forest diagram:

� � � � �

21

Then c(f) = 8 and n(f) = 5, so f has length 18. The anti-normal form
for f is:

x4x
2

5x4x2x3x
2

1

Therefore, a minimum-length {x0, x1}-word for f is:

x−3

0 x1x
−1

0 x2

1x0x1x
2

0x1x
−1

0 x1x
2

0x
2

1

Currently, our only algorithm to find the anti-normal form for a strongly
positive element involves drawing the forest diagram. It is interesting to note
that an entirely algebraic algorithm is available:

Theorem 4.1.10. Let f ∈ F be strongly positive, and let w be an expression

for f as a product of {x1, x2, . . .}. Suppose we repeatedly apply operations of

the form:

xkxn 7−→ xn−1xk (k < n − 1)

to w. Then we reach the anti-normal form for f after at most

(

c (f)
2

)

steps.

Proof. Let C be the set of carets in the reduced forest diagram for f . Suppose
that:

w = xim · · ·xi2xi1

Each generator xik appearing in w corresponds to the construction of some
caret ck of the forest diagram for f . Let < denote the order in which these
carets are created:

c1 < c2 < · · · < cm

Now, the anti-normal form for f is just another word for f in the generators
{x1, x2, . . .}. Let <AN denote the resulting order on C. Note that:

ck <AN ck+1 ⇐⇒ ik − 1 ≤ ik+1

Therefore, any operation of the form:

xik+1
xik 7−→ xik−1xik+1

(ik+1 < ik − 1)

reduces the number:
∣

∣ {(c, c′) : c <AN c′ but c > c′}
∣

∣

by exactly one. When this number reaches zero, f is in anti-normal form.

Finally, note that the number in question is bounded by

(

|C|

2

)

.

22

Example 4.1.11. Let’s find the length of the element:

x1 x3

3 x6 x7 x10

We put the word into anti-normal form:

x1 x3

3 x6 x7 x10

= x4 x1 x3

3 x6 x7

= x4 x3

2 x5 x6 x1

= x4 x2 x3 x4 x2

2 x1

(x10 moved left)

(x1 moved right)

(x2

2 moved right)

Hence, the length is:

(3 + 2 + 1 + 1 + 2 + 1 + 0) + 7 = 17

4.2 The Length Formula

We now give the length formula for a general element of F . Afterwards, we
will give several examples to illustrate intuitively why the formula works. We
defer the proof to section 4.3.

Let f ∈ F , and let f be its reduced forest diagram. We label the spaces
of each forest of f as follows:

1. Label a space L (for left) if it exterior and to the left of the pointer.

2. Label a space N (for necessary) if it lies immediately to the left of some
caret (and is not already labeled L).

3. Label a space R (for right) if it exterior and to the right of the pointer
(and not already labeled N).

4. Label a space I (for interior) if it interior (and not already labeled N).

We assign a weight to each space in the support of f according to its labels:

top
label

bottom label

L N R I

L 2 1 1 1
N 1 2 2 2
R 1 2 2 0
I 1 2 0 0

23

Example 4.2.1. Here are the labels and weights for a typical forest diagram:

I

1 1 1 1 12 2 2 2 2 2 00
I

I

I

I

I

I

I

L L L

L L L LN

N N

N N

NR R

R R

R

Theorem 4.2.2 (The Length Formula). Let f ∈ F , and let f be its

reduced forest diagram. Then the {x0, x1}-length of f is:

ℓ(f) = ℓ0(f) + ℓ1(f)

where:

1. ℓ0(f) is the sum of the weights of all spaces in the support of f, and

2. ℓ1(f) is the total number of carets in f.

Remark 4.2.3. Intuitively, the weight of a space is just the number of times
it must be crossed during the construction of f . Hence, there ought to exist
a minimum-length word for f with ℓ0(f) appearances of x0 or x−1

0 and ℓ1(f)
appearances of x1 or x−1

1 . This will be established at the end of the next
section.

Example 4.2.4. Let f ∈ F be the element from example 4.1.9:

222220 0 0 0 0 0
I I I I IN N N INR

R R R R R R R R R R R

Then ℓ0(f) = 10 and ℓ1(f) = 8, so f has length 18.

