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Abstract. Let C be the set of chambers of a real hyperplane arrangement. We study

a random walk on C introduced by Bidigare, Hanlon, and Rockmore. This includes
various shuffling schemes used in computer science, biology, and card games. It also
includes random walks on zonotopes and zonotopal tilings. We find the stationary

distributions of these Markov chains, give good bounds on the rate of convergence to
stationarity, and prove that the transition matrices are diagonalizable. The results
are extended to oriented matroids.

1. Introduction

Let A be a finite set of affine hyperplanes in V = Rn. Then A cuts V into
regions called chambers. For example, there are 6 chambers (which are sectors) in
Figure 1a, and there are 7 chambers in Figure 1b. The chambers are polyhedra
(finite intersections of half-spaces) and hence have faces. For example, each cham-
ber C in Figure 1a has 4 faces: C itself, 2 rays, and one point. We denote by F
the collection of all faces of the chambers. In Figure 1a, for example, F has 13
elements: 6 chambers, 6 rays, and one point. The arrangement A is called central
if
⋂

H∈AH 6= ∅, as in Figure 1a.

F admits a semigroup structure, whose definition will be recalled in Section 2
below. Of particular importance is the product FC for F ∈ F and C ∈ C. This
product is again a chamber, called the projection of C on F . It can be characterized
as the nearest chamber to C having F as a face. Here “nearest” is defined in terms
of the number of hyperplanes in A separating C from FC. The projection operator
C 7→ FC will be called the action of F on C. See Figure 2 for a simple example
(here F is a ray).
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2 KENNETH S. BROWN AND PERSI DIACONIS

Figure 1a. A central arrangment of Figure 1b. A non-central arrangement
3 hyperplanes in R2. of 3 hyperplanes in R2.

Figure 2. The projection of C on F .

Bidigare, Hanlon, and Rockmore [6], referred to hereafter as BHR, used the
action of faces on chambers to define a random walk on C.1 Start with a probability
measure w on F . Then a step in the walk is given by:

(1.1) From C ∈ C, choose F from the measure w and move to FC.

Thus the random walk started at a chamber C0 is the process (C`)`≥0 with

(1.2) C` = F` · · ·F1C0,

where F1, F2, . . . are i.i.d. picks from w. This is simply random walk on the semi-
group F in the usual sense, with the starting state (and hence all future states) in
the ideal C ⊆ F .

One can also describe the walk on C by giving its transtion matrix K:

(1.3) K(C,C ′) =
∑

FC=C′

w(F ).

Remarkably, BHR found all the eigenvalues of K, which turn out to be real, non-
negative, and linear in the entries of K. The multiplicities of the eigenvalues are
given in terms of the Möbius function of the intersection poset S (also called the
intersection lattice in the central case). This is the set of all nonempty affine
subspaces W ⊆ V of the form W =

⋂
H∈A′ H, where A′ ⊆ A is an arbitrary

subset (possibly empty). We order S by inclusion. [Warning: BHR and many
other authors order S by reverse inclusion.]

1They only treated the central case; but, as we will see, their results extend to general A.
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One of our main results is a new proof of the BHR result, showing additionally
that K is diagonalizable. Our proof is conceptual; it makes use of the algebraic
topology of a regular cell complex ∆ “dual” to A. (In case A is central, ∆ is a
convex polytope, called the zonotope associated to A.) Here is the BHR result,
combined with our improvement of it:

Theorem 1. Let A be a hyperplane arrangement in V , let F be the set of faces,
let S be the intersection poset, and let w be a probability measure on F . Then the
matrix K defined at (1.3) is diagonalizable. For each W ∈ S, there is an eigenvalue

λW =
∑

F∈F
F⊆W

w(F )

with multiplicity

mW = |µ(W,V )| = (−1)codim(W,V )µ(W,V ),

where µ is the Möbius function of S and codim(W,V ) is the codimension of W
in V .

A second set of results proved here gives a description of the stationary distri-
bution of the chain (1.1), together with a good estimate for the rate of convergence
to stationarity. The estimate involves some of the eigenvalues (namely, the λH ,
H ∈ A) and is surprisingly useful given that the chain is generally non-reversible.

We will say that the measure w separates the hyperplanes in A, or simply that
w is separating, if it is not concentrated on the faces in any one of them, i.e., for
each H ∈ A there is a face F with F 6⊆ H and w(F ) > 0.

Theorem 2. Let A be a hyperplane arrangement, let w be a probability measure
on the set F of faces, and let K be as in (1.3).

(a) K has a unique stationary distribution π if and only if the measure w is
separating.

(b) Assume that w is separating. Sample without replacement from w, thereby
getting an ordering F1, . . . , Fm of {F ∈ F : w(F ) > 0}. Then the product
C = F1 · · ·Fm in the semigroup F is a chamber distributed from π.

(c) Still assuming that w is separating, let K`
C be the distribution of the chain

started from C after ` steps; then its total variation distance from π satisfies

(1.4) ‖K`
C − π‖TV ≤

∑

H∈A

λ`
H .

We remark that BHR give an estimate similar to (1.4), but involving all the
eigenvaluues λW and an alternating sum. We will discuss the connection between
the two estimates in Section 4.

The remainder of the paper is organized as follows. In Section 2 we review
definitions and facts about hyperplane arrangements. In Section 3 we discuss a
number of examples. This section may be read first, for motivation. The examples
include some previously studied card shuffling schemes, the classical Ehrenfests’
urn, random tiling, threshold graphs, and other examples. Section 4 contains the
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proof of Theorem 2, in a more general setting; in particular, we consider walks
driven by a stationary sequence on F , not just a sequence of i.i.d. picks from F .
We prove Theorem 1 in Section 5. In Section 6 we explain how to extend all of
the results to oriented matroids. Finally, there is an appendix which complements
Section 2.

Some of the results of this paper extend to random walk on the chambers of a
building. We will treat these in a separate paper.

