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ABSTRACT. Let C be the set of chambers of a real hyperplane arrangement. We study
a random walk on C introduced by Bidigare, Hanlon, and Rockmore. This includes
various shuffling schemes used in computer science, biology, and card games. It also
includes random walks on zonotopes and zonotopal tilings. We find the stationary
distributions of these Markov chains, give good bounds on the rate of convergence to
stationarity, and prove that the transition matrices are diagonalizable. The results
are extended to oriented matroids.

1. INTRODUCTION

Let A be a finite set of affine hyperplanes in V' = R". Then A cuts V into
regions called chambers. For example, there are 6 chambers (which are sectors) in
Figure la, and there are 7 chambers in Figure 1b. The chambers are polyhedra
(finite intersections of half-spaces) and hence have faces. For example, each cham-
ber C in Figure 1a has 4 faces: C itself, 2 rays, and one point. We denote by F
the collection of all faces of the chambers. In Figure la, for example, F has 13
elements: 6 chambers, 6 rays, and one point. The arrangement A is called central
if Vgea H #0, as in Figure 1la.

F admits a semigroup structure, whose definition will be recalled in Section 2
below. Of particular importance is the product F'C for F' € F and C' € C. This
product is again a chamber, called the projection of C' on F'. It can be characterized
as the nearest chamber to C' having F' as a face. Here “nearest” is defined in terms
of the number of hyperplanes in A separating C' from F'C. The projection operator
C — FC will be called the action of F on C. See Figure 2 for a simple example
(here F' is a ray).
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2 KENNETH S. BROWN AND PERSI DIACONIS

Figure la. A central arrangment of Figure 1b. A non-central arrangement
3 hyperplanes in R2. of 3 hyperplanes in R2.

Figure 2. The projection of C on F.

Bidigare, Hanlon, and Rockmore [6], referred to hereafter as BHR, used the
action of faces on chambers to define a random walk on C.! Start with a probability
measure w on F. Then a step in the walk is given by:

(1.1) From C € C, choose F' from the measure w and move to F'C.
Thus the random walk started at a chamber Cj is the process (Cy)¢>o with
(1.2) Cp=Fp- - F1Co,

where Fy, Fs, ... are i.i.d. picks from w. This is simply random walk on the semi-
group F in the usual sense, with the starting state (and hence all future states) in
the ideal C C F.

One can also describe the walk on C by giving its transtion matrix K:

(1.3) K(C,Cy= Y w(F).

FC=C"’

Remarkably, BHR found all the eigenvalues of K, which turn out to be real, non-
negative, and linear in the entries of K. The multiplicities of the eigenvalues are
given in terms of the Md&bius function of the intersection poset S (also called the
intersection lattice in the central case). This is the set of all nonempty affine
subspaces W C V of the form W = (.4 H, where A" C A is an arbitrary
subset (possibly empty). We order S by inclusion. [Warning: BHR and many
other authors order S by reverse inclusion. |
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RANDOM WALK AND HYPERPLANE ARRANGEMENTS 3

One of our main results is a new proof of the BHR result, showing additionally
that K is diagonalizable. Our proof is conceptual; it makes use of the algebraic
topology of a regular cell complex A “dual” to A. (In case A is central, A is a
convex polytope, called the zonotope associated to A.) Here is the BHR result,
combined with our improvement of it:

Theorem 1. Let A be a hyperplane arrangement in V, let F be the set of faces,
let S be the intersection poset, and let w be a probability measure on F. Then the
matriz K defined at (1.8) is diagonalizable. For each W € S, there is an eigenvalue

Aw = > w(F)

with multiplicity
my = [p(W, V)| = (=1« (W, v),

where p is the Mdbius function of S and codim(W, V') is the codimension of W
m V.

A second set of results proved here gives a description of the stationary distri-
bution of the chain (1.1), together with a good estimate for the rate of convergence
to stationarity. The estimate involves some of the eigenvalues (namely, the \p,
H € A) and is surprisingly useful given that the chain is generally non-reversible.

We will say that the measure w separates the hyperplanes in A, or simply that
w is separating, if it is not concentrated on the faces in any one of them, i.e., for
each H € A there is a face F' with F' ¢ H and w(F') > 0.

Theorem 2. Let A be a hyperplane arrangement, let w be a probability measure
on the set F of faces, and let K be as in (1.3).

(a) K has a unique stationary distribution 7 if and only if the measure w is
separating.

(b) Assume that w is separating. Sample without replacement from w, thereby
getting an ordering Fy,... ,Fy, of {F € F : w(F) > 0}. Then the product
C = Fy---F,, in the semigroup F is a chamber distributed from .

(c) Still assuming that w is separating, let Ké be the distribution of the chain
started from C' after £ steps; then its total variation distance from 7 satisfies

(1.4) IKE —mllov < > Ny
HeA

We remark that BHR give an estimate similar to (1.4), but involving all the
eigenvaluues Ay and an alternating sum. We will discuss the connection between
the two estimates in Section 4.

The remainder of the paper is organized as follows. In Section 2 we review
definitions and facts about hyperplane arrangements. In Section 3 we discuss a
number of examples. This section may be read first, for motivation. The examples
include some previously studied card shuffling schemes, the classical Ehrenfests’
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4 KENNETH S. BROWN AND PERSI DIACONIS

proof of Theorem 2, in a more general setting; in particular, we consider walks
driven by a stationary sequence on JF, not just a sequence of i.i.d. picks from F.
We prove Theorem 1 in Section 5. In Section 6 we explain how to extend all of
the results to oriented matroids. Finally, there is an appendix which complements
Section 2.

Some of the results of this paper extend to random walk on the chambers of a
building. We will treat these in a separate paper.

Acknowledgements. We thank Phil Hanlon and Dan Rockmore for much inter-
action on this problem over the years. Jim Fill’s many results in the shuffling case
have been an inspiration. Indeed, in preliminary work he has shown that many of
his card shuffling arguments extend to the case of hyperplane walks; this gives a
different conceptual argument for the result that the eigenvalues are positive reals
and a somewhat complicated closed form formula for K*(C,C"). Louis Billera, Vic
Reiner, and Richard Stanley have been very helpful. We thank Susan Holmes for
drawing the pictures.

2. REVIEW OF HYPERPLANE ARRANGEMENTS

The standard reference for this section is the book by Orlik and Terao [27].
Many of the results stated here can also be found in one or more of [9], [10], [11],
and [38]. Throughout this section, A denotes a finite set of affine hyperplanes in a
finite-dimensional real vector space V. It will be convenient to write A = {H;}icr
and to denote by H;" and H; the two open half-spaces determined by H;. The
choice of which one to call H Z+ is arbitrary.

2A. Chambers and faces. “Face” in this paper will mean “relatively open face”.
By definition, then, a face is a nonempty set F' C V of the form

i€l

where o; € {+,—,0} and H? = H;. Equivalently, if we choose for each i an affine
function f; : V' — R such that H; is defined by f; = 0, then a face is a nonempty
set defined by equalities and inequalities of the form f; > 0, f; <0, or f; = 0, one
for each i € I. The sequence o = (0;);ec; which encodes the definition of F' is called
the sign sequence of F' and is denoted o(F).

The faces such that o; # 0 for all i are called chambers. They are convex open
sets that partition the complement V —J,.; H;. In general, a face F' is open relative
to its support, which is defined to be the affine subspace

supp F' = ﬂ H;.

In fact, the faces F' with a given support W form the chambers of the hyperplane
arrangement Ay in W consisting of the intersections H; N W for those ¢ such that
0;(F) # 0. The arrangement Ay is called the restriction of A to W.

2B. Partial order. The face poset of A is the set F of faces, ordered as follows:
Given F,G € F, we say that F'is a face of G and write F' < G if for each ¢ € [
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RANDOM WALK AND HYPERPLANE ARRANGEMENTS 5

equalities and inequalities is obtained from that of G by changing zero or more
inequalities to equalities. See, for instance, [11] for other characterizations of the
face relation. [Warning: Orlik and Terao use the reverse ordering on F, i.e., they
write F' > G if F' is a face of G.]

Two chambers are said to be adjacent if they have a common codimension 1 face.
The chamber graph of A has C as vertex set, with edges defined by the adjacency
relation. We write d(C,C") for the distance between C' and C’ in this graph; it is
the minimal length ¢ of a “gallery”

C=0Cy,...,C=C"

where C;_1 and C; are adjacent for 1 < ¢ < /. It is also equal to the number of
hyperplanes in A separating C from C’ (cf. [11], §1.4E).

2C. Product. The set of faces also admits a semigroup structure: Given F,G € F,
their product F'G is the face with sign sequence

oA (FG) = { oi(F) ?f o;(F) #0

O'Z<G) if GZ<F) = 0.
[Geometric interpretation: If we move on a straight line from a point of F' toward
a point of G, then F'G is the face we are in after moving a small positive distance.]
This product is the one referred to in §1 and used to define the action of faces on
chambers. One can check that F'C is a chamber if C' is, and that it is the unique
chamber having F' as a face that is closest to C' in the metric d defined above. [To
see this, use the characterization of d in terms of separating hyperplanes.|

2D. Cell decomposition of the sphere. Assume throughout this subsection
that A is central, in which case each H; can be taken to pass through the origin.
We may further assume that A is essential, i.e., that (,c; H; = {0}. [Otherwise
we can replace V' by the quotient space V/ ﬂze H; without affecting any of the
combinatorial objects of interest to us.] There is then a regular cell complex ¥ =
¥ 4, homeomorphic to the sphere S"~1 (n = dim V'), whose cells correspond to the
faces F' # {0} in F.

Recall first that a (finite) regular cell complex is a compact Hausdorff space X,
together with a finite collection {e,} of subsets of X, such that:

(i) Each e, is homeomorphic to a closed ball.

(ii) The relative interiors e, partition X.
(iii) For each a, the boundary é, = e, — e, is a union of cells (necessarily of

lower dimension).

The e, are called the closed cells of X, and the ga are called the open cells. See
[9], §4.7, for further information about regular cell complexes.

The simplest way to construct the complex ¥ associated to A is to put a metric
on V and intersect the cells F' # {0} (which are cones) with the unit sphere in
V. See Figure 3a. It is also possible to realize ¥ as the boundary of a convex
polytope Z see Figure 3b. We give a construction of S in the appendix to this
paper. Alternatlvely, one can first define the zonotope Z = Z 4 (see below) and

define ¥ to be the polar of Z. This is the approach taken in [9], Example 4.1.7,

Y o0l . 11, ™ 10



6 KENNETH S. BROWN AND PERSI DIACONIS

Figure 3a. Cell decomposition of the Figure 3b. A polytope version of
unit sphere. Figure 3a.