24

In general, suppose f ∈ F is strongly positive, and let f be its reduced

forest diagram. Then every space of f is labeled

[

N
R

]

,

[

R
R

]

, or

[

I
R

]

. Each
[

I
R

]

space has weight 0, and each

[

N
R

]

or

[

R
R

]

space has weight 2, so that:

ℓ0(f) = 2 n(f)

and hence:
ℓ0(f) + ℓ1(f) = 2 n(f) + c(f)

Therefore, the length formula of theorem 4.2.2 reduces to theorem 4.1.8 for
strongly positive elements.

Example 4.2.5. Let f ∈ F be the element with forest diagram:

020222 0 2 2
I

I

I I I

I I

I

N

N

N N

NR

R R

R

R

Then ℓ0(f) = 12 and ℓ1(f) = 10, so f has length 22. One minimum-length
word for f is:

x1x
−1

0 x−1

1 x0x
−1

1 x−3

0 x1x0x
3

1x
−1

0 x−1

1 x−1

0 x−1

1 x0x
−1

1 x3

0

In general, an element f ∈ F is right-sided if it lies in the subgroup
generated by {x1, x2, . . .}. Equivalently, f is right-sided if and only if both
pointers in the forest diagram for f are at the left edge of the support. Note
then that every space of a right-sided element is labeled either N, R, or I.
The weight table for such spaces is:

top
label

bottom label

N R I

N 2 2 2
R 2 2 0
I 2 0 0

25

Observe that a space has weight 2 if and only if:

1. It is exterior on both the top and the bottom, or

2. It lies immediately to the left of some caret, on either the top or the
bottom.

This can be viewed as a generalization of the length formula for strongly
positive elements. Specifically, if f is right-sided, then:

ℓ(f) = 2 n(f) + c(f)

where n(f) is the number of spaces satisfying condition (1) or (2), and c(f)
is the number of carets of f .

As with strongly positive elements, it is intuitively obvious that this is
a lower bound for the length. Unfortunately, we have not been able to find
an analogue of the “anti-normal form” argument to show that it is an upper
bound.

Example 4.2.6. Let f ∈ F be the element with forest diagram:

111211 1 2 2 1 2
I I I I IL L L

L L L L L L L L L L L

LN N

Then ℓ0(f) = 15 and ℓ1(f) = 7, so f has length 22.
It is interesting to note that every interior space of f has weight 1: for

trees to the left of the pointer, one cannot avoid crossing interior spaces at
least once. Specifically, each caret is created from its left leaf, and we must
move to this leaf somehow.

One minimum-length word for f is

x4

0x
2

1x
−2

0 x1x
−3

0 x2

1x
−3

0 x1x
−1

0 x1x
−2

0

Note that this word creates carets right to left.

Example 4.2.7. Let f ∈ F be the element with forest diagram:

26

112111 0 2 1 0 2 2 2 0
I I I I I

I III I

N N NN

N

L

L L L

L

L

L L

R R R R

R

Then ℓ0(f) = 16 and ℓ1(f) = 13, so f has length 29. One minimum-length
word for f is:

x−2

0 x1x
−1

0 x1x0x
−2

1 x2

0x1x
3

0x
2

1x0x
−2

1 x−1

0 x1x
−2

0 x1x
−1

0 x1x0x
−1

1 x−1

0

This is our first example with

[

L
R

]

pairs: note that they only need to be

crossed once. Also note how it affects the length to have bottom trees to the

left of the pointer. In particular, observe that the

[

N
I

]

pair to the left of the

pointers must crossed twice.

4.3 The Proof of the Length Formula

We prove the length formula using the same technique as Fordham [Ford]:

Theorem 4.3.1. Let G be a group with generating set S, and let ℓ : G → N

be a function. Then ℓ is the length function for G with respect to S if and

only if:

1. ℓ(e) = 0, where e is the identity of G.

2. |ℓ(sg) − ℓ(g)| ≤ 1 for all g ∈ G and s ∈ S.

3. If g ∈ G \ {e}, there exists an s ∈ S ∪S−1 such that ℓ(sg) < ℓ(g).

Proof. Conditions (1) and (2) show that ℓ is a lower bound for the length,
and condition (3) shows that ℓ is an upper bound for the length.

Let ℓ denote the function defined on F specified by Theorem 4.2.2. Clearly
ℓ satisfies condition (1). To show that ℓ satisfies conditions (2) and (3), we
need only gather information about how left-multiplication by generators
affects the function ℓ.