Acknowledgements. We thank Phil Hanlon and Dan Rockmore for much inter-
action on this problem over the years. Jim Fill’s many results in the shuffling case
have been an inspiration. Indeed, in preliminary work he has shown that many of
his card shuffling arguments extend to the case of hyperplane walks; this gives a
different conceptual argument for the result that the eigenvalues are positive reals
and a somewhat complicated closed form formula for K`(C,C ′). Louis Billera, Vic
Reiner, and Richard Stanley have been very helpful. We thank Susan Holmes for
drawing the pictures.

2. Review of hyperplane arrangements

The standard reference for this section is the book by Orlik and Terao [27].
Many of the results stated here can also be found in one or more of [9], [10], [11],
and [38]. Throughout this section, A denotes a finite set of affine hyperplanes in a
finite-dimensional real vector space V . It will be convenient to write A = {Hi}i∈I
and to denote by H+

i and H−
i the two open half-spaces determined by Hi. The

choice of which one to call H+
i is arbitrary.

2A. Chambers and faces. “Face” in this paper will mean “relatively open face”.
By definition, then, a face is a nonempty set F ⊆ V of the form

F =
⋂

i∈I

Hσi

i ,

where σi ∈ {+,−, 0} and H0
i = Hi. Equivalently, if we choose for each i an affine

function fi : V → R such that Hi is defined by fi = 0, then a face is a nonempty
set defined by equalities and inequalities of the form fi > 0, fi < 0, or fi = 0, one
for each i ∈ I. The sequence σ = (σi)i∈I which encodes the definition of F is called
the sign sequence of F and is denoted σ(F ).

The faces such that σi 6= 0 for all i are called chambers. They are convex open
sets that partition the complement V −

⋃
i∈I Hi. In general, a face F is open relative

to its support, which is defined to be the affine subspace

suppF =
⋂

σi(F )=0

Hi.

In fact, the faces F with a given support W form the chambers of the hyperplane
arrangement AW in W consisting of the intersections Hi ∩W for those i such that
σi(F ) 6= 0. The arrangement AW is called the restriction of A to W .

2B. Partial order. The face poset of A is the set F of faces, ordered as follows:
Given F,G ∈ F , we say that F is a face of G and write F ≤ G if for each i ∈ I
either σi(F ) = 0 or σi(F ) = σi(G). In order words, the description of F by linear
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equalities and inequalities is obtained from that of G by changing zero or more
inequalities to equalities. See, for instance, [11] for other characterizations of the
face relation. [Warning: Orlik and Terao use the reverse ordering on F , i.e., they
write F ≥ G if F is a face of G.]

Two chambers are said to be adjacent if they have a common codimension 1 face.
The chamber graph of A has C as vertex set, with edges defined by the adjacency
relation. We write d(C,C ′) for the distance between C and C ′ in this graph; it is
the minimal length ` of a “gallery”

C = C0, . . . , C` = C ′,

where Ci−1 and Ci are adjacent for 1 ≤ i ≤ `. It is also equal to the number of
hyperplanes in A separating C from C ′ (cf. [11], §I.4E).

2C. Product. The set of faces also admits a semigroup structure: Given F,G ∈ F ,
their product FG is the face with sign sequence

σi(FG) =

{
σi(F ) if σi(F ) 6= 0

σi(G) if σi(F ) = 0.

[Geometric interpretation: If we move on a straight line from a point of F toward
a point of G, then FG is the face we are in after moving a small positive distance.]
This product is the one referred to in §1 and used to define the action of faces on
chambers. One can check that FC is a chamber if C is, and that it is the unique
chamber having F as a face that is closest to C in the metric d defined above. [To
see this, use the characterization of d in terms of separating hyperplanes.]

2D. Cell decomposition of the sphere. Assume throughout this subsection
that A is central, in which case each Hi can be taken to pass through the origin.
We may further assume that A is essential, i.e., that

⋂
i∈I Hi = {0}. [Otherwise

we can replace V by the quotient space V/
⋂

i∈I Hi without affecting any of the
combinatorial objects of interest to us.] There is then a regular cell complex Σ =
ΣA, homeomorphic to the sphere Sn−1 (n = dimV ), whose cells correspond to the
faces F 6= {0} in F .

Recall first that a (finite) regular cell complex is a compact Hausdorff space X,
together with a finite collection {eα} of subsets of X, such that:

(i) Each eα is homeomorphic to a closed ball.

(ii) The relative interiors
◦
eα partition X.

(iii) For each α, the boundary ėα = eα −
◦
eα is a union of cells (necessarily of

lower dimension).

The eα are called the closed cells of X, and the
◦
eα are called the open cells. See

[9], §4.7, for further information about regular cell complexes.
The simplest way to construct the complex Σ associated to A is to put a metric

on V and intersect the cells F 6= {0} (which are cones) with the unit sphere in
V . See Figure 3a. It is also possible to realize Σ as the boundary of a convex

polytope Σ̂; see Figure 3b. We give a construction of Σ̂ in the appendix to this
paper. Alternatively, one can first define the zonotope Z = ZA (see below) and

define Σ̂ to be the polar of Z. This is the approach taken in [9], Example 4.1.7,
and [38], Corollary 7.18.
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Figure 3a. Cell decomposition of the Figure 3b. A polytope version of
unit sphere. Figure 3a.

Note that the hyperplane chamber walk can be viewed as as a walk on the
chambers (maximal cells) of Σ. Each step consists of choosing a cell e (possibly
empty2) from some distribution on the cells, and then moving from the current
chamber c to the nearest chamber having e as a face. “Nearest” here refers to
gallery distance, which can be defined for the chambers of Σ exactly as in §2B
above.

2E. The zonotope dual to A. A zonotope in a real vector space V is a Minkowski
sum Z = L1 + · · ·+Lk of line segments, usually taken to be centered at the origin:
Li = [−vi, vi]. We may assume that the Li are non-degenerate and that no two are
parallel, i.e., that the vi are nonzero and pairwise independent. The Li are then
uniquely determined by Z; in fact, there is one for each parallelism class of edges
of Z. The set of faces of the boundary of Z having an edge parallel to Li is called
the ith zone of Z.