Note that the hyperplane chamber walk can be viewed as as a walk on the
chambers (maximal cells) of 3. Each step consists of choosing a cell e (possibly
empty?) from some distribution on the cells, and then moving from the current
chamber ¢ to the nearest chamber having e as a face. “Nearest” here refers to
gallery distance, which can be defined for the chambers of ¥ exactly as in §2B
above.

2E. The zonotope dual to A. A zonotope in a real vector space V' is a Minkowski
sum Z = L1 +---+ L of line segments, usually taken to be centered at the origin:
L; = [—v;,v;]. We may assume that the L; are non-degenerate and that no two are
parallel, i.e., that the v; are nonzero and pairwise independent. The L; are then
uniquely determined by Z; in fact, there is one for each parallelism class of edges
of Z. The set of faces of the boundary of Z having an edge parallel to L; is called
the ith zone of Z.

Note that Z is the image of the cube [—1,1]* under the linear map R¥ — V
taking the k standard basis vectors eq,...,er to v1,...,v,. Thus Z is the convex
hull of the 2* vectors Y 1<;<p TVi, where the signs can be chosen arbitrarily. A
simple example of a zonotope is a hexagon, obtained by projecting a cube in R3
onto a plane. See [9] or [38] for further information about zonotopes.

Returning to our central hyperplane arrangement A in V, there is a zonotope
Z = Z 4 in the dual space V*, with one zone for each hyperplane in A, defined as
follows: Choose f; € V* such that H; = ker f; and set

Z=>[~fufil-

iel

Equivalently, Z is the convex hull of the 21! elements Y el Tfi

The poset of nonempty faces of Z is anti-isomorphic to the face poset F of A.
This is proved in [9], Proposition 2.2.2, and [38], §7.3. It also follows by polarity
theory ([38], §2.3) from the results about X stated above and proved in the appendix,
since Z is in fact the polar of the polytope S defined in the appendix. Thus Z has
one vertex for each chamber C' [that vertex being > o, f;, where o = o(C)], one
edge for each pair of adjacent chambers, etc. In particular, the 1-skeleton of Z is

[ J— 4 . ~ — PP -



RANDOM WALK AND HYPERPLANE ARRANGEMENTS 7

the chamber graph of A. Figure 4 shows a simple example, in which V = R? and
V* is identified with V.

Figure 4. The zonotope Z

Note that the hyperplane chamber walk can be viewed as a walk on the vertices
of Z. Each step consists of choosing a random e of Z from some measure on the
faces, and then moving from a vertex v to the unique vertex of e closest to v (in
the usual edge-path metric on the 1-skeleton of 7).

Remark. In some of the literature there is a slightly different definition of the
zonotope associated to A. Namely, one considers

Z'=>"100,fi,

i€l

or, equivalently, Z’ is the convex hull of the 2//l elements > ics fi» where s C I is
an arbitrary subset. Note that Z’ is obtained from Z by translating by > ., f; and
then multiplying by 1/2. In particular, Z and Z’ are combinatorially equivalent.

2F. The non-central case. For arbitrary A, there is still a regular cell complex
A dual to the arrangement. It is again a topological ball (though not necessarily
a polytope), and its poset of cells is anti-isomorphic to the face poset F of A. See
Figure 5 for a simple example.

h T s nl T b R D P Y Y € A
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We briefly recall the construction of A, which can be found in Ziegler [36], since
it involves ideas that we will need later anyway. Let V =V x R. For each i € T
let H; be the linear hyperplane in V spanned by H; x 1. Then the H;, together
with the hyperplane Hy = V x 0, form a central arrangement A in V, said to be
obtained from A by coning. See Figure 6. Let F be the face poset of A. Then the
face poset F of A is isomorphic to the subset Frof F consisting of the faces in
the upper half space V x (0,00) of V. In terms of sign sequences, we go from F to

Fr by adjoining + as the Hy-component.

Figure 6. A central arrangement of 3 hyperplanes in R? obtained by
coning a non-central arrangement of 2 hyperplanes in R!.

Let Z be the zonotope associated to A, with cell poset F°?. Then the cells

corresponding to Fr give a subcomplex of Z, and this is the desired A. We remark
that A, though not a zonotope in the non-central case, can always be realized as
the set of faces of a “zonotopal tiling”. (We will say more about zonotopal tilings in
§3E.) For example, the complex A in Figure 5 above is combinatorially equivalent
to the zonotopal tiling called Z3 in §3E.

2G. Reflection arrangements. Finally, we briefly mention an important family
of examples of central hyperplane arrangements. Assume that V' is equipped with
an inner product. Then every linear hyperplane H in V gives rise to a reflection
sy that fixes H pointwise and acts as —1 on the orthogonal complement. A finite
reflection group in V is a finite group G of linear transformations such that G is
generated by reflections sp. The set of all H such that sy € G is the reflection
arrangement associated to G.

Reflection arrangements have a number of special properties; see, for instance,
[11], Chapter I. For example, the chambers are always simplicial cones if the ar-
rangement is essential, which we may assume without loss of generality. (A chamber
of a reflection arrangement in R cannot, for instance, be the cone over a square.) It
follows that the spherical cell-complex ¥ of §2D is a simplicial complex. Moreover,
the group G acts simply-transitively on C, so that C can be identified with G once
a “fundamental chamber” is chosen. Thus the hyperplane chamber walk can be

L Y I S B G S T L Y T T A 4 Y e
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Remark. The group G acts on the face poset F. If the measure w on F is separat-
ing and G-invariant, then the stationary distribution 7 is uniform. Moreover, the
chamber walk in this case is a random walk on G in the usual sense, i.e., it consists
of repeated multiplication by random elements of GG, chosen from the measure

F.id=g

We thus have a reasonable collection of natural measures on groups, with explicitly
analyzable random walks.

2H. Mobius function. Finally, we recall the definition of the function p = pus
that occurs in the statement of Theorem 1 (cf. [31], §3.7, or [27], §2.2). This is
defined inductively by u(V,V) =1 and, for W GV,

(2.1) pW,V)y== Y uWU),
WCUuSv

For example, if A consists of 3 lines L; through the origin in R?, then the intersection
lattice is

R2
Ly Ly Ls
{0}
In this case the Md&bius numbers appearing in Theorem 1 are u(R? /R?) = 1,

w(L;, R?) = —1, and pu({0},R?) = 2.

3. EXAMPLES

This section collects examples of hyperplane walks which have a natural alterna-
tive interpretation. We also make explicit the results of Theorems 1 and 2. In 3A
we treat the dihedral arrangement, in 3B the Boolean arrangement, and in 3C the
braid arrangement, with its many shuffling and computer science interpretations.
In 3D we discuss an arrangement related to threshold graphs. In 3E we treat zono-
topal tilings and introduce random walks on oriented matroids. Finally, we briefly
mention some further examples in 3F.

Before beginning the examples, we make two remarks which sometimes simplify
the computation of the stationary distribution 7 given in Theorem 2. First, instead
of sampling without replacement, we could sample with replacement, stopping as
soon as the product F; --- F),, is a chamber. This gives the same distribution 7,
because we can strike out any factors in F}--- F,, which have occurred earlier
without affecting the value of the product. But sampling with replacement and
then deleting repetitions is the same as sampling without replacement.

At the other extreme, we could remove from the pot even more than just the
faces that are picked. Namely, if F7,. .., Fi have been picked and W is the support
of the product Fj--- F}j, then we can remove all faces F' contained in W before
picking the next face Fy41. This follows from the same striking-out argument as
above, the point being that a later factor contained in W will have no effect on the

1.



10 KENNETH S. BROWN AND PERSI DIACONIS

3A. Dihedral arrangement. Let A consist of m lines through the origin in R2.
[If the lines are equally spaced, this is an example of a reflection arrangement, the
associated reflection group being dihedral of order 2m.] There are 4m+ 1 faces: 2m
chambers, 2m rays, and the origin. Suppose, for this exposition, that the measure
w is supported on the set of rays. One can then picture the walk as follows: There
are 2m rooms in a circular house. A mouse lives in the walls R (the rays), occupying
these with propensity w(R). At each step of the walk, a cat is in one of the rooms
and the mouse picks a wall; the cat then moves to the nearest room adjacent to
that wall.

Note that the (1-dimensional) spherical complex ¥ of §2D is a 2m-gon in this
example. The chambers of the hyperplane arrangement correspond to the edges of
>, and the rays correspond to the vertices. So we can visualize the walk as taking
place on the edges of a 2m-gon, driven by a probability measure on the vertices.
One can imagine here a queuing system with 2m service points arranged in a ring,
corresponding to the vertices of a 2m-gon. A single server moves around the edges.
Service requests come in with different propensities w1, ..., ws,,, and the server
moves to the closest adjacent edge.

If the rays are chosen uniformly, w(R) = 1/2m for all R, then the stationary
distribution 7 is of course uniform. For general weights, w is separating unless it
is supported on a pair =R of opposite rays. If w is separating, Theorem 2 yields
the following formula for 7: Let C' be a chamber bounded by rays R, R’, whose
supports are the lines L, L’. Let Q be the set of rays that are strictly on the same
side of L as C, and define Q' similarly in terms of L’. See Figure 7. Then we have

w(Q)
1 —w(R) —w(—R)

w(Q)
1—w(R)—w(—R)

7(C) = w(R) +w(R)

[To see this, use the second variant of the sampling procedure described above. The

sampling stops as soon as two rays have been picked, and we get C' as the product
FiF5if F{ =R and Fy € Qor if F] = R’ and F; € Ql]

Figure 7

The eigenvalues given by Theorem 1 are as follows (see the example in §2H
above): Each of the m lines L contributes an eigenvalue A\;, = w(R) + w(—R) of
multiplicity 1 = —u(L, V), where £R are the rays in L. The whole plane V = R?

o *Y 441 e 1 N 4 *J1 14 1 *2 Y7 Y\ 1 T 11 11 4 * *
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subspace {0} contributes the eigenvalue Ay = 0 with multiplicity p({0},V) =
m— 1.

Consider now the bound of Theorem 2 in three simple cases. Suppose first that
w(R) = 1/2m for each R, so that m is uniform, 7(C) = 1/2m for all C. Here
AL = 1/m so the bound becomes

1
IKE = rllry < 300, = —=.
L

It follows that for large m the distance to stationarity is small after two or three
steps.

As a second example, suppose one weight is large and the others are small, e.g.,
w(Ry) =1/2, w(R) =1/2(2m — 1) for R # R;. Then the bound becomes

1 1 ¢ 1\
KL — <24 —" 1 .
IKo 7T”TV—(2+2(2m—1)) +(m )<2m—1>

Again, a few steps suffice for convergence to stationarity, but the result is not quite
as quick as in the uniform case.