27

Terminology 4.3.2. If f ∈ F , the current tree of f is the tree in forest
diagram indicated by the top pointer. The right space of f is the space
immediately to the right of the current tree, and the left space of f is the
space immediately to the left of the current tree.

Note that, if the top pointer is at the right edge of the support of f , then
the right space of f has no label. Similarly, if the top pointer is at the left
edge of the support, then the left space of f has no label.

Proposition 4.3.3. If f ∈ F , then ℓ(x0f) = ℓ(f)± 1. Specifically, ℓ(x0f) =
ℓ(f) − 1 unless one of the following conditions holds:

1. x0f has larger support than f .

2. The right space of f has bottom label L, and left-multiplication by x0

does not remove this space from the support.

3. The right space of f is labeled

[

R
I

]

.

Proof. Clearly ℓ1(x0f) = ℓ1(f). As for ℓ0, note that the only space whose
label changes is the right space of f .

Case 1 : Suppose x0f has larger support than f . Then the right space

of f is unlabeled, and has label

[

L
R

]

in x0f . Hence ℓ0(x0f) = ℓ0(f) + 1.

Case 2 : Suppose x0f has smaller support than f . Then the right space

of f has label

[

R
L

]

, but becomes unlabeled in x0f . Hence ℓ0(x0f) = ℓ0(f)−1.

Case 3 : Suppose x0f has the same support as f . Then the right space
of f has top label N or R, but top label L in x0f . The relevant rows of the
weight table are:

top
label

bottom label

L N R I

L 2 1 1 1
N 1 2 2 2
R 1 2 2 0

Each entry of the N and R rows differs from the corresponding entry of the
L row by exactly one. In particular, moving from an R or N row to an L row

only increases the weight when in the L column or when starting at

[

R
I

]

.

28

Corollary 4.3.4. Let f ∈ F . Then ℓ(x−1

0 f) < ℓ(f) if and only if one of the

following conditions holds:

1. x−1

0 f has smaller support than f .

2. The left space of f has label

[

L
L

]

.

3. The left space of f has label

[

L
I

]

, and the current tree is trivial.

Proposition 4.3.5. Let f ∈ F . If left-multiplying f by x1 cancels a caret

from the bottom forest, then ℓ(x1f) = ℓ(f) − 1.

Proof. Clearly ℓ1(x1f) = ℓ1(f)−1. We must show that ℓ0 remains unchanged.
Note first that the right space of f is destroyed. This space has label

[

R
I

]

, and hence has weight 0. Therefore, its destruction does not affect ℓ0.

The only other space affected is the left space of f . If this space is not in
the support of f , it remains unlabeled throughout. Otherwise, observe that
it must have top label L in both f and x1f . The relevant row of the weight
table is:

L N R I

L 2 1 1 1

In particular, the only important property of the bottom label is whether or
not it is an L. This property is unaffected by the deletion of the caret.

Proposition 4.3.6. Let f ∈ F , and suppose that left-multiplying f by x1

creates a caret in the top forest. Then ℓ(x1f) = ℓ(f) ± 1. Specifically,

ℓ(x1f) = ℓ(f) − 1 if and only if the right space of f has label

[

R
R

]

.

Proof. Clearly ℓ1(x1f) = ℓ1(f) + 1. As for ℓ0, observe that the only space
whose label could change is the right space of f .

Case 1 : Suppose x1f has larger support than f . Then the right space

of f is unlabeled, but has label

[

I
R

]

in x1f . This does not affect the value

of ℓ0.
Case 2 : Otherwise, note that the right space of f has top label N or

R. If the top label is an N, it remains and N in x1f . If it is an R, then it
changes to an I. The relevant rows of the weight table are:

29

top
label

bottom label

L N R I

R 1 2 2 0
I 1 2 0 0

Observe that the weight decreases by two if the bottom label is an R, and
stays the same otherwise.

We have now verified condition (2). Also, we have gathered enough in-
formation to verify condition (3):

Theorem 4.3.7. Let f ∈ F be a nonidentity element.

1. If current tree of f is nontrivial, then either ℓ(x−1

1 f) < ℓ(f), or ℓ(x0f) < ℓ(f).

2. If left-multiplication by x1 would remove a caret from the bottom tree,

then ℓ(x1f) < ℓ(f).