Note that Z is the image of the cube [−1, 1]k under the linear map Rk → V
taking the k standard basis vectors e1, . . . , ek to v1, . . . , vk. Thus Z is the convex
hull of the 2k vectors

∑
1≤i≤k ±vi, where the signs can be chosen arbitrarily. A

simple example of a zonotope is a hexagon, obtained by projecting a cube in R3

onto a plane. See [9] or [38] for further information about zonotopes.
Returning to our central hyperplane arrangement A in V , there is a zonotope

Z = ZA in the dual space V ∗, with one zone for each hyperplane in A, defined as
follows: Choose fi ∈ V ∗ such that Hi = ker fi and set

Z =
∑

i∈I

[−fi, fi].

Equivalently, Z is the convex hull of the 2|I| elements
∑

i∈I ±fi.
The poset of nonempty faces of Z is anti-isomorphic to the face poset F of A.

This is proved in [9], Proposition 2.2.2, and [38], §7.3. It also follows by polarity
theory ([38], §2.3) from the results about Σ stated above and proved in the appendix,

since Z is in fact the polar of the polytope Σ̂ defined in the appendix. Thus Z has
one vertex for each chamber C [that vertex being

∑
σifi, where σ = σ(C)], one

edge for each pair of adjacent chambers, etc. In particular, the 1-skeleton of Z is

2This corresponds to the face F = {0} ∈ F
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the chamber graph of A. Figure 4 shows a simple example, in which V = R2 and
V ∗ is identified with V .

Figure 4. The zonotope Z

Note that the hyperplane chamber walk can be viewed as a walk on the vertices
of Z. Each step consists of choosing a random e of Z from some measure on the
faces, and then moving from a vertex v to the unique vertex of e closest to v (in
the usual edge-path metric on the 1-skeleton of Z).

Remark. In some of the literature there is a slightly different definition of the
zonotope associated to A. Namely, one considers

Z ′ =
∑

i∈I

[0, fi],

or, equivalently, Z ′ is the convex hull of the 2|I| elements
∑

i∈s fi, where s ⊆ I is
an arbitrary subset. Note that Z ′ is obtained from Z by translating by

∑
i∈I fi and

then multiplying by 1/2. In particular, Z and Z ′ are combinatorially equivalent.

2F. The non-central case. For arbitrary A, there is still a regular cell complex
∆ dual to the arrangement. It is again a topological ball (though not necessarily
a polytope), and its poset of cells is anti-isomorphic to the face poset F of A. See
Figure 5 for a simple example.

Figure 5. The cell complex dual to an affine arrangement.
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We briefly recall the construction of ∆, which can be found in Ziegler [36], since
it involves ideas that we will need later anyway. Let V = V × R. For each i ∈ I
let Hi be the linear hyperplane in V spanned by Hi × 1. Then the H i, together
with the hyperplane H0 = V × 0, form a central arrangement A in V , said to be
obtained from A by coning. See Figure 6. Let F be the face poset of A. Then the

face poset F of A is isomorphic to the subset F
+

of F consisting of the faces in
the upper half space V × (0,∞) of V . In terms of sign sequences, we go from F to

F
+
by adjoining + as the H0-component.

Figure 6. A central arrangement of 3 hyperplanes in R2 obtained by
coning a non-central arrangement of 2 hyperplanes in R1.

Let Z be the zonotope associated to A, with cell poset F
op
. Then the cells

corresponding to F
+
give a subcomplex of Z, and this is the desired ∆. We remark

that ∆, though not a zonotope in the non-central case, can always be realized as
the set of faces of a “zonotopal tiling”. (We will say more about zonotopal tilings in
§3E.) For example, the complex ∆ in Figure 5 above is combinatorially equivalent
to the zonotopal tiling called Z3 in §3E.

2G. Reflection arrangements. Finally, we briefly mention an important family
of examples of central hyperplane arrangements. Assume that V is equipped with
an inner product. Then every linear hyperplane H in V gives rise to a reflection
sH that fixes H pointwise and acts as −1 on the orthogonal complement. A finite
reflection group in V is a finite group G of linear transformations such that G is
generated by reflections sH . The set of all H such that sH ∈ G is the reflection
arrangement associated to G.

Reflection arrangements have a number of special properties; see, for instance,
[11], Chapter I. For example, the chambers are always simplicial cones if the ar-
rangement is essential, which we may assume without loss of generality. (A chamber
of a reflection arrangement in R3 cannot, for instance, be the cone over a square.) It
follows that the spherical cell-complex Σ of §2D is a simplicial complex. Moreover,
the group G acts simply-transitively on C, so that C can be identified with G once
a “fundamental chamber” is chosen. Thus the hyperplane chamber walk can be
interpreted as a Markov chain on a group in the case of a reflection arrangement.
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Remark. The group G acts on the face poset F . If the measure w on F is separat-
ing and G-invariant, then the stationary distribution π is uniform. Moreover, the
chamber walk in this case is a random walk on G in the usual sense, i.e., it consists
of repeated multiplication by random elements of G, chosen from the measure

Q(g) =
∑

F ·id=g

w(F ).

We thus have a reasonable collection of natural measures on groups, with explicitly
analyzable random walks.

2H. Möbius function. Finally, we recall the definition of the function µ = µS
that occurs in the statement of Theorem 1 (cf. [31], §3.7, or [27], §2.2). This is
defined inductively by µ(V, V ) = 1 and, for W $ V ,

(2.1) µ(W,V ) = −
∑

W⊆U$V

µ(W,U).

For example, ifA consists of 3 lines Li through the origin in R2, then the intersection
lattice is

R2

L1 L2 L3

{0}

In this case the Möbius numbers appearing in Theorem 1 are µ(R2,R2) = 1,
µ(Li,R2) = −1, and µ({0},R2) = 2.