As a third example, suppose the weights are proportional to 1,1/2,...,1/2m,
ie.,

1 1 1
R)=——, 1<i<2m, Hyp=1+=-+---— ~logm.
w( ) ZHQm 7 m 2 —|— 2 + 2m Ogm
Assume here that the rays are enumerated so that R;;,, = —R; fori =1,...,m.

Then the bound becomes

1L — oy < i Lo(1, 1 ¢ R ¢
_7T ——— —
¢ ™ = P Hs,, \i 1+m ~ \logm

for a universal constant c. Again, a few steps suffice to reach stationarity.

3B. Boolean arrangment. Let H; be the coordinate hyperplane x; = 0 in R",
1 <i < n. [The H; again form a reflection arrangement, the group being {£1}".]
There are 3" faces, one for each possible sign sequence, and 2" of these are chambers;
they are the orthants in R™ and may be identified with the elements of {£1}" (or
with binary n-tuples). The polytope Sisa hyperoctahedron, and the dual zonotope
Z is the cube [—1,1]™.

To picture the chamber walk, think of an element x € {+}" as a landscape with
n sites, each of which can be in one of two states. The action of a face F' can be
thought of as a ruler who conquers territory at sites in s = {i : 0;(F) # 0} and
changes the territory in his own image. One may ask how the landscape evolves over
time as territory is conquered by successive rulers F', chosen from some probability
distribution on F.

To make this more explicit, we pick the random face F' as follows: First pick
the subset s C [n] from a probability distribution ws. Then pick the nonzero
components of o(F) from a probability distribution Py(-) on {£1}/sl. We briefly
discuss three examples.

Example 1. (Ehrenfests’ urn) Suppose w is uniform on the singletons, wy;; = 1/n,

~N 41 s N e 41T 91T 4D 7o o1\ 1 v 1 1



12 KENNETH S. BROWN AND PERSI DIACONIS

on F is concentrated on the 2n coordinate rays and is uniform on these. The walk
then evolves as, “Pick a coordinate of x at random, and half the time replace it by
+1, half the time by —1.” This is the same as the usual nearest neighbor random
walk on the hypercube, with holding 1/2. It has been extensively studied since its
introduction by the Ehrenfests [22]. Here 7 is uniform, () = 1/2", and the bound
given by Theorem 2 is ,
y 1

IKE — 7| < n(l n) .
This shows that n log n+cn steps make variation distance smaller than e™¢. In fact,
it is known that (1/2)nlogn + cn steps are necessary and sufficient for convergence
[18]. Thus the bound is good but not perfect.

The eigenvalues for this example were determined by Mark Kac [24] to be j/n
with multiplicity (?), 0 < 7 < n. To see this from Theorem 1, observe that the
intersection lattice S here is isomorphic to the lattice £ of subsets s C [n], with
W € S corresponding to s = {i : ; 0 on W}. One deduces

1 s
Aw =Y w(F) =2 5 ="
FCcw

and
mw = |ps(W, V)| = |pc(s, [n])] = |(=1)" | = 1.

This agrees with Kac’s result since there are (?) subspaces W with Ay = j/n.

Example 2. Consider the chain based on the same set of faces (the coordinate
rays) but with general weights. Write wg;; = w; and Pi(1) = 6;, Pi(—1) =1 —0;.
The resulting measure on F is separating if w; > 0 for all ¢, and the stationary
distribution is 7(z) = [[ Pi(z;) = [10:°(1 — 6;)' i, where ¢; = (z; + 1)/2. The
bound for convergence is

1K =7l < > (1 —w)”.
=1

The rate of convergence depends on the shape of the weights. See [16] for many
specific examples. Arguing as in Example 1, we obtain an eigenvalue

)\S = Zwia

ASE]
of multiplicity 1, for each subset s C [n].

Example 3. (Changing landscape) Consider the 2n sets ¢; = {1,2,... ,i}, r; =
{n,n—1,... ,n—i+1}, 1 <i<n. Let w({;) = w(r;) = 1/2n. Suppose Py, puts all
+1’s in ¢; with probability 1 and P,, puts all —1’s in r; with probability 1. This is
a crude model of territory exchange: A force attacks from the left taking a uniform
amount of territory and labeling it with +1. Attacks from the right label with —1.
The stationary distribution is supported on patterns of the form

n—j

J
(1) Y N/ N

NN -~ * -~
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moreover, 7 is uniform on these, w(z)) =1/(n + 1).

[Sketch of proof: It suffices to show that 7{N < j} = (j +1)/(n + 1), where
N(z) is the number of +1’s in . Now w{N < j} is the probability p that, in
sampling from the uniform distribution on X = {¢,... ,¢,,r1,... ,r,}, an element
of R = {rn—j,...,ry} is chosen before an element of L = {¢;;4,...,£,}. This
probability is unchanged if we replace X by R U L, so it is simply the probability
that a uniform pick from RU L is in R, i.e., p= |R|/(|R|+|L|) = (G +1)/(n+1).]

Theorem 2 gives
RN NG
|t —wll <n("=) <n(3) -
2n 2

Thus log, n + ¢ steps suffice to reach stationarity. In fact, it is easy to see that
K?(x,2(9)) > 1/4n for all 2 and j. A Doeblin argument then shows that || K’ —7|| <
(3/4)14/2). So the bound from Theorem 2 is slightly off in this example.

Finally, Theorem 1 gives an eigenvalue (i+ j)/2n for each subset s C [n], where i
is the size of the largest subset {1,... ,i} in s and j is the size of the largest subset
{n—j5+1,...,n} of s (0 <14, 7 <n). Combining these according to the value of
k =i+ j, we obtain the following eigenvalues A and multiplicites m(\):

m(\)
1 1
n—1
2n "
k
o (k+1)2" k2 0<k<n-2
n
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3C. Braid arrangement. One of the discoveries of BHR [6] (see also [5]) is that
for the well-studied braid arrangement the action of faces on chambers captures
a wide variety of shuffling schemes. The braid arrangement in R™ consists of the
() hyperplanes H;; given by z; —x; = 0 (1 < i < j < n). [This is again a
reflection arrangement, the group being the symmetric group S,, on n letters.] The
chambers can be identified with the n! permutations, with 7 € S,, corresponding
to the chamber
Tr(1) > Tr(2) > > Tr(n)-

The faces can be identified with ordered partitions B = (Bj,...,By) of [n].
Here {By, ..., By} is a set partition in the usual sense, but the order matters. (We
recover the chambers by taking k = n, so that each B; is a singleton.) The spherical
cell complex ¥ is the barycentric subdivision of the boundary of an (n —1)-simplex,
and the zonotope Z is isomorphic to the permutohedron, which is the convex hull
of the n! permutations 7, viewed as vectors (7(1),...,7(n)).

The action of faces on chambers is most easily pictured by thinking of a per-
mutation 7 as the set of labels on a deck of n cards, with the card labeled 7(1)
on top, and so on. The ordered partition B operates on 7 by removing cards
with labels in B; and placing them on top (keeping them in the same relative
order), then removing cards with labels in B and placing them next, and so
on. Suppose, for example, that n = 10, 7 = (1,7,3,9,10,4,5,2,6,8), and B =
({2,5},{3,4,6,10},{7},{1,8,9}); then B acting on 7 gives (5,2, 3,10,4,6,7,1,9,8).

We briefly describe two examples which have received much attention in other
settings.

Example 1. (Random to top) Suppose the only ordered partitions that get
positive mass are ({i}, [n] — {i}) with mass w;, 1 < i < n. The walk corresponds
to repeatedly choosing ¢ from w; and then moving the card labeled i to the top.
This is a well-studied model for dynamic rearrangement of files in computer science.
Think of file folders being used with propensity w;. One wants the frequently used
files near the top. A simple self-organizing scheme for achieving this if the w; are
not known is to replace a folder on top after it is used. This scheme is called the
Tsetlin library; see Dies [19] or Fill [23] for extensive reviews.

Assuming w; > 0 for all i (or even all but one ), there is a unique stationary
distribution 7. It is given by Theorem 2 as sampling without replacement from the
weights w;:

Wr(1)Wr(2) * " Wr(n-1) .
(1 —wr) (X —wr)y —wr@)) - (L —wry = — Wr(n_2))

(1) =

This generally non-uniform distribution is easier to describe than to work with: Try
to compute 7{7(n) = 1}. Even the distribution 7 has its own literature; see [15],
p. 174.

The bound from Theorem 2 is

IKE—all< 3 (1w —w),

1<i<j<n

A variety of special cases are analyzed in [16]. Suppose, for instance, that w; = 1/n,
1 <4 <n. Then 7 is uniform, and the convergence rate is the same as for the top-

VR T T & &4 P N T T T T L T b Y T Y T . T



RANDOM WALK AND HYPERPLANE ARRANGEMENTS 15

The bound from Theorem 2 becomes

2\ ¢
It -al < (5) (- 2)"
2 n

so that n(log n+c) shuffles suffice to make the distance at most e™¢/2. More refined
estimates are derived in [17], showing that this bound is sharp.

For this example with general weights w; the eigenvalues were determined by
Phatarfod [28]. Each subset s C [n] contributes an eigenvalue

)\s = Zwia

of multiplicity ms equal to the number of permutations 7 € S,, with s as fixed-point
set. In other words, m is the derangement number d, k = n — |s|, where dj, is the
number of permutations in Sj with no fixed points. Note that d; = 0, so A\g does
not actually occur as an eigenvalue if |s| =n — 1.

It is shown in [6] and [5], by two different methods, how Theorem 1 gives Phatar-
fod’s result. We briefly sketch a third method, since the ideas will be needed in a
more difficult example below (§3D). This third method has the advantage that it
can be used in cases where the Mobius numbers pus(W, V') are not known.