3. Otherwise, either ℓ(x0f) < ℓ(f) or ℓ(x−1

0 f) < ℓ(f).

Proof.

Statement 1 : If ℓ(x−1

1 f) > ℓ(f), then the right space of x−1

1 f has type

[

R
R

]

.

The right space of f therefore has type

[

R or N
R or N

]

, so that ℓ(x0f) < ℓ(f).

Statement 2 : See proposition 4.3.5.
Statement 3 : Suppose ℓ(x0f) > ℓ(f). There are three cases:
Case 1 : The right space of f is not in the support of f . Then the left

space of f has label

[

L
R

]

,

[

L
L

]

, or

[

L
I

]

. In all three cases, ℓ(x−1

0 f) < ℓ(f).

Case 2 : The right space of f has bottom label L, and right-multiplication
by x0 does not remove this space from the support. Then the left space of f

must have label

[

L
L

]

or

[

L
I

]

, and hence ℓ(x−1

0 f) < ℓ(f).

Case 3 : The right space of f has label

[

R
I

]

. Then the tree immediately

to the right of the top pointer is trivial, and the bottom leaf under it is a
right leaf. If the bottom leaf under the top pointer were a left leaf, then
left-multiplying f by x1 would cancel a caret. Hence, it is also a right leaf,

so the left space of f has label

[

L
I

]

. We conclude that ℓ(x−1

0 f) < ℓ(f).

30

Corollary 4.3.8. Let f ∈ F , and let f be the reduced forest diagram for

f . Then there exists a minimum-length word w for f with the following

properties:

1. Each instance of x1 in w creates a top caret of f.

2. Each instance of x−1

1 in w creates a bottom caret of f.

In particular, w has ℓ1(f) instances of x1 or x−1

1 , and ℓ0(f) instances of

x0 or x−1

0 .

Proof. By the previous theorem, it is always possible to travel from f to the
identity in such a way that each left-multiplication by x1 deletes a bottom
caret and each left-multiplication by x−1

1 deletes a top caret.

Of course, not every minimum-length word for f is of the given form. We
will discuss this phenomenon in the next section.

4.4 Minimum-Length Words

In principle, the results from the last section specify an algorithm for finding
minimum-length words. (Given an element, find a generator which shortens
it. Repeat.) In practice, though, no algorithm is necessary: one can usually
guess a minimum-length word by staring at the forest diagram. Our goal in
this section is to convey this intuition.

Example 4.4.1. Let f be the element of F with forest diagram:

Then there is exactly one minimum-length word for f , namely:

x−3

0 ux0ux0ux0

where u = x2
1x

−1

0 x1x0. Note that the trees of f are constructed from left to

right.
Similarly, f−1 has forest diagram:

31

and the only minimum-length word for f−1 is:

x−1

0 u−1x−1

0 u−1x−1

0 u−1x3

0

Note that the trees of f−1 are constructed from right to left.

Example 4.4.2. Let f be the element of F with forest diagram:

There are precisely four minimum-length words for f :

x−3

0 v x0 v x0 v x0

x−1

0 v x−2

0 v x0 v x2

0

x−2

0 v x−1

0 v x2

0 v x0

x−1

0 v x−1

0 v x−1

0 v x3

0

where v = x2
1x

−1

0 x−1

1 x0x
−1

1 . In particular, each of the first two components
can be constructed either when the pointer is moving right, or later when
the pointer is moving back left.

Example 4.4.3. Let f be the element of F with forest diagram:

32

There are precisely two minimum-length words for f :

x−2

0 u−1 x−2

0 x1 x0 v x2

0 ux0

x−2

0 u−1 x−1

0 v x−1

0 x1 x3

0 ux0

where u = x2
1x

−1

0 x1x0 and v = x2
1x

−1

0 x−1

1 x0x
−1

1 . Note that the first component
must always be constructed on the journey right, and the second component
must always be constructed on the journey left. The only choice lies with the
construction of the third component: should it be constructed when moving
right, or should it be constructed while moving back left?

In general, certain components act like “top trees” while others act like
“bottom trees”, while still others are “balanced”. For example, the forest
diagram:

� � �

must be constructed from left to right (so all the components act like “top
trees”). The reason is that the three marked spaces each have weight 0,
so that each of the three highlighted carets must be constructed before the
pointer can move farther to the right. Essentially, the highlighted carets are
acting like bridges over these spaces.