3. Examples

This section collects examples of hyperplane walks which have a natural alterna-
tive interpretation. We also make explicit the results of Theorems 1 and 2. In 3A
we treat the dihedral arrangement, in 3B the Boolean arrangement, and in 3C the
braid arrangement, with its many shuffling and computer science interpretations.
In 3D we discuss an arrangement related to threshold graphs. In 3E we treat zono-
topal tilings and introduce random walks on oriented matroids. Finally, we briefly
mention some further examples in 3F.

Before beginning the examples, we make two remarks which sometimes simplify
the computation of the stationary distribution π given in Theorem 2. First, instead
of sampling without replacement, we could sample with replacement, stopping as
soon as the product F1 · · ·Fm is a chamber. This gives the same distribution π,
because we can strike out any factors in F1 · · ·Fm which have occurred earlier
without affecting the value of the product. But sampling with replacement and
then deleting repetitions is the same as sampling without replacement.

At the other extreme, we could remove from the pot even more than just the
faces that are picked. Namely, if F1, . . . , Fk have been picked and W is the support
of the product F1 · · ·Fk, then we can remove all faces F contained in W before
picking the next face Fk+1. This follows from the same striking-out argument as
above, the point being that a later factor contained in W will have no effect on the
product.
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3A. Dihedral arrangement. Let A consist of m lines through the origin in R2.
[If the lines are equally spaced, this is an example of a reflection arrangement, the
associated reflection group being dihedral of order 2m.] There are 4m+1 faces: 2m
chambers, 2m rays, and the origin. Suppose, for this exposition, that the measure
w is supported on the set of rays. One can then picture the walk as follows: There
are 2m rooms in a circular house. A mouse lives in the walls R (the rays), occupying
these with propensity w(R). At each step of the walk, a cat is in one of the rooms
and the mouse picks a wall; the cat then moves to the nearest room adjacent to
that wall.

Note that the (1-dimensional) spherical complex Σ of §2D is a 2m-gon in this
example. The chambers of the hyperplane arrangement correspond to the edges of
Σ, and the rays correspond to the vertices. So we can visualize the walk as taking
place on the edges of a 2m-gon, driven by a probability measure on the vertices.
One can imagine here a queuing system with 2m service points arranged in a ring,
corresponding to the vertices of a 2m-gon. A single server moves around the edges.
Service requests come in with different propensities w1, . . . , w2m, and the server
moves to the closest adjacent edge.

If the rays are chosen uniformly, w(R) = 1/2m for all R, then the stationary
distribution π is of course uniform. For general weights, w is separating unless it
is supported on a pair ±R of opposite rays. If w is separating, Theorem 2 yields
the following formula for π: Let C be a chamber bounded by rays R,R′, whose
supports are the lines L,L′. Let Q be the set of rays that are strictly on the same
side of L as C, and define Q′ similarly in terms of L′. See Figure 7. Then we have

π(C) = w(R)
w(Q)

1− w(R)− w(−R)
+ w(R′)

w(Q′)

1− w(R′)− w(−R′)
.

[To see this, use the second variant of the sampling procedure described above. The
sampling stops as soon as two rays have been picked, and we get C as the product
F1F2 if F1 = R and F2 ∈ Q or if F1 = R′ and F2 ∈ Q

′.]

Figure 7

The eigenvalues given by Theorem 1 are as follows (see the example in §2H
above): Each of the m lines L contributes an eigenvalue λL = w(R) + w(−R) of
multiplicity 1 = −µ(L, V ), where ±R are the rays in L. The whole plane V = R2

contributes the eigenvalue λV = 1 with multiplicity µ(V, V ) = 1. Finally, the trivial
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subspace {0} contributes the eigenvalue λ{0} = 0 with multiplicity µ({0}, V ) =
m− 1.

Consider now the bound of Theorem 2 in three simple cases. Suppose first that
w(R) = 1/2m for each R, so that π is uniform, π(C) = 1/2m for all C. Here
λL = 1/m so the bound becomes

‖K`
C − π‖TV ≤

∑

L

λ`
L =

1

m`−1
.

It follows that for large m the distance to stationarity is small after two or three
steps.

As a second example, suppose one weight is large and the others are small, e.g.,
w(R1) = 1/2, w(R) = 1/2(2m− 1) for R 6= R1. Then the bound becomes

‖K`
C − π‖TV ≤

(
1

2
+

1

2(2m− 1)

)`

+ (m− 1)

(
1

2m− 1

)`

.

Again, a few steps suffice for convergence to stationarity, but the result is not quite
as quick as in the uniform case.

As a third example, suppose the weights are proportional to 1, 1/2, . . . , 1/2m,
i.e.,

w(Ri) =
1

iH2m
, 1 ≤ i ≤ 2m, H2m = 1 +

1

2
+ · · ·

1

2m
∼ logm.

Assume here that the rays are enumerated so that Ri+m = −Ri for i = 1, . . . ,m.
Then the bound becomes

‖K`
C − π‖TV ≤

m∑

i=1

(
1

H2m

(
1

i
+

1

i+m

))`

≤

(
c

logm

)`

for a universal constant c. Again, a few steps suffice to reach stationarity.

3B. Boolean arrangment. Let Hi be the coordinate hyperplane xi = 0 in Rn,
1 ≤ i ≤ n. [The Hi again form a reflection arrangement, the group being {±1}n.]
There are 3n faces, one for each possible sign sequence, and 2n of these are chambers;
they are the orthants in Rn and may be identified with the elements of {±1}n (or

with binary n-tuples). The polytope Σ̂ is a hyperoctahedron, and the dual zonotope
Z is the cube [−1, 1]n.

To picture the chamber walk, think of an element x ∈ {±}n as a landscape with
n sites, each of which can be in one of two states. The action of a face F can be
thought of as a ruler who conquers territory at sites in s = {i : σi(F ) 6= 0} and
changes the territory in his own image. One may ask how the landscape evolves over
time as territory is conquered by successive rulers F , chosen from some probability
distribution on F .