A subspace W € S is defined by zero or more equations of the form z; = z;.
Let sy be the set of k € [n] which do not occur in any of these equations. [If we
identify the elements of S with set partitions of [n] in the usual way, then sy is
the union of the singleton blocks.] A straightforward application of Theorem 1 now
gives eigenvalues \s (s C [n]) with multiplicity

ns = E mw,

Sw =S8

where my = |us(W, V)|. In particular, my depends only on the interval [W, V] in
the lattice S. Now consider

(31) Ns d:efznt = Z myy.

tDs Sw s

The W’s that occur here form a lattice isomorphic to the intersection lattice for
the braid arrangement in R™~I5l. [Use the projection R® — R”™~Is| which picks
out the coordinates not in s.] It follows that the second sum in (3.1) is the sum
of all multiplicities for the latter arrangement, hence it equals the total number of
chambers.? Thus Ny is the number of permutations of [n] — s or, equivalently, the
number of permutations of [n] that fix s. If we now define mg to be the number of
permutations with s as fixed-point set, and if we set My = >, my, we see that
N, = M, and hence ny = mg, as claimed. ;

Example 2. (Riffle shuffle) Consider next the 2-block ordered partitions (s, [n]—s),
0 S s G [n], together with the one-block partition ([n]). We assign weight 1/2"
to each of the 2™ — 2 two-block ordered partitions, and we assign weight 2/2" =

QD o~ P - P ’S —r - 2 ea - Fy el ~ n - S AN\ e AN 11



16 KENNETH S. BROWN AND PERSI DIACONIS

1/2"~! to the one-block partition. The corresponding shuffling mechanism consists
of inverse riffle shuffles. In an ordinary riffle shuffle a deck of cards is divided into
two piles which are riffled together. The inverse chooses a set s of cards which are
removed (“unriffled”) and placed on top. Here s can be §) or [n], in which case
the deck is unchanged; these cases both correspond to the action of the one-block
partition. Thus the effect of our choice of weights is that the 2™ subsets s C [n]
are all equally likely to be unrifled. This corresponds to the Gilbert—Shannon—
Reeds measure, in which the subset to be riffled is chosen uniformly (see [2], where
reference to earlier work is given).

The stationary distribution 7 is uniform. The convergence rate is the same for
ordinary and inverse shuffles. The bound from Theorem 2 gives

K — 7| < (Z) (2"

Thus the distance to uniformity is less than 27¢ after 2log, n+c—1 steps. A more
exact analysis is available [2] showing that the variation distance rapidly cuts down
from 1 to 0 at about ¢ = (3/2)logyn. Thus the general bound from Theorem 2
again gives a quite good result in this case, though not the best possible. When
n = 52, for example, 2log, n = 11.4, but in fact about seven shuffles suffice to mix
up the deck.

See [6] and [5] for many other examples, including the a-shuffles of [2], together
with a detailed description of the eigenvalues. The a-shuffles were shown in [2] to
give the celebrated descent algebra of L. Solomon [30]. Connections between the
chamber walk and the descent algebra for general reflection groups are developed
in Bidigare [5] and Bergeron-Bergeron—-Howlett—Taylor [4].

3D. Threshold arrangement. Our next example is a random walk on an in-
teresting family of graphs,* called threshold graphs. These can be characterized in
many different ways (see [26]), of which we mention three. Let G be a graph with
vertex set V.

(1) G is a threshold graph if and only if there exist real numbers w, > 0 (v € V)
and ¢t > 0 such that the edges of G are the pairs uv with w, + w, > t.

(2) Let d = (dy)vev be the degree sequence of G, i.e., d, is the number of edges
having v as a vertex. Then G is a threshold graph if and only if it is the
unique graph on V' with degree sequence d.

(3) G is a threshold graph if and only if it can be constructed from the empty
graph by repeatedly adjoining either an isolated vertex or a dominating
vertex. [Recall that a vertex of a graph is called dominating if it is connected
by an edge to all other vertices.|

For example, the graph shown in Figure 8 is a threshold graph, being the unique
graph on {1,2,3,4,5} with degree sequence d = (1,4,2,2,3). The condition in
(1) holds with weights w = (1,5,2,2,4) and ¢ = 5. And G can be constructed
from the empty graph by adjoining 3 and 4 as isolated vertices, then adjoining 5
as a dominating vertex, then 1 as an isolated vertex, and finally 2 as a dominating
vertex.

‘A A~ - - e11 1 - 1 - P
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Figure 8. A threshold graph

Notice that, by (3), a threshold graph can be represented (usually in more than
one way) by a signed permutation 7(1)*)7(2)5®) ... 7(n)("), Here 7 is a permuta-
tion and e(i) = £1. The corresponding graph is obtained by adjoining the vertices
in the order 7(n),7(n —1),...,7(1), and making 7(i) dominating if (i) = +1 and
isolated if (7) = —1. For example, the graph in Figure 8 is represented by each
of the eight signed permutations 2T1757374%, 2T1757473%. And the complete
graph on [n] can be represented by n! signed permutations, as can its complement,
the discrete graph. [By the complement of a graph G we mean the graph G’ with
the same vertex set but the complementary edge set.] These examples suggest that
the number ¢,, of threshold graphs on [n] is much less than 2"n!. In fact, it is known

[3] that
£ 1 1 \n»
" <log2 B 1) (10g2) ’

with an absolute error that tends to 0 exponentially fast as n — oco.

Consider now the hyperplane arrangement in R™ consisting of the (Z) hyper-
planes z; + x; = 0, one for each two-element subset ij of [n]. The zonotope Z
dual to this arrangement has been studied extensively; see [26], [32], and further
references cited there. It is convenient here to take Z to be the zonotope called Z’
in §2E. Identifying R™ with its dual, we see that Z is the convex hull of vectors dg,
where F is an arbitrary collection of 2-element subsets ij of [n] and

dp = Z (e; + ej).

ijEE
[Here eq,... ,e, denotes the standard basis of R™.] Now E may be viewed as the
set of edges of a graph G on [n], and dg = (di,... ,d,) is the degree sequence of

G. Thus Z is the convex hull of the set of degree sequences of graphs on [n].

The first major result about Z is that its vertices are the degree sequences of the
threshold graphs on [n]. Hence the chambers of our hyperplane arrangement can
be identified with threshold graphs. Explicitly, a chamber with sign sequence (o;;)
corresponds to the graph with edge set {ij : 0;; = +}. The face poset F seems
quite complicated, but we can single out a subset of F whose action generates an
interesting random walk:

I s T T O T N T T
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R is defined by

r1+x; >0 for 2<j5<n
z;i+x; =0 for 2<4, j<n,i#].

The action of R; on chambers is easily pictured: Given a threshold graph, R,f adds
edges to make the vertex ¢ dominating, and R, deletes edges to make 7 isolated.

As in Example 2 of §3B, we can describe a probability measure on these 2n
coordinate rays by giving weights w; > 0 (1 < i < n, Yw; = 1) and “coin-tossing
parameters” 6; (0 < 6; < 1). The resulting walk then evolves as follows: At each
stage there is a threshold graph. Pick a vertex ¢ according to the weights w;. Then
flip a coin with probability 6; of heads. If heads comes up, add edges to make
dominating; otherwise delete all edges involving %.

If w; > 0 for all i (or even all but one ¢), then our measure on F is separating and
there is a unique stationary distribution 7. It can be described as follows: Sample
without replacement from the weights w; to get an ordering i1,... ,i, of [n]. Pick
signs €(i) = +1, where (i) = +1 with probability 6;. Then ii(il)ig(iz) cif) g
random signed permutation whose associated graph G is distributed from 7.

If w;, = 1/n and 0; = 1/2 for all 4, then 7 is simply the measure on threshold
graphs induced by the uniform distribution on signed permutations. In other words,

m(G) = 5(G)

~onpl’

where s(G) is the number of signed permutations representing G. For example,
m(G) = 1/2™ if G is the complete graph or the discrete graph. Note, in particular,
that 7 is not uniform.

The convergence bound given by Theorem 2 is exactly the same as in Example 1
of §3C (wighted random-to-top shuffle):

IKG =7l <D (1 —wi —wy),

tj

where the sum is taken over all 2-element subsets ij of [n]. In particular, nlogn+cn
steps suffice to reach stationarity if w; = 1/n for all i.

Finally, one can work out the eigenvalues and multiplicities by a slight variation
on the method used in the random-to-top example. We omit the details and simply
state the result: For each subset s C [n] there is an eigenvalue

)\s = Zw’i;

ASE]

with multiplicity m, equal to the number of threshold graphs on [n] with s as the
set of isolated vertices. Equivalently, if n — |s| = k, then mg = 75, where 7 is the
number of threshold graphs on [k] with no isolated vertices. Thus 7 is an analogue
of the derangement number dj.

We have 79 = 1, 77 = 0 [so that ms = 0 if |s] = n — 1, and Ay does not
actually occur], and 7, = t;/2 for k > 2 where, as above, tj is the number of

1T 1 111 T1a mlL.* . 11. € 41 . C. 441 44T Y g e e
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(3) of threshold graphs, G has no isolated vertices if and only if its complement G’
has at least one isolated vertex.

It is remarkable that the multiplicities ms can be obtained, as in the random-
to-top example, with virtually no knowledge about the intersection lattice S. For
completeness, however, we give a brief description of the elements of S. A subspace
W € S of dimension r is determined by the following data:

(i) A subset so C [n] which is either empty or else has at least 3 elements.
(ii) A set partition {Bi, ..., B,} of the complement [n] — so.
(iii) For each block B; with |B;| > 2, a set partition of B; into two parts.

Write ¢ — j if ¢ and j are in the same part of some block By with |By| > 2 and
t —~ 7 if they are in different parts of some Bj. Then the subspace W corresponding
to (i)—(iii) is given by the (redundant) system of equations

z; =0 if 7€ sg

To prove that elements of S correspond to data as in (i)—(iii), let W € S be
defined by equations of the form x; + x; = 0. Let I' be the graph on [n] whose
edges are the ij such that 2; +x; =0 on W. Then x; = x; on W (resp., z; = —z;
on W) if i and j can be joined by a path in T" of even (resp., odd) length. If T
contains a cycle of odd length, it follows that z; = 0 on W for all vertices i in the
connected component 'y containing that cycle. Moreover, I'y is the complete graph
on sp ={i:x; =0 on W}, and all other connected components are bipartite. The
remaining details are left to the reader.

Remark. Although the face poset F is complicated, its atoms (i.e., the faces that
are rays) are easy to describe: Each W € § of dimension r = 1 contributes two
rays. So we get one ray for each ordered pair (s,t) of disjoint nonempty subsets of
[n] which either cover [n] or omit at least 3 elements. In addition, we get the 2n
coordinate rays if n > 4; these correspond to the case |sg| = n—1. This description
of the rays in F or, equivalently, the vertices of the polytope 5 (§2D), is equivalent
to the description of the facets of the zonotope Z given in [26], Theorem 3.3.17.