The idea of the “bridge” explains two phenomena we have already ob-
served. First, consider the following contrapositive of proposition 4.3.6:

Proposition 4.4.4. Let f ∈ F , and suppose that the top pointer of f points

at a nontrivial tree. Then ℓ
(

x−1

1 f
)

< ℓ(f) unless the resulting uncovered

space has type

[

R
R

]

.

This proposition states conditions under which the destruction of a top
caret decreases the length of an element. Essentially, the content of the
proposition is that it makes sense to delete a top caret unless that caret is

functioning as a bridge. (Note that the deletion of any of the bridges in the

33

example above would result in an

[

R
R

]

space.) It makes no sense to delete a

bridge, since the bridge is helping you access material further to the right.
Next, recall the statement of corollary 4.3.8: every f ∈ F has a minimum-

length word with ℓ1(f) instances of x1 or x−1

1 and ℓ0(f) instances of x0 or
x−1

0 . After the corollary, we mentioned that not every minimum-length word
for f is necessarily of this form. The reason is that it sometimes makes sense
to build bridges during the creation of an element:

Example 4.4.5. Let f be the element of F with forest diagram:

Then one minimum-length word for f is:

x2

0x
−1

1 x−5

0 x1x
4

0

This word corresponds to the instructions “move right, create the top caret,
move left, create the bottom caret, and then move back to the origin”. How-
ever, here is another minimum-length word for f :

x2

0x
−1

1 (x−1

0 x−3

1 x−1

0)x1(x0x
3

1)

In this word, the “move right” is accomplished by building three temporary
bridges:

These bridges are torn down during the “move left”.
Finally, here is a third minimum-length word for f :

x−3

1 x2

0x
−1

1 x−2

0 x1(x0x
3

1)

In this word, bridges are again built during the “move right”, but they aren’t
torn down until the very end of the construction.

34

We now turn our attention to a few examples with some more complicated
behavior.

Example 4.4.6. Let f be the element of F with forest diagram:

There are four different minimum-length words for f :

x−3

0 x1x
−1

0 x1x
2

0x1x
−1

0 x1x
2

0x1x
−1

0 x1x
2

0

x−1

0 x1x
−3

0 x1x
−1

0 x1x
2

0x1x
−1

0 x1x
2

0x1x
2

0

x−2

0 x1x
−2

0 x1x
−1

0 x1x
2

0x1x
2

0x1x
−1

0 x1x
2

0

x−1

0 x1x
−2

0 x1x
−2

0 x1x
−1

0 x1x
2

0x1x
2

0x1x
2

0

Note that each of the first two components may be either partially or fully
constructed during the move to the right. This occurs because the trees in
this example do not end with bridges. (Compare with example 4.4.1.)

Example 4.4.7. Let f be the element of F with forest diagram:

There is exactly one minimum-length word for f :

x−1

0 x−1

1 x−3

0 x1x0x1x0x
−1

1 x0x
−1

1 x0

Note that the highlighted caret must be constructed last, since the space it
spans should not be crossed. However, we must begin by partially construct-
ing the first component, because of the bridge on its right end.

5 Applications

This section contains various applications of forest diagrams and the length
formula.

35

5.1 Dead Ends and Deep Pockets

In [ClTa1], S. Cleary and J. Taback prove that F has “dead ends” but no
“deep pockets”. In this subsection, we show how forest diagrams can be used
to understand these results.

Definition 5.1.1. A dead end is an element f ∈ F such that ℓ(xf) < ℓ(f)
for all x ∈

{

x0, x1, x
−1

0 , x−1

1

}

.

Example 5.1.2. Consider the element f ∈ F with forest diagram:

Left-multiplying by x−1

0 decreases the length since the left space of f is of type
[

L
L

]

. Left-multiplying by x0 or x1 decreases the length since the right space

of f is of type

[

R
R

]

. Finally, left-multiplying by x−1

1 decreases the length

since it deletes a top caret and the right space of x−1

1 f is not of type

[

R
R

]

.

This example is typical:

Proposition 5.1.3. Let f ∈ F . Then f is a dead end if and only if:

1. The current tree of f is nontrivial,

2. The left space of f has label

[

L
L

]

,

3. The right space of f has label

[

R
R

]

, and

4. The right space of x−1

1 f does not have label

[

R
R

]

.