To make this more explicit, we pick the random face F as follows: First pick
the subset s ⊆ [n] from a probability distribution ws. Then pick the nonzero
components of σ(F ) from a probability distribution Ps(·) on {±1}|s|. We briefly
discuss three examples.

Example 1. (Ehrenfests’ urn) Suppose w is uniform on the singletons, w{i} = 1/n,

ws = 0 otherwise. Suppose further that P{i}(±1) =
1
2 . In other words, our measure
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on F is concentrated on the 2n coordinate rays and is uniform on these. The walk
then evolves as, “Pick a coordinate of x at random, and half the time replace it by
+1, half the time by −1.” This is the same as the usual nearest neighbor random
walk on the hypercube, with holding 1/2. It has been extensively studied since its
introduction by the Ehrenfests [22]. Here π is uniform, π(x) = 1/2n, and the bound
given by Theorem 2 is

‖K`
x − π‖ ≤ n

(
1−

1

n

)`
.

This shows that n log n+cn steps make variation distance smaller than e−c. In fact,
it is known that (1/2)n log n+ cn steps are necessary and sufficient for convergence
[18]. Thus the bound is good but not perfect.

The eigenvalues for this example were determined by Mark Kac [24] to be j/n
with multiplicity

(
n
j

)
, 0 ≤ j ≤ n. To see this from Theorem 1, observe that the

intersection lattice S here is isomorphic to the lattice L of subsets s ⊆ [n], with
W ∈ S corresponding to s = {i : xi 6≡ 0 on W}. One deduces

λW =
∑

F⊆W

w(F ) = 2|s| ·
1

2n
=
|s|

n

and
mW = |µS(W,V )| = |µL(s, [n])| = |(−1)

n−|s|| = 1.

This agrees with Kac’s result since there are
(
n
j

)
subspaces W with λW = j/n.

Example 2. Consider the chain based on the same set of faces (the coordinate
rays) but with general weights. Write w{i} = wi and Pi(1) = θi, Pi(−1) = 1 − θi.
The resulting measure on F is separating if wi > 0 for all i, and the stationary
distribution is π(x) =

∏
Pi(xi) =

∏
θεi

i (1 − θi)
1−εi , where εi = (xi + 1)/2. The

bound for convergence is

‖K`
x − π‖ ≤

n∑

i=1

(1− wi)
`.

The rate of convergence depends on the shape of the weights. See [16] for many
specific examples. Arguing as in Example 1, we obtain an eigenvalue

λs =
∑

i∈s

wi,

of multiplicity 1, for each subset s ⊆ [n].

Example 3. (Changing landscape) Consider the 2n sets `i = {1, 2, . . . , i}, ri =
{n, n−1, . . . , n− i+1}, 1 ≤ i ≤ n. Let w(`i) = w(ri) = 1/2n. Suppose P`i

puts all
+1’s in `i with probability 1 and Pri

puts all −1’s in ri with probability 1. This is
a crude model of territory exchange: A force attacks from the left taking a uniform
amount of territory and labeling it with +1. Attacks from the right label with −1.
The stationary distribution is supported on patterns of the form

x(j) = (

j︷ ︸︸ ︷
+ · · ·+

n−j︷ ︸︸ ︷
− · · · −), 0 ≤ j ≤ n;
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moreover, π is uniform on these, π(x(j)) = 1/(n+ 1).
[Sketch of proof: It suffices to show that π{N ≤ j} = (j + 1)/(n + 1), where

N(x) is the number of +1’s in x. Now π{N ≤ j} is the probability p that, in
sampling from the uniform distribution on X = {`1, . . . , `n, r1, . . . , rn}, an element
of R = {rn−j , . . . , rn} is chosen before an element of L = {`j+1, . . . , `n}. This
probability is unchanged if we replace X by R ∪ L, so it is simply the probability
that a uniform pick from R ∪ L is in R, i.e., p = |R|/(|R|+ |L|) = (j + 1)/(n+ 1).]

Theorem 2 gives

‖K`
x − π‖ ≤ n

(n− 1

2n

)`
≤ n

(1
2

)`
.

Thus log2 n + c steps suffice to reach stationarity. In fact, it is easy to see that
K2(x, x(j)) ≥ 1/4n for all x and j. A Doeblin argument then shows that ‖K `

x−π‖ ≤
(3/4)b`/2c. So the bound from Theorem 2 is slightly off in this example.

Finally, Theorem 1 gives an eigenvalue (i+j)/2n for each subset s ⊆ [n], where i
is the size of the largest subset {1, . . . , i} in s and j is the size of the largest subset
{n − j + 1, . . . , n} of s (0 ≤ i, j ≤ n). Combining these according to the value of
k = i+ j, we obtain the following eigenvalues λ and multiplicites m(λ):

λ m(λ)
1 1

n− 1

2n
n

k

2n
(k + 1)2n−k−2 0 ≤ k ≤ n− 2.
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3C. Braid arrangement. One of the discoveries of BHR [6] (see also [5]) is that
for the well-studied braid arrangement the action of faces on chambers captures
a wide variety of shuffling schemes. The braid arrangement in Rn consists of the(
n
2

)
hyperplanes Hij given by xi − xj = 0 (1 ≤ i < j ≤ n). [This is again a

reflection arrangement, the group being the symmetric group Sn on n letters.] The
chambers can be identified with the n! permutations, with τ ∈ Sn corresponding
to the chamber

xτ(1) > xτ(2) > · · · > xτ(n).

The faces can be identified with ordered partitions B = (B1, . . . , Bk) of [n].
Here {B1, . . . , Bk} is a set partition in the usual sense, but the order matters. (We
recover the chambers by taking k = n, so that each Bi is a singleton.) The spherical
cell complex Σ is the barycentric subdivision of the boundary of an (n−1)-simplex,
and the zonotope Z is isomorphic to the permutohedron, which is the convex hull
of the n! permutations τ , viewed as vectors (τ(1), . . . , τ(n)).