3E. Zonotopes, tilings, and oriented matroids. As explained in Section 2E,
the dual of a central hyperplane arrangement is a convex polyhedron called a zono-
tope. The hyperplane chamber walks become walks on the vertices of the zonotope.
In this section we show how to analyze random walk on the vertices of a tiling of
a zonotope. Given a zonotope Z = .7 [—v;, v;], a zonotopal tiling of Z is a poly-
hedral subdivision of Z in which all of the faces are translates of zonotopes of the
form ), [—vs,v], where s C {1,...,n}. Figure 9 shows two examples. See [38],
§7.5, or [9], §2.2, for further information about zonotopal tilings.

A walk on the vertices of a zonotopal tiling is driven by a probability distribution
w(-) on the faces making up the tiling. From a given vertex z, choose a face F' from
w(-) and move to the vertex of F' closest to x. If the zonotopal tiling is a projection
of a higher dimensional zonotope (Figure 9a), the walk is just projected and no new
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[Pictures to be pasted in]

Figure 9. Two zonotopal tilings of a 10-gon

However, there is a very similar combinatorial structure called an oriented matroid
which covers general zonotopal tilings. As we show in Section 6, Theorems 1 and 2
carry over to oriented matroids. The present example may thus motivate the extra
work.

Recall that a face of a hyperplane arrangement {H;}? ; can be coded as a se-
quence of {0, £} symbols of length n. These are the signs ¢ in F' = (H;". An
oriented matroid is a set X C {0, £}"™ satisfying

(1) 0 e X.
(2) If x € X then —z € X.
(3) Ifm,yEXthenx-yEX,Wherem-y:{ 0
Yi i =U.
(4) Given z,y € X, let S(z,y) = {i : ©; = —y; # 0}. For every j € S(z,vy)
there isa z € X with z; =0 and 2z, = (z-y); = (y - z); for i ¢ S(x,y).

It is not hard to check that the sign sequences of a central hyperplane arrange-
ment form an oriented matroid. There is also a concept of affine oriented matroid,
generalizing affine hyperplane arrangements, cf. [9], §4.5.

A chamber of an oriented matroid X is an element y € X with no zero coordi-
nates. (We may assume without loss of generality that such elements exist.) Note
that if y is a chamber and € X then x-y is a chamber. Thus if w(-) is a probability
distribution on X we may define a Markov chain K(z,y) on the chambers of X’ via

(3.2) K(z,y) = Z w(z).

z-x=y

Section 6 shows that Theorems 1 and 2 hold for this chain.

Return now to zonotopal tilings. According to the Bohne-Dress theorem (see
[38], 7.32), a zonotopal tiling of a fixed zonotope corresponds to a certain affine
oriented matroid. The correspondence is such that the walk on the matroid yields
the walk described above on the vertices of the tiling. We are thus in a position to
find the eigenvalues and rates of convergence.

We conclude this section with an example of a family of tilings of a 2n-gon where
all the details can be carried through. This example was suggested by Louis Billera.
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pictures.
Zo Zs Zy Zs

[pictures to be pasted in]

n 2 3 4 )
tn 1 3 6 10
Up, 4 7 11 16
en 4 9 16 25

At stage n, a new family of n — 1 rhombus tiles is added on the top and left of the
previous Z,,_1. This results in a rhombic tiling Z,, of a 2n-gon with ¢,, = (g) tiles,
Uy = (";1) + 1 vertices, and e,, = n? edges. These formulae are easily proved by
induction.

These tilings are all projections of a three-dimensional zonotope. Nevertheless,
we will present the associated affine oriented matroid, which is here realized by an
affine hyperplane arrangement, and use it to analyze the walk. The hyperplane
arrangement A,, associated to the tiling Z,, may be represented as n lines in R? in

general position. Thus the examples above correspond to

n 2 3 4 )

Here the chambers of A,, correspond to vertices of the tiling Z,,; the segments of
lines in A,, correspond to edges of Z,,, with the half infinite line segments corre-
sponding to the 2n bounding edges of Z,,; and the vertices of A,, correspond to the
two-dimensional tiles of Z,,.

The correspondence may be seen here directly (without the Bohne—Dress theo-
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The dotted segments (pseudo-lines) can be straightened out to be the lines shown.
See [38], §7.5, for further details.

We will analyze the walk on the vertices of Z,, driven by (g) weights on the
2-dimensional tiles. This corresponds to a walk on the chambers of A,, driven by
weights on the (g) vertices. Each vertex corresponds to the intersection of two
lines. Labeling the lines L, ..., Ly, let w;; be the associated weights. Suppose for
simplicity that all w;; > 0. Then the weights are separating and so the walk has a
unique stationary distribution described in Theorem 2. Here, it can be shown that
the stationary distribution is supported on chambers of A,, that meet the convex
hull of the vertices of A,,.

Theorem 1 shows that the eigenvalues and their multiplicities are

with A, = 3., wi;. This gives 1 +n + (3) = ("11) + 1 eigenvalues.
Theorem 2 shows

n
1K =l <Y A
=1

For example, if w;; = (—711), then A\, = 2/n and the bound becomes

2
IKE =l < ()"
n

Thus, for large n, two steps suffice for convergence.

As a second example, let w; ;41 = 1/(n—1) for 1 <i <n—1, and w;; =0
otherwise. These weights are separating for n > 4 and the bound in Theorem 2
becomes

1 \* 2 \*
K! x| < 2(—) —9 ( ) .
52—l < 2(-==) + (-2 (-
Here again, the walk converges after ¢ = 2 steps.

3F. Further examples. There are many further examples of hyperplane arrange-
ments where the chambers can be indexed by a natural class of combinatorial ob-
jects, cf. Orlik—Terao [27], Stanley [33], and Ziegler [38]. We briefly mention two:
(a) The set of all regular cubical tilings of a fixed zonotope and (b) the Shi arrange-

g
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A walk on tilings. Let Z = [—vy,v1]+- - -+ [—vp, vp] be a d-dimensional zonotope
in R? with n zones. A zonotopal tiling of Z is called cubical if every face of the
tiling is a translate of a parallelepiped of the form } . [~v;, v;], where s is a subset
of [n] = {1,...,n} such that { v;};es is linearly independent. A zonotopal tiling is
regular if it arises as an appropriate projection of a (d 4 1)-dimensional zonotope.
(See [38] or [9] for the precise definition.) For example, the left tiling in Figure 9
is regular, but the right one is not. Billera and Sturmfels [7] have proved that the
set of all regular cublcal tilings of a fixed zonotope Z is itself the set of vertices of
a second zonotope Z. Thus the walk on the vertices of the zonotope 7 becomes a
walk on the set of regular cubical tilings of Z.

To define Z, consider the subsets s C [n] such that {v; : i € s} is a minimal
linearly dependent set. Each such s gives rise to a linear relation Y ., a;v; = 0,

unique up to scalar multiplication. Let ag = (v, ..., ). Then 7 is the zonotope

in R™ defined by
Z = Z[—as,as].

S

It has one zone for each minimal dependent subset of {v;}. Note that Z is (n — d)-
dimensional, because the linear span of the «ay is the kernel of the linear surjection
R™ — RY given by e; — v;.

One can give a more explicit formula for Z by noting that each minimal depen-
dent subset of {v;} can be extended to a set of d+ 1 vectors that span R?. Writing
these as the columns of a matrix, we can find the essentially unique linear relation
among them by forming the cross product of the rows of the matrix (which form a
set of d independent vectors in R9t1). This leads to the equivalent definition

Z\ = Z[_B&ﬁs]»

S
where now s ranges over the (d + 1)-subsets s1 < --- < s441 of [n] and

d+1

By = Z(—l)idet(vsl, 3 Us 3 Vsyqs e s Vs )Cs, -

=1

Note that some of the s may be 0 and some of the nonzero ones may be scalar
multiples of others. So the number of zones of Z may be less than ( dj’_l).

As an example, there are 8 regular cubical tilings of an octagon (Figure 10). The
zonotope Z is then itself an octagon, as shown. More generally, consider all regular
cubical tilings of a regular 2n-gon. The bounding zonotope Z is generated by n

vectors in R2. The zonotope 7 is (n — 2)-dimensional, generated by (g) vectors

in R™. To go further, one would have to understand the geometry of Z , identifying
natural families of faces and thus walks on the regular tilings.

The papers [37] and [21] study all cubical tilings of a 2n-gon and connect these
to the higher Bruhat orders of Manin and Schechtmann. For n <5 all such tilings
are regular, so that Fig. 3 of [37] gives a picture of the regular cubical tilings of a
10-gon.

Shi arrangement. The Shi arrangement in R™ consists of the 2 - (;‘) hyperplanes
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Figure 10. An octagon of tilings of an octagon.

of the braid arrangement discussed in [33]. It is known that there are (n + 1)"~!
chambers, which may be put into bijective correspondence with the set of labeled
trees on n + 1 vertices as well as with the set of “parking functions” (see [33] and
further references cited there). There are many such bijections. Unfortunately,
despite extensive effort, we have not found one such that the natural walk on the
chambers seems natural when viewed as a walk on labeled trees.

4. STATIONARY DISTRIBUTION AND BOUNDS

In this section we prove Theorem 2 and some extensions. The argument handles
input from a stationary process on F, not just i.i.d. input. We begin with some
general observations that use no special properties of the hyperplane situation.

4A. Tteration of random mappings. Let F be an arbitrary finite semigroup
and let C be a finite set on which F operates. Thus we have a function F x C — C,
denoted (f,c) — fe, such that f(gc) = (fg)c for f,g € F, ¢ € C. Note that this
setup encompasses an arbitrary family of mappings C — C, since we could simply
take F to be the semigroup that they generate under composition.

Let ..., F_o,F 1, Fy, F1, F5,... be a stationary F-valued process, e.g., an i.i.d.
sequence. (Recall that “stationary” means that the distribution of the sequence
is shift-invariant.) We can use this to define a process (Cy);>o (not necessarily
Markov) on C: Fix a starting point Cy and set

(4.1) Co=F_y--F_oF 1C
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Our description of the limiting distribution for C, will make use of the infinite
product
o
[[F=lmF-F
i=1 oo

where, in this discrete setting, a sequence is said to converge if and only if it is
eventually constant. In order for this to make sense, we assume (F;) satisfies

(IP) The infinite product H F; exists almost surely.
i=1

Example. If F is the face semigroup of a hyperplane arrangement, then the
sequence of partial products Fj - - - Fy is increasing with respect to the face relation,
so (IP) holds.

Let F° =[[;2, F; and F} = Hle F;. Our proof of Theorem 2 will be based on
the following simple observation:

Theorem 3. Assume the stationary sequence (F;);ez satisfies (IP). Fix Cy € C,
let Cy be defined by (4.1) for £ > 1, and let w; be the distribution of Cy, i.e.,
me(c) = P{Cy = ¢}. Let w be the distribution of F{°Cy. Then my — m as £ — 00.
More precisely,

(4.2) lme — ml|lrv < P{F{ # F°}.