Proof. The “if” direction is trivial. To prove the “only if” direction, assume
that f is a dead end. Then:

36

Condition (1) follows from the fact that ℓ
(

x−1

1 f
)

< ℓ(f) (see proposition
4.3.5).

Condition (2) now follows from the fact that ℓ
(

x−1

0 f
)

< ℓ(f) (see corollary
4.3.4).

Condition (3) now follows from the fact that ℓ(x1f) < ℓ(f) (see proposi-
tion 4.3.6).

Condition (4) now follows from the fact that ℓ
(

x−1

1 f
)

< ℓ(x1f) (see propo-
sition 4.3.6).

Note that there are several ways to meet condition (4): the right space of

x−1

1 f could be of type

[

R
L

]

(as in example 5.1.2), or it could be of type

[

R
I

]

:

or it could just have an N on top:

Notice, also, that the proof of proposition 5.1.3 never used the fact that
ℓ (x0f) < ℓ(f). In particular, if the length of f increases when you left-
multiply by x1, x−1

1 , and x−1

0 , then f must be a dead end.

Definition 5.1.4. Let k ∈ N. A k-pocket of F is an element f ∈ F such
that:

ℓ(s1 · · · skf) ≤ ℓ(f)

for all s1, . . . , sk ∈
{

x0, x1, x
−1

0 , x−1

1 , 1
}

.

37

A 2-pocket in F is just a dead end. S. Cleary and J. Taback demonstrated
that F has no k-pockets for k ≥ 3. We give an alternate proof:

Proposition 5.1.5. F has no k-pockets for k ≥ 3.

Proof. Let f ∈ F be a dead-end element. Then the right space of f has

label

[

R
R

]

, so the tree to the right of the top pointer is trivial. Therefore,

repeatedly left-multiplying x0f by x−1

1 will create negative carets:

In particular, x−1

1 x−1

1 x0f has length ℓ(f) + 1.

5.2 Growth

We can use forest diagrams to calculate the growth function of the positive
monoid with respect to the {x0, x1}-generating set. Burillo [Bur] recently
arrived at the same result using tree diagrams and Fordham’s length formula:

Theorem 5.2.1. Let pn denote the number of positive elements of length n,

and let:

p(x) =
∞

∑

n=0

pnx
n

Then:

p(x) =
1 − x2

1 − 2x − x2 + x3

In particular, pn satisfies the recurrence relation:

pn = 2pn−1 + pn−2 − pn−3

for all n ≥ 3.

Proof. Let Pn be the set of all positive elements of length n. Define four
subsets of Pn as follows:

38

1. An = {f ∈ Pn : the current tree of f is trivial and is not the leftmost
tree}

2. Bn = {f ∈ Pn : the current tree of f is nontrivial, but its right subtree
is trivial}

3. Cn = {f ∈ Pn : the current tree of f is trivial and is the leftmost tree.}

4. Dn = {f ∈ Pn : the current tree of f is nontrivial, and so is its right
subtree.}

Given an element of An, we can remove the current tree and move the
pointer left, like this:

This defines a bijection An → Pn−1, so that:

|An| = |Pn−1|

Given an element of Bn, we can remove the top caret together with the
resulting trivial tree, like this:

This defines a bijection Bn → Pn−1, so that:

|Bn| = |Pn−1|

Given an element of Cn, we can move both the top and bottom arrows
one space to the right, like this:

39

When n ≥ 2, this defines an injection ϕ : Cn → Pn−2. The image of ϕ is all
elements of Pn−2 whose current tree is the first tree.

Finally, given an element of Dn, we can remove the top caret and move
the pointer to the right subtree, like this:

This defines an injection ψ : Dn → Pn−2. The image of ψ is all elements of
Pn−2 whose current tree is nontrivial, and is not the first tree. In particular:

(im ϕ) ∪ (im ψ) = Pn−2 − An−2

so that:
|Cn| + |Dn| = |Pn−2| − |An−2| = |Pn−2| − |Pn−3|

This proves that pn satisfies the given recurrence relation for n ≥ 3. It is not
much more work to verify the given expression for p(x).