The action of faces on chambers is most easily pictured by thinking of a per-
mutation τ as the set of labels on a deck of n cards, with the card labeled τ(1)
on top, and so on. The ordered partition B operates on τ by removing cards
with labels in B1 and placing them on top (keeping them in the same relative
order), then removing cards with labels in B2 and placing them next, and so
on. Suppose, for example, that n = 10, τ = (1, 7, 3, 9, 10, 4, 5, 2, 6, 8), and B =
({2, 5}, {3, 4, 6, 10}, {7}, {1, 8, 9}); then B acting on τ gives (5, 2, 3, 10, 4, 6, 7, 1, 9, 8).

We briefly describe two examples which have received much attention in other
settings.

Example 1. (Random to top) Suppose the only ordered partitions that get
positive mass are ({i}, [n] − {i}) with mass wi, 1 ≤ i ≤ n. The walk corresponds
to repeatedly choosing i from wi and then moving the card labeled i to the top.
This is a well-studied model for dynamic rearrangement of files in computer science.
Think of file folders being used with propensity wi. One wants the frequently used
files near the top. A simple self-organizing scheme for achieving this if the wi are
not known is to replace a folder on top after it is used. This scheme is called the
Tsetlin library; see Dies [19] or Fill [23] for extensive reviews.

Assuming wi > 0 for all i (or even all but one i), there is a unique stationary
distribution π. It is given by Theorem 2 as sampling without replacement from the
weights wi:

π(τ) =
wτ(1)wτ(2) · · ·wτ(n−1)

(1− wτ(1))(1− wτ(1) − wτ(2)) · · · (1− wτ(1) − · · · − wτ(n−2))
.

This generally non-uniform distribution is easier to describe than to work with: Try
to compute π{τ(n) = 1}. Even the distribution π has its own literature; see [15],
p. 174.

The bound from Theorem 2 is

‖K`
τ − π‖ ≤

∑

1≤i<j≤n

(1− wi − wj)
`.

A variety of special cases are analyzed in [16]. Suppose, for instance, that wi = 1/n,
1 ≤ i ≤ n. Then π is uniform, and the convergence rate is the same as for the top-
to-random shuffle, in which the top card is repeatedly inserted at a random position.
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The bound from Theorem 2 becomes

‖K`
τ − π‖ ≤

(
n

2

)(
1−

2

n

)`
,

so that n(log n+c) shuffles suffice to make the distance at most e−c/2. More refined
estimates are derived in [17], showing that this bound is sharp.

For this example with general weights wi the eigenvalues were determined by
Phatarfod [28]. Each subset s ⊆ [n] contributes an eigenvalue

λs =
∑

i∈s

wi,

of multiplicity ms equal to the number of permutations τ ∈ Sn with s as fixed-point
set. In other words, ms is the derangement number dk, k = n− |s|, where dk is the
number of permutations in Sk with no fixed points. Note that d1 = 0, so λs does
not actually occur as an eigenvalue if |s| = n− 1.

It is shown in [6] and [5], by two different methods, how Theorem 1 gives Phatar-
fod’s result. We briefly sketch a third method, since the ideas will be needed in a
more difficult example below (§3D). This third method has the advantage that it
can be used in cases where the Möbius numbers µS(W,V ) are not known.

A subspace W ∈ S is defined by zero or more equations of the form xi = xj .
Let sW be the set of k ∈ [n] which do not occur in any of these equations. [If we
identify the elements of S with set partitions of [n] in the usual way, then sW is
the union of the singleton blocks.] A straightforward application of Theorem 1 now
gives eigenvalues λs (s ⊆ [n]) with multiplicity

ns =
∑

sW =s

mW ,

where mW = |µS(W,V )|. In particular, mW depends only on the interval [W,V ] in
the lattice S. Now consider

(3.1) Ns
def
=
∑

t⊇s

nt =
∑

sW⊇s

mW .

The W ’s that occur here form a lattice isomorphic to the intersection lattice for
the braid arrangement in Rn−|s|. [Use the projection Rn → Rn−|s| which picks
out the coordinates not in s.] It follows that the second sum in (3.1) is the sum
of all multiplicities for the latter arrangement, hence it equals the total number of
chambers.3 Thus Ns is the number of permutations of [n]− s or, equivalently, the
number of permutations of [n] that fix s. If we now define ms to be the number of
permutations with s as fixed-point set, and if we set Ms =

∑
t⊇s mt, we see that

Ns = Ms and hence ns = ms, as claimed.

Example 2. (Riffle shuffle) Consider next the 2-block ordered partitions (s, [n]−s),
∅ $ s $ [n], together with the one-block partition ([n]). We assign weight 1/2n

to each of the 2n − 2 two-block ordered partitions, and we assign weight 2/2n =

3One could also get this from Zaslavski’s formula [35], cf. formula (5.6) in §5C below.
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1/2n−1 to the one-block partition. The corresponding shuffling mechanism consists
of inverse riffle shuffles. In an ordinary riffle shuffle a deck of cards is divided into
two piles which are riffled together. The inverse chooses a set s of cards which are
removed (“unriffled”) and placed on top. Here s can be ∅ or [n], in which case
the deck is unchanged; these cases both correspond to the action of the one-block
partition. Thus the effect of our choice of weights is that the 2n subsets s ⊆ [n]
are all equally likely to be unriffled. This corresponds to the Gilbert–Shannon–
Reeds measure, in which the subset to be riffled is chosen uniformly (see [2], where
reference to earlier work is given).

The stationary distribution π is uniform. The convergence rate is the same for
ordinary and inverse shuffles. The bound from Theorem 2 gives

‖K`
τ − π‖ ≤

(
n

2

)(1
2

)`
.

Thus the distance to uniformity is less than 2−c after 2 log2 n+ c−1 steps. A more
exact analysis is available [2] showing that the variation distance rapidly cuts down
from 1 to 0 at about ` = (3/2) log2 n. Thus the general bound from Theorem 2
again gives a quite good result in this case, though not the best possible. When
n = 52, for example, 2 log2 n

.
= 11.4, but in fact about seven shuffles suffice to mix

up the deck.