Proof. By stationarity, C; has the same distribution as F{Cy. Since F{Cy — F>Cj
a.s., it follows that my, — m. To prove (4.2), recall that, by definition of total
variation distance,
-7l = D) — w(D)|.
Ime — l| = max (D) — =(D)]

We have 7,(D) = P{F{Cy € D} and (D) = P{F{°Cy € D}. Break up both events
according to whether or not Ff = F°:

m(D) = P{F}{ = F{®, F{Cy € D} + P{F} # F°, F/Cy € D}
7(D) = P{F{ = F{°, F{°Cy € D} + P{F{ # F{°, F{°C, € D}.

The two first terms are equal and the two second terms are at most P{F} # F°}.
O

Remark. The infinite product F° acts on C as an infinite composite fi1 o fao---
of random maps. The idea of using such infinite composites to construct limiting
distributions has occurred in a variety of contexts. See, for instance, Letac [25] and
Chamayou—Letac [12]. In the setting of the hyperplane chamber walk, one can even
verify that the Propp—Wilson [34] monotonicity condition holds with respect to the
weak Bruhat order [9] on C. This means that monotone coupling from the past can
be used to draw exact samples from the stationary distribution .
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4B. Proof of Theorem 2. We now specialize to the case where F is the set of
faces and C the set of chambers of a hyperplane arrangement. We still allow, for
the moment, the process on chambers to be driven by a stationary process on F as
above. If we assume that F>® is a.s. a chamber, then F} = F as soon as FY is a
chamber. The bound (4.2) therefore yields

(4.3) | — || < P{F, - F, ¢ C}.

Assume from now on that (F;);cz consists of i.i.d. picks from a measure w on F,
so that (4.1) is the hyperplane chamber walk. If w is separating, then F° is a.s.
a chamber and (4.3) holds. Now F} --- Fy ¢ C if and only if there is a hyperplane
H € A such that F; C H for 1 <i</{. And P{F; C H} = \y. Hence

(4.4) P{Fy-- F;¢C}< Y P{F,CHfor 1<i<(}=> Xy
HeA HeA

Combining this with (4.3), we get part (c) of Theorem 2.

Remark. BHR [6] give a more careful analysis of P{F;---Fy ¢ C}. They break
up the event {Fy --- Fy ¢ C} according to the support W of F --- F; and then use
Mobius inversion to get

(4.5) P{Fi-- Fo ¢ Ch=—= Y us(W,V)\jy.

wes
W#V

Combining (4.3), (4.4), and (4.5), we obtain

(46) IKE —xl <= 37w VNG < 30 N
WAV HeA

so that (4.5) gives, in principle, a sharper bound than that of Theorem 2, using all
the eigenvalues. On the other hand, the right side of (4.5) seems quite difficult to
estimate (without using the second inequality in (4.6)), and we have not found any
examples where we could use it to get a better bound than that of Theorem 2.

Returning to the proof of Theorem 2, still assuming w is separating, Theorem 3
gives the following description of the limiting distribution of the chain started at
Cy: Sample with replacement from w, stopping as soon as F} - - - F}, is a chamber.
Then F} - - - F,, is distributed from 7. As we explained at the beginning of §3, this is
equivalent to the description of 7 in part (b) of Theorem 2. Since 7 is independent
of the starting chamber Cy, we have also proven half of (a): There is a unique
stationary distribution if w is separating.

Finally, suppose w is not separating, and let H contain the support of w. Then
Theorem 3 gives the limiting distribution m¢, for the chain started at Cy, and we
see that ¢, is concentrated on the chambers on the C-side of H. Hence there are
at least two stationary distributions, and Theorem 2 is proved.

Remarks. 1. One can give more precise results for general (non-separating) w
Let A’ be the set of H € A which contain the support of w. Partltlon the chambers

Ve B B T T T A7 1 1 g4 e Y M1 . 21 °*_ s R I Y
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of the hyperplane chamber walk into its components: The walk started in any A’-
chamber stays there and has a unique stationary distribution. In particular, the
set of all stationary distributions is a simplex with one vertex for each A’-chamber.

2. The weighted random-to-top shuffle with Markovian input is a standard item
of study in the recent literature. Refer to Phatarfod-Dyte [29] and Dobrow—Fill
[20] for results in this case. Note that for a stationary Markov chain as input,
the process is driven by the time-reversed chain according to (4.1). Turning things
around, suppose we are interested in the process Cy, F1Cy, Fo F1Cy, ... with (F;)$2,
a stationary Markov chain. Let F 1, ﬁz, ... be the time-reversed process. The bound
then becomes _ B

e — || < P{Fy - F¢ ¢ C}.

As before, Fy-F ¢ C if and only if there is a hyperplane H € A containing
Fi, ..., Fy; the probability of this event can be bounded by the “cover time” of the
chain (F;). See [1] for a review of the literature on cover times.

5. DIAGONALIZATION

In this section we prove Theorem 1. After setting up some notation in 5A, we
prove that K is diagonalizable in 5B, assuming, for simplicity, that A is central.
The proof gives the eigenvalues but not the multiplicities (which were calculated
by BHR [6] in the central case). In 5C we show how the ideas in 5B lead naturally
to a new proof of the BHR formula for the multiplicities. Finally, we treat the
non-central case in 5D.

5A. Notation. For any finite set S, let RS denote the vector space of all real linear
combinations ) . ¢ a(s)s of elements of S. In particular, we have vector spaces RC
and RF generated by the chambers and faces of a hyperplane arrangement. Note
that RF is an R-algebra (the semigroup algebra of F), and RC is an RF-module
via the action of faces on chambers. Given a probability measure w on F, we have
an element

(5.1) T=T,= )Y w/F)F
FeF

of RF, which therefore acts as an operator on RC. Explicitly, given an element
a =3 ccca(C)C €RC, we have

T(e) =Y w(F)a(C)FC =Y B(C"C',

where

BC) =Y wF)C) =) a(C)K(C,C").

F,C:FC=C" cecC

Here K is the transition matrix defined at (1.3). Thus if elements of RC are viewed
as row vectors indexed by C, then T acts as right multiplication by the matrix K.
In particular, the eigenvectors of T" on RC are the left eigenvectors of K.
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5B. Diagonalizability. We already have an eigenvector Y7 (C)C with eigenvalue
1 (= A\v), where 7 is any stationary distribution for the chamber walk defined by
K .5 Note that this eigenvector maps to 1 € R under the linear map

80:RC—>R

given by 9p(C) = 1 for all C € C. Now 0y is a homomorphism of RF-modules,
where each F' € F acts as the identity on R, so kerdy is an RF-module. In
particular, ker 0y is T-invariant, so 7' (and hence K) will be diagonalizable provided
its restriction to ker 9y is diagonalizable.

Note that ker 9y is spanned by the differences C — C’ (C,C’ € C). In fact, by
connectivity of the chamber graph, ker 9y is spanned by differences C' — C’ such
that C' and C’ are adjacent. Let F; C F be the set of codimension 1 faces, i.e.,
the set of faces whose support is a hyperplane. Our first task is to define a linear
surjection 0y : RF; — ker 0y, which sends A € F; to 01(A) = £(C — C’), where C
and C' are the two chambers having A as a face; here we must specify a rule for
determining the ambiguous sign.® Assume, for simplicity, that A is central, so that
A can be taken to consist of linear hyperplanes. We will return to the general case
in §5D.

Choose arbitrarily an orientation for the ambient vector space V. This means
that we have a rule which associates a sign € = +1 to each ordered basis eq, ... , e,
of V, in such a way that two ordered bases have the same (resp., opposite) sign if
the matrix relating them has positive (resp., negative) determinant. Similarly, each
hyperplane H € A is itself a vector space and we choose arbitrarily an orientation
for it. Given a chamber C' and a codimension 1 face A of C, we use the chosen
orientations on V' and on H = supp A to define a sign [A : C] = +£1, as follows:
Choose a positively-oriented ordered basis eq,... ,e,_1 for H, choose v € C, and
set

[A:C]=¢(e1,... ,€n-1,v).

This is easily seen to be independent of the choice of ey, ... e, for fixed v, and
it is independent of v because C' is connected. In fact, [A: C] =e(e1,... ,€p-1,0)
for any vector v on the same side of H as C.

Note that if A € F; and C, C’ are the two chambers having A as a face, then
[A: C'] = —][A: C] because C and C’ are on opposite sides of H = supp A. The
desired surjection

81 : Rfl — ker 80,

is now defined by 01(A) = [A: C|C + [A: C'|C’ for A € Fy, where C, C’ are the
chambers having A as a face.

Next, we define an action of F on RF;. Given F' € F and A € F;, we wish
to define F'x A € RF;. Consider the product F'A in the semigroup F. If F C
H = supp A, then F'A is again in F; (and has the same support H), and we set
FxA=FA. If FZ H, then FA is a chamber and we set F'x* A = 0. This product
makes RF; an RF-module.

5 Alternatively, we could get 7 from the Perron-Frobenius theorem instead of probability theory.
6For our present purposes, we could set 91(A) = C — C’, where C is on the (arbitrarily chosen)

.~ T 4 o~
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Lemma 1. The map 01 : RF; — kerdy is a homomorphism of RF-modules. In
particular, it commutes with the action of T = Yw(F)F.

Proof. Given F' € F and A € F1, we must check that 01(F x A) = F01(A). Let
C and C’ be the chambers having A as a face. If FF € H, then FA = FC = F(C’,
and we have F0,(A) = +F(C — C’) = 0. Since F x A = 0, the desired equation
holds. If F C H, then FC and FC’ are the two chambers having F'A as a face, so
h(F+xA)=+(FC—-FC'") and F0,(A) = £(FC — FC"). The two ambiguous signs
agree because F'C' and C' are on the same side of H. O

Finally, we lump together the elements of F; with the same support to obtain

(5.2) RF = EPRCx,
HeA

where Cp is the set of faces having support H. The notation “Cg” serves as a
reminder that Cy is the set of chambers of the arrangement Ag in H obtained by
restriction (see §2A). The decomposition (5.2) is a decomposition of RF-modules,
and the action of T" on the summand RCy is the same type of operator, relative
to the arrangement A4y, as the original action of 7' on RC. [The relevant measure
here on the faces of Ay, which are simply the F' € F such that FF C H, is gotten
by restricting w. This restriction will not generally be a probability measure, but
a trivial argument shows that the results we are trying to prove are true for all
positive measures if and only if they are true for probability measures.]