5.3 The Isoperimetric Constant

Let G be a group with finite generating set Σ, and let Γ denote the Cayley
graph of G with respect to Σ. If S ⊂ G, define:

δS = {edges in Γ between S and Sc}

The isoperimetric constant of G is defined as follows:

ι (G, Σ) = inf

{

|δS|

|S|
: S ⊂ G and |S| < ∞

}

40

The group G is amenable if and only if ι (G, Σ) = 0.
Guba [Guba] recently proved that ι (F, {x0, x1}) ≤ 1. We have obtained

a slightly better estimate:

Proposition 5.3.1. ι (F, {x0, x1}) ≤ 1/2.

Sketch of Proof. Define the height of a binary tree to be length of the longest
descending path starting at the root and ending at a leaf. Define the width of
a binary forest to be the number of spaces in its support. For each n, k ∈ N,
let Sn,k denote all positive elements whose forest diagram has width at most n
and all of whose trees have height at most k. One can show that:

lim
k→∞

lim
n→∞

|δSn,k|

|Sn,k|
=

1

2

5.4 Convexity

A group G is convex (with respect to some generating set) if the n-ball Bn(G)
is a convex subset of the Cayley graph of G for each n. Very few groups are
convex, but Cannon [Can] has introduced the following weaker property:

Definition 5.4.1. A group G is almost convex (with respect to some gen-
erating set) if there exists an integer L having the following property: given
any x, y ∈ Bn(G) a distance two apart, there exists a path from x to y in
Bn(G) of length at most L.

The convexity of F was first investigated by S. Cleary and J. Taback
[ClTa2], who proved that F is not almost convex with respect to {x0, x1}.
Recently, J. Belk and K. Bux [BeBu] have applied forest diagrams and the
length formula to show that F is maximally nonconvex. Specifically:

Theorem 5.4.2. For each n ∈ N, let ln be the element of F with forest

diagram:

41

�

and let rn = x2
0 ln. Then ln and rn each have length 2n + 2, and the shortest

path from ln to rn inside the (2n + 2)-ball has length 4n + 4.

Sketch of Proof. : Since the right space of ln has label

[

R
I

]

, x0ln has greater

length than ln:

00 2
R I

I R R

N

01 2
L I

I R R

N

01 1
L I

I R R

L

�� %��� ��

In particular, the path:
ln — x0ln — rn

does not remain within the (2n + 2)-ball.
Intuitively, if one wants to get from ln to rn while remaining inside the

(2n+2)-ball, one must begin by moving all the way to the left and removing
the accessible bottom caret. Taking this idea further, we might guess that
the following path of length 4n + 4 is minimal:

1. Move left n − 1 spaces, and delete the leftmost bottom caret.

2. Move right n spaces, and delete the top caret.

3. Move left n spaces, and re-create the leftmost bottom caret.

4. Move right n + 1 spaces, and re-create the top caret.

This is in fact the case (see [BeBu]).

42

References

[BeBu] James Belk and Kai-Uwe Bux. “Thompson’s Group F is Maximally
Nonconvex”. Preprint (2003), arXiv:math.GR/0301141.

[Bro] Kenneth S. Brown. “Finiteness Properties of Groups”. J. Pure Appl.

Algebra 44 (1987), 45–75.

[Bur] José Burillo. “Growth of Positive Words in Thompson’s Group F”.
Preprint (2003).

[Can] James W. Cannon. “Almost Convex Groups”. Geom. Dedicata 22
(1987), 197–210.

[CFP] J. W. Cannon, W. J. Floyd, and W. R. Parry. “Introductory Notes
to Richard Thompson’s Groups”. L’Enseignement Mathmatique 42
(1996), 215–256.

[ClTa1] Sean Cleary and Jennifer Taback. “Combinatorial Properties of
Thompson’s Group F”. Trans. Amer. Math. Soc. 356 (2004), 2825–
2849.

[ClTa2] Sean Cleary and Jennifer Taback. “Thompson’s Group F is not Al-
most Convex”. J. Algebra 270 (2003), no. 1, 133–149.

[Ford] S. Blake Fordham. “Minimal Length Elements of Thompson’s Group
F”. Geom. Dedicata 99 (2003), 179–220.

[GuSa] Victor Guba and Mark Sapir. “Diagram Groups”. Mem. Amer. Math

Soc. 130 (1997), no. 620, 1–117.

[Guba] Victor Guba. “On the Properties of the Cayley Graph of Richard
Thompson’s Group F”. Preprint (2002), arXiv:math.GR/0211396.

43