See [6] and [5] for many other examples, including the a-shuffles of [2], together
with a detailed description of the eigenvalues. The a-shuffles were shown in [2] to
give the celebrated descent algebra of L. Solomon [30]. Connections between the
chamber walk and the descent algebra for general reflection groups are developed
in Bidigare [5] and Bergeron–Bergeron–Howlett–Taylor [4].

3D. Threshold arrangement. Our next example is a random walk on an in-
teresting family of graphs,4 called threshold graphs. These can be characterized in
many different ways (see [26]), of which we mention three. Let G be a graph with
vertex set V .

(1) G is a threshold graph if and only if there exist real numbers wv ≥ 0 (v ∈ V )
and t ≥ 0 such that the edges of G are the pairs uv with wu + wv > t.

(2) Let d = (dv)v∈V be the degree sequence of G, i.e., dv is the number of edges
having v as a vertex. Then G is a threshold graph if and only if it is the
unique graph on V with degree sequence d.

(3) G is a threshold graph if and only if it can be constructed from the empty
graph by repeatedly adjoining either an isolated vertex or a dominating
vertex. [Recall that a vertex of a graph is called dominating if it is connected
by an edge to all other vertices.]

For example, the graph shown in Figure 8 is a threshold graph, being the unique
graph on {1, 2, 3, 4, 5} with degree sequence d = (1, 4, 2, 2, 3). The condition in
(1) holds with weights w = (1, 5, 2, 2, 4) and t = 5. And G can be constructed
from the empty graph by adjoining 3 and 4 as isolated vertices, then adjoining 5
as a dominating vertex, then 1 as an isolated vertex, and finally 2 as a dominating
vertex.

4Graphs here will always be assumed to be finite and to have no loops or multiple edges.
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Figure 8. A threshold graph

Notice that, by (3), a threshold graph can be represented (usually in more than
one way) by a signed permutation τ(1)ε(1)τ(2)ε(2) · · · τ(n)ε(n). Here τ is a permuta-
tion and ε(i) = ±1. The corresponding graph is obtained by adjoining the vertices
in the order τ(n), τ(n− 1), . . . , τ(1), and making τ(i) dominating if ε(i) = +1 and
isolated if ε(i) = −1. For example, the graph in Figure 8 is represented by each
of the eight signed permutations 2+1−5+3−4±, 2+1−5+4−3±. And the complete
graph on [n] can be represented by n! signed permutations, as can its complement,
the discrete graph. [By the complement of a graph G we mean the graph G′ with
the same vertex set but the complementary edge set.] These examples suggest that
the number tn of threshold graphs on [n] is much less than 2nn!. In fact, it is known
[3] that

tn
n!
∼
( 1

log 2
− 1

)( 1

log 2

)n
,

with an absolute error that tends to 0 exponentially fast as n→∞.

Consider now the hyperplane arrangement in Rn consisting of the
(
n
2

)
hyper-

planes xi + xj = 0, one for each two-element subset ij of [n]. The zonotope Z
dual to this arrangement has been studied extensively; see [26], [32], and further
references cited there. It is convenient here to take Z to be the zonotope called Z ′

in §2E. Identifying Rn with its dual, we see that Z is the convex hull of vectors dE ,
where E is an arbitrary collection of 2-element subsets ij of [n] and

dE =
∑

ij∈E

(ei + ej).

[Here e1, . . . , en denotes the standard basis of Rn.] Now E may be viewed as the
set of edges of a graph G on [n], and dE = (d1, . . . , dn) is the degree sequence of
G. Thus Z is the convex hull of the set of degree sequences of graphs on [n].

The first major result about Z is that its vertices are the degree sequences of the
threshold graphs on [n]. Hence the chambers of our hyperplane arrangement can
be identified with threshold graphs. Explicitly, a chamber with sign sequence (σij)
corresponds to the graph with edge set {ij : σij = +}. The face poset F seems
quite complicated, but we can single out a subset of F whose action generates an
interesting random walk:

Assume n ≥ 4. Then each of the 2n coordinate rays R±i is a face. For example,
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R+
1 is defined by

x1 + xj > 0 for 2 ≤ j ≤ n

xi + xj = 0 for 2 ≤ i, j ≤ n, i 6= j.

The action of Rε
i on chambers is easily pictured: Given a threshold graph, R+

i adds
edges to make the vertex i dominating, and R−i deletes edges to make i isolated.

As in Example 2 of §3B, we can describe a probability measure on these 2n
coordinate rays by giving weights wi ≥ 0 (1 ≤ i ≤ n, Σwi = 1) and “coin-tossing
parameters” θi (0 ≤ θi ≤ 1). The resulting walk then evolves as follows: At each
stage there is a threshold graph. Pick a vertex i according to the weights wi. Then
flip a coin with probability θi of heads. If heads comes up, add edges to make i
dominating; otherwise delete all edges involving i.

If wi > 0 for all i (or even all but one i), then our measure on F is separating and
there is a unique stationary distribution π. It can be described as follows: Sample
without replacement from the weights wi to get an ordering i1, . . . , in of [n]. Pick

signs ε(i) = ±1, where ε(i) = +1 with probability θi. Then i
ε(i1)
1 i

ε(i2)
2 · · · i

ε(in)
n is a

random signed permutation whose associated graph G is distributed from π.
If wi = 1/n and θi = 1/2 for all i, then π is simply the measure on threshold

graphs induced by the uniform distribution on signed permutations. In other words,

π(G) =
s(G)

2nn!
,

where s(G) is the number of signed permutations representing G. For example,
π(G) = 1/2n if G is the complete graph or the discrete graph. Note, in particular,
that π is not uniform.

The convergence bound given by Theorem 2 is exactly the same as in Example 1
of §3C (wighted random-to-top shuffle):

‖K`
G − π‖ ≤

∑

ij

(1− wi − wj)
`,

where the sum is taken over all 2-element subsets ij of [n]. In particular, n log n+cn
steps suffice to reach stationarity if wi = 1/n for all i.