Arguing by induction on the dimension of the ambient space V', it follows that T’
is diagonalizable on RF7, hence also on the homomorphic image ker 0y, hence also
on RC. The argument also shows that the eigenvalues are contained in {Aw }wes.

Remark. The proof gives explicit formulas for a set of eigenvectors spanning RC,
provided such formulas are already known inductively for T" acting on each RCp.
The details have been worked out by Bidigare, Denham, and Hanlon [private com-
munication] and will appear elsewhere.

5C. Multiplicities. We continue to assume, for simplicity of notation, that A
is central. The argument above did not give us multiplicities for 1" acting on RC
because we ignored ker 0;. In order to remedy this, we extend the exact sequence

RF, 2R 2 RS0

to a longer exact sequence

(5.3) ...HRFPi...inlﬁRciRﬁo

(which is eventually 0 at the left), where F, is the set of faces of codimension p
in V.

In order to define 0, : RF, — RF,_1, we need numbers [A : B] = £1 whenever
A is a codimension 1 face of B. To this end we choose an orientation for each W
in the intersection lattice S. Then if we restrict A to the support of B, the face B
becomes a chamber, A becomes a face of codimension 1, and our chosen orientations
give us a number [A : B] = £1 by §5B applied to the restricted arrangement. We
now define a linear map 9, : RF, — RF,_1, by

Op(A)= > [A:BIB (A€ F,).
B>A
Here B > A means that B covers A in the poset F, i.e., A is a codimension 1 face

A D ) ml. _ C_11. 1. e 7 g1 L 9O ) raY
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Lemma 2. Let A,C € F, with A < C and A of codimension 2 in C. Then there
are ezactly two faces By, Ba in the open interval (A,C), and we have

[A : Bl][Bl . C] == —[A : BQ][BQ : C]

Proof. Replacing A by its restriction to the support of C, we reduce to the case
where C' is a chamber. Let Hy,... , H; be the walls of C, i.e., the supports of the
codimension 1 faces. Let H; = ker f; (f; € V*), where f; is chosen so that f; > 0
on C. Then C is defined by f; > 0 for 1 < 4 < k, and this is a minimal set of
inequalities defining C'; moreover, the faces of C' are the nonempty sets obtained by
replacing some of these inequalities by equalities, cf. [11], §1.4B and last paragraph
of §I.4A. The given face A of codimension 2 is contained in exactly two of the walls,
say Hy, Ho, because any three of the f; are linearly independent and hence define a
face of codimension 3. [A linear relation among three of the f; would give one f; as
a positive linear combination of two others. But then the inequality f; > 0 would
be redundant in the description of C', and H; would not be a wall.] It follows that
the only faces between A and C' are the faces Bi, By of C supported by Hy, Hs.

To prove [A : B1][B1 : C] = —[A : By][By : C], we may assume that H; has
been oriented so that [A : B;] = +1. We may therefore get a positively-oriented
ordered basis for H; (i = 1,2) by choosing a positively-oriented ordered basis
€1,...,6n_o for Hy N Hy and adjoining a vector v; € H;. Then v; + vy € C,
and [B; : C] = e(ey,... ,en—2,0;,v1 + v3). The lemma now follows from the fact
that e1,... ,e,_2,v1,v1 +vs and eq,... ,e,_2, V2,01 + vo are related by a matrix of
determinant —1. 0

Next we define an action of 7 on RF, as in §5B: Given F' € F and A € F),, set

FA if F CsuppA

0 otherwise.

F*A:{

This makes RF), an RF-module, which we may decompose according to supports:

RF, = P RCw,

WeS,

where S, = {WW € S : codim(W, V) = p} and Cy is the set of faces with support
W. The complex (5.3) now becomes

(5.4) - — P RrRCw - @PRCy —RC - R — 0.
wes, HeA

Lemma 3. The complex (5.4) is a chain complex of RF-modules, i.e., each bound-
ary map commutes with the action of F.

Proof. Consider a typical component dy,w : RCy — RCy of 9, where U € S, and
W € §,—1. We must show that the action of each F' € F commutes with Oy w. If
U ¢ W, then Jy,y = 0 and there is nothing to prove. If F' Z W, then F acts as 0
on both RCyy and RCyy, so again there is nothing to prove. Finally, if F* C W, we
may replace A by its restriction to W and apply Lemma 1 of §5B. U
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Lemma 4. The sequence (5.4) is ezxact.

Proof. This follows from the homology theory of regular cell-complexes [13]: Recall
that the zonotope Z associated to A (§2E) is a contractible regular cell-complex
whose face poset is the poset F°P opposite to F. The facts we have proved about
the numbers [A : B] say precisely that they form a system of “incidence numbers”
for Z in the sense of [13] and hence that (5.3) is the augmented cellular chain
complex of Z. The exactness of (5.3) and (5.4) therefore follows from the fact that
Z has trivial homology. 0

We are now in a position to calculate eigenvalues and multiplicities by the same
sort of induction used in §5B. We need the following well-known special case of the
“Euler characteristic principle”:

Lemma 5. Let
0—V, 2o . v, 2N, =0

be an exact sequence of finite-dimensional vector spaces. Let T; be a linear operator
on V; such that 0;T; = T;_10; for 1 < i < m, and let p; be the characteristic
polynomial of T;. Then g00901_1%0290§1 o= 1.

Sketch of proof. For m = 2 this is proved by looking at matrices; the general case
follows by induction on m. OJ

Applying this to the action of T' = Yw(F)F on (5.4), we may assume inductively
that we have a decomposition of the characteristic polynomial ¢y of T acting on
RCy for each U # V in S, say

eoN) =[] O=aw)m"0
WeS:WCU
for some integers m(W,U) > 0. Lemmas 4 and 5 then give the characteristic

polynomial ¢ = ¢y for T acting on RC:
)= (ay) T ()

W,U:
WCUGV
= H ()\ - Aw)m(W’V)7
wes
where m(V,V) =1 and, for W GV,
(5.5) m(W,V)=- > (=)= OVnmw,v).
U:WCUGV

This recurrence formula is reminiscent of the recurrence (2.1) for the Mébius func-
tion = ps. In fact, if we multiply (5.5) by (—1)°4™(W:-V) and compare the result
to (2.1), we conclude, inductively, that

m(W, V) = (=1) (W, V) = |u(W, V)],
where the second equality is the “alternating sign” property of us ([31], 3.10.1, or

[27], 2.4.7). Theorem 1 is now completely proved in the central case.

Remark. As a byproduct, we recover Zaslavski’s famous formula [35] for the
number of chambers:

(5.6) Cl=>_ mW,V)="> |uW, V).

WeS WeS
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5D. The non-central case. There are two ways to treat the case where A is not
necessarily central.

Method 1. Go through §§5B and 5C, making changes to accommodate the general
case. This involves minor changes in wording (e.g., one has to consider orientations
of affine subspaces), and, more importantly, one has to replace the zonotope Z by
the cell-complex A of §2F.

Method 2. Deduce the general case from the central case by coning (§2F). Namely,
let A be the central arrangement obtained from A by coning, and let F, C, and S
be the associated face poset, set of chambers, and intersection lattice. Recall that
F may be identified with a subset F© ¢ F. We then have RC C RC, and if we view
w as a measure on F supported in .TJF, we get an operator T on RC extending T
and mapping all of RC into RC.

Diagonalizability of T therefore follows from that of T, and we get the same
eigenvalues and multiplicities for T as for T, except that the multiplicity of 0 has
to be reduced by |C| — |C| = |C|/2. To complete the proof we need to show that this
reduction is accomplished by throwing out the eigenvalues of T corresponding to
the W € S such that W C Hy = V x 0. [These W are the elements of S that do not
correspond to anything in S.] Note that if W € Hy in S and W is the corresponding
element of S (gotten by intersecting with V' x 1), then ,ug(W, V) = us(W,V)
because the corresponding open intervals are isomorphic. What we need to complete
the proof is:

Lemma 6. Z (—1)COdim(W’V)/L§(W, V) — Z (_1)codim(U,V)'u§(U7 V)
wWesS: UES:
WCHqg UZHo

[Recall that the sum of the left and right sides is |C| by (5.6), so this shows that
the left side equals |C|/2, as desired.]

Proof. Fix W C Hy in S and note that

p(W, V) = — . wUv)
UES:
UZHo,UNHo=W

by the Crapo complementation formula (see [14], Theorem 3, [8], 6.2, or [27], 2.40).
Multiply by (—1)dm(W:V) and sum over W to obtain the lemma. O

6. GENERALIZATION TO ORIENTED MATROIDS

We introduced oriented matroids in §3E, as generalizations of central hyperplane
arrangements. There are also affine oriented matroids, which generalize arbitrary
(affine) hyperplane arrangements. In this section we indicate how to extend Theo-
rems 1 and 2 to the oriented matroid setting. We begin by introducing the relevant
terminology in 6A. The extensions of Theorems 1 and 2 are then treated in 6B.

6A. Oriented matroids. Our basic reference here is [9], especially Chapter 4.
See also [38]. Our treatment closely follows these sources, with one exception:
We use the same geometric language (chambers, faces, intersection lattice, ...) in

Y Y I T Y T, Y L T T T B A T Y
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Recall from §3E that an oriented matroid is a set X of sign sequences (x;);crs
satisfying 4 axioms. Here [ is a finite index set. As an aid to the intuition, let F
be a set whose elements F' (called faces) are in 1-1 correspondence with the sign
sequences in X. We denote the correspondence by F +— o(F) = (0;(F));cr.

The oriented matroids arising from (central) hyperplane arrangements are said
to be realizable. There are non-realizable oriented matroids, but it can be shown
that all oriented matroids can be realized by “pseudo-hyperplane arrangements”;
these are topological analogues of hyperplane arrangements, in which the “pseudo-
hyperplanes” are not necessarily flat. See [9], Chapter 5.

The set F of faces of an oriented matroid is a poset under the “face relation”
defined in terms of sign sequences as in §2B. And axiom (3) for oriented matroids
gives F the semigroup structure that has played such an important role in the
construction and study of the hyperplane chamber walk.

Each face F' has a support, determined by the zero set z(F) ={i € [ : 0;(F) =
0}. The set S of all supports is a lattice in a natural way, which we call the
intersection lattice. For any W € S, we write z(W) for the zero set of any face F
with support W. We denote by V the largest element of S. This is the support
of any maximal element C' € F. These maximal elements are called chambers, and
the set of all of them is denoted C. For any W € S, the set of F' € F with support
W is again the set of chambers of an oriented method Xy, said to be obtained by
restriction to W. Its face poset is Fyy = {F € F :supp F' < W}.

The rank of an oriented matroid is the length of the interval [0, V] in S. (For a re-
alizable oriented matroid associated to an essential central hyperplane arrangement,
the rank is simply dim V'.) The length of the interval [W, V] is the codimension of
W it is equal to rank X — rank Ayy. It is also the rank of an oriented matroid
XYW whose sign sequences are gotten from {o(F) : F € F} by considering only the
components o; with i € z2(W). The face poset of X" is isomorphic to F>F for any
F with support W. (In the realizable case, X"V corresponds to the subarrange-
ment A" C A given by the hyperplanes which contain W. This subarrangement
corresponds to an essential arrangement in the quotient space V/W.)

The face poset F of X can be identified with the poset of cells (including the
empty cell) of a regular cell-complex ¥ = ¥ homeomorphic to the sphere S"~*
(n = rank X') by Theorem 4.3.3 of [9]. There is also a “dual” cell-complex A,
which is topologically an n-ball, whose poset of nonempty cells is isomorphic to
F°P (]9], 4.3.4). This plays the role of the zonotope dual to a central hyperplane
arrangement.

Finally, we have already remarked that there is a concept of affine oriented ma-
troid. We omit the formal definition, which is discussed in [9], §4.5. Suffice it to
say that the definition is cooked up so that the analgoue of the coning construc-
tion (§2F) remains valid, reducing the affine case to the case of ordinary oriented
matroids. Once again, F°P is isomorphic in the affine case to the poset of cells of
a regular cell-decomposition of a ball ([9], 4.5.8), generalizing the complex A dual
to an affine hyperplane arrangement (§2F).

6B. Extension of Theorems 1 and 2. It is obvious how to formulate analogues
of Theorems 1 and 2 for oriented matroids (including the affine case). The condition
that the measure w in Theorem 2 be separating, for example, becomes: There is no
W <V in § such that w is concentrated on Fy. It is also a fairly routine matter

R T T Y T (Y T Y Y I Y . Y Y Y Y A R T |
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point: Our definition of the incidence numbers [A : B] in §§5B and 5C made use of
orientations of real vector spaces. In order to carry this over to oriented matroids,
we could simply appeal to the topological representation theorem quoted above;
topology provides the appropriate concept of orientation for a “pseudo-subspace”
W. We prefer, however, the following approach, which is longer but does not rely
on the topological representation theorem.

We wish to define the notion of orientation for an element W € S. It suffices to
consider W = V| since this then applies to arbitrary W by the restriction operation
described above. By an orientation for V we will mean a rule that associates to
each maximal chain

0=A4y<--- <A,

in F a sign € = %1, in such a way that adjacent maximal chains get opposite signs.
Here two distinct maximal chains are adjacent if they differ in exactly one position.
We will also say in this situation that one maximal chain is obtained from the other
by an elementary move.

Remark. The maximal chains in F are in 1-1 correspondence with the maximal
simplices in the simplicial complex |Fs¢| associated to the poset F~q.” Now |Fsg
is the barycentric subdivision of the cell-complex ¥ discussed above; in particular,
| F<o| is topologically a sphere. And adjacency of maximal chains, as defined above,
agrees with the usual notion of adjacency for triangulated manifolds: Two distinct
maximal simplices are adjacent if and only if they have a common codimension 1
face. It follows that V' admits an orientation, unique up to multiplication by —1.
Underlying our definition of [A : C] in §5B was the fact that if a vector space V'
and a hyperplane H are both oriented, then there is a canonical choice of “positive
side” of H in V. The following technical lemma, though it does not mention
orientations, will be crucial for generalizing this idea to oriented matroids.

Lemma 1. Let X be an oriented matroid of rankn > 2. Let W € S have codimen-
sion 1 and choose i € z(W) — z(V). Let 0 = Ay < --- < A,, be a mazimal chain
in F with supp Ap,—1 = W. Let 0 = A < --- < Al _; be a mazimal chain in Fy
adjacent to Ag < --- < An_1. Let Al be a chamber such that A], > Al _,. Then
the chain Aj < --- < Al can be obtained from Ay < --- < A, by an odd number of
elementary moves if 0;(Al) = 0;(Ay) and by an even number otherwise.

[Note: In the realizable case, W is the hyperplane H;, and the issue here is whether
or not the chambers A,, and A] are on the same side of H,.]

Proof. If Ag < --- < A,—1 and Aj < --- < Al _, differ at position i < n — 1, the
lemma is obvious. So assume we are in the situation

X —Y
0=Ag— A — -« — A,
X — Y

with supp X = supp X’ = W. Replacing F by F>a4, ,, which is again the face
poset of an oriented matroid as noted above, we reduce to the case n = 2. Now

"Recall that any finite poset P gives rise to a simplicial complex |P|, whose vertices are the

P—
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every rank 2 oriented matroid is realizable ([9], p. 248). So we may identify F with
the poset of faces (including the empty face) of a 2m-gon 3 for some m > 2. Then
X and X’ correspond to opposite vertices and Y and Y’ can be assumed to be
opposite edges [this is the case 0;(Y") # 0;(Y”)]. The maximal chains we have been
considering correspond to the edges of the barycentric subdivision of ¥, and the
lemma then states that in a 4m-gon, the gallery distance betwen opposite edges is
even. (In fact, it is 2m.) See Figure 11 below for the case m = 3. O

Figure 11

We now proceed to define incidence numbers [A : B] as in §§5B and 5C. Choose
an orientation for each W € §. This means we can attach a sign ¢ = +1 to any
chain in F of the form

0=Ag< Ay < - < A,

in such a way that the sign changes if an elementary move is performed. Here an
elementary move changes exactly one A;, keeping the support the same if i = r.
Note that for each i > 0 there is exactly one candidate for an A to which A; can
be changed ([9], 4.1.14(ii)).

Given A < B in F, define the incidence number [A : B| by taking a chain
0=A4) < -+ < A, = A and setting [A : B] = £1 depending on whether the
augmented chain 0 = Ay < --- < A, < B has the same sign as the original one
or the opposite sign. This is independent of the choice of the chain from 0 to A
because any two can be related by a sequence of elementary moves,® which affect
the signs of the augmented chains in the same way they affect the signs of the
original chains.

Note that if A has codimension 1 and C, C’ are the chambers having A as a
face, then [A : C] = —[A : C']. More generally, [A : B] = —[A : B’] if both are
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defined, B # B’, and supp B = supp B’. Note also that the “diamond condition”
for incidence numbers is satisfied as in Lemma 2 of §5C: In the situation

C
B, By
A
we have [A : B1][B; : C] = —[A : By][B2 : C]. In fact, if we multiply both sides

of this equation by the sign of any chain 0 = Ay < --- < A, = A, the resulting
equation follows immediately from the definitions.

Lemma 2. Let W € S have codimension 1, and choose i € z(W) — z(V). Then
either [A : C] = 0,(C) for all A with support W and all chambers C > A, or else
[A: C| = —0;(C) for all such A, C.

Proof. We may assume [A : C] = 0;(C) for one pair A, C. Let A’, C’ be another.
If A= A" and C # C’, we know [A : C'] = —[A: C] = —0;(C) = 0;(C). [For the
last equality, recall that F> 4 is the face poset of a rank 1 oriented matroid, whose
two nonzero faces are opposite one another.] So we may assume A # A’ and hence
rank X > 2. Choose maximal chains

0=4<---<A4,.1=4
O:A6<”'<A;”L—1:A/

in Fy. If d > 1 elementary moves in Fy change (A;) to (A%), then Lemma 1
implies that we can get from Ay < --- < 4,1 < Cto Ay <--- <A, <C'in
d" moves, where d = d’ mod 2 if and only if 0;(C) = 0;(C"). Suppose, for instance,
that 0;(C') = 0;(C"). Then we have

e(Ag < <A, )[A:Cl=(-1)%(A) << A, DA : ]
e(Ag << Apy) = (—1)%(A) < - < Al ),
hence [A": C' = [A: C] = 0;(C) = 0,(C"), as required. O

Armed with Lemma 2, the interested reader can now carry out for oriented
matroids the arguments in §§5B and 5C. Finally, affine oriented matroids can be
treated as in §5D.

APPENDIX

We construct here the convex polytope 5} mentioned in 62D. Recall the setup: A
is an essential, central hyperplane arrangement in V', whose hyperplanes H; (i € I)
are defined by homogeneous linear equations f; = 0. Since A is essential, the f; span
the dual space V*. For any sequence 7 = (7;);e; with 7; = £1, set g, = >,/ T fi.
We then define & C V by the 2!/l inequalities g, < 1, one for each 7.

It will follow from what we do below that these inequalities are redundant in
general, and that S is actually defined by the inequalities g, < 1 in which o is
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Figure 12. The facets of S cut across the chambers.

visualize the facets of 3. (given by g, = 1) as cutting across the chambers and
matching up correctly along faces. See Figure 12.

Note first that : S is indeed a convex polytope; for the inequalities g, < 1 imply
that |f;] < 1 on 3 and hence that & is bounded (because the f; span V*). Note
also that 0 is an interior point of $. We wish to show that the proper, nonempty
faces of 3 are in 1-1 correspondence with the faces F # {0} in the face poset F
of A.

Given F' # {0} in F, let 0 = o(F) and let g, = >,.; 04 f;. (Note that some of
these terms are 0 if F' is not a chamber.) Then g, > 0 on F', and F' is the cone over

Y Fn{g, =1}

We claim that F} is a (relatively open) face of $. In fact, F; is the face defined by

gr =1 if 7 is consistent with o
(A.1)

gr- <1 otherwise.

Here 7 is consistent with o if 7, = o; for all ¢ such that o; # 0. [Recall that 7; = £1
for all 7.

To verify that (A.1) defines F}, suppose 7 is consistent with o, and write g, =
gU+ZieIo 7ifi, where Iy = {i € I : o; = 0}. It is then immediate that the equalities
in (A.1) are equivalent to “f; = 0 for i € Iy and g, = 1”. And in the presence of
these equalities, the inequalities in (A.1) are equivalent to “o;f; > 0 for i & Iy”.
Thus we have transformed (A.1) to the set of equalities and inequalities defining
Fi, whence the claim.

We now have V' — {0} partitioned into the cones over some of the (relatively

open) faces F; of the boundary ¥ of 5. It follows that the F 1 are in fact all of the
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(nonempty) faces of 3 and the elements of F (other than {0}). It is easy to check
that this correspondence is a poset isomorphism, i.e., it preserves the face relation.

Finally, our assertion that ¥ is defined by the inequalities g, < 1 (one for each

chamber) follows from the fact that a convex polytope with nonempty interior can
always be defined by one inequality for each facet (cf., [38], Theorem 2.15).
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