Finally, one can work out the eigenvalues and multiplicities by a slight variation
on the method used in the random-to-top example. We omit the details and simply
state the result: For each subset s ⊆ [n] there is an eigenvalue

λs =
∑

i∈s

wi,

with multiplicity ms equal to the number of threshold graphs on [n] with s as the
set of isolated vertices. Equivalently, if n− |s| = k, then ms = τk, where τk is the
number of threshold graphs on [k] with no isolated vertices. Thus τk is an analogue
of the derangement number dk.

We have τ0 = 1, τ1 = 0 [so that ms = 0 if |s| = n − 1, and λs does not
actually occur], and τk = tk/2 for k ≥ 2 where, as above, tk is the number of
threshold graphs on [k]. This follows from the fact that, by the characterization
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(3) of threshold graphs, G has no isolated vertices if and only if its complement G′

has at least one isolated vertex.
It is remarkable that the multiplicities ms can be obtained, as in the random-

to-top example, with virtually no knowledge about the intersection lattice S. For
completeness, however, we give a brief description of the elements of S. A subspace
W ∈ S of dimension r is determined by the following data:

(i) A subset s0 ⊆ [n] which is either empty or else has at least 3 elements.

(ii) A set partition {B1, . . . , Br} of the complement [n]− s0.

(iii) For each block Bi with |Bi| ≥ 2, a set partition of Bi into two parts.

Write i ^ j if i and j are in the same part of some block Bk with |Bk| ≥ 2 and
i _ j if they are in different parts of some Bk. Then the subspace W corresponding
to (i)–(iii) is given by the (redundant) system of equations

xi = 0 if i ∈ s0

xi = xj if i ^ j

xi = −xj if i _ j.

To prove that elements of S correspond to data as in (i)–(iii), let W ∈ S be
defined by equations of the form xi + xj = 0. Let Γ be the graph on [n] whose
edges are the ij such that xi + xj = 0 on W . Then xi = xj on W (resp., xi = −xj

on W ) if i and j can be joined by a path in Γ of even (resp., odd) length. If Γ
contains a cycle of odd length, it follows that xi = 0 on W for all vertices i in the
connected component Γ0 containing that cycle. Moreover, Γ0 is the complete graph
on s0 = {i : xi = 0 on W}, and all other connected components are bipartite. The
remaining details are left to the reader.

Remark. Although the face poset F is complicated, its atoms (i.e., the faces that
are rays) are easy to describe: Each W ∈ S of dimension r = 1 contributes two
rays. So we get one ray for each ordered pair (s, t) of disjoint nonempty subsets of
[n] which either cover [n] or omit at least 3 elements. In addition, we get the 2n
coordinate rays if n ≥ 4; these correspond to the case |s0| = n−1. This description

of the rays in F or, equivalently, the vertices of the polytope Σ̂ (§2D), is equivalent
to the description of the facets of the zonotope Z given in [26], Theorem 3.3.17.

3E. Zonotopes, tilings, and oriented matroids. As explained in Section 2E,
the dual of a central hyperplane arrangement is a convex polyhedron called a zono-
tope. The hyperplane chamber walks become walks on the vertices of the zonotope.
In this section we show how to analyze random walk on the vertices of a tiling of
a zonotope. Given a zonotope Z =

∑n
i=1[−vi, vi], a zonotopal tiling of Z is a poly-

hedral subdivision of Z in which all of the faces are translates of zonotopes of the
form

∑
i∈s[−vi, vi], where s ⊆ {1, . . . , n}. Figure 9 shows two examples. See [38],

§7.5, or [9], §2.2, for further information about zonotopal tilings.
A walk on the vertices of a zonotopal tiling is driven by a probability distribution

w(·) on the faces making up the tiling. From a given vertex x, choose a face F from
w(·) and move to the vertex of F closest to x. If the zonotopal tiling is a projection
of a higher dimensional zonotope (Figure 9a), the walk is just projected and no new
theory is needed. As Figure 9b suggests, not all zonotopal tilings are projections.
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[Pictures to be pasted in]

Figure 9. Two zonotopal tilings of a 10-gon

However, there is a very similar combinatorial structure called an oriented matroid
which covers general zonotopal tilings. As we show in Section 6, Theorems 1 and 2
carry over to oriented matroids. The present example may thus motivate the extra
work.

Recall that a face of a hyperplane arrangement {Hi}
n
i=1 can be coded as a se-

quence of {0,±} symbols of length n. These are the signs σ in F =
⋂

Hσi

i . An
oriented matroid is a set X ⊆ {0,±}n satisfying

(1) 0 ∈ X .
(2) If x ∈ X then −x ∈ X .

(3) If x, y ∈ X then x · y ∈ X , where x · y =

{
xi xi 6= 0

yi xi = 0.
(4) Given x, y ∈ X , let S(x, y) = {i : xi = −yi 6= 0}. For every j ∈ S(x, y)

there is a z ∈ X with zj = 0 and zi = (x · y)i = (y · x)i for i /∈ S(x, y).

It is not hard to check that the sign sequences of a central hyperplane arrange-
ment form an oriented matroid. There is also a concept of affine oriented matroid,
generalizing affine hyperplane arrangements, cf. [9], §4.5.

A chamber of an oriented matroid X is an element y ∈ X with no zero coordi-
nates. (We may assume without loss of generality that such elements exist.) Note
that if y is a chamber and x ∈ X then x·y is a chamber. Thus if w(·) is a probability
distribution on X we may define a Markov chain K(x, y) on the chambers of X via

(3.2) K(x, y) =
∑

z·x=y

w(z).

Section 6 shows that Theorems 1 and 2 hold for this chain.

Return now to zonotopal tilings. According to the Bohne–Dress theorem (see
[38], 7.32), a zonotopal tiling of a fixed zonotope corresponds to a certain affine
oriented matroid. The correspondence is such that the walk on the matroid yields
the walk described above on the vertices of the tiling. We are thus in a position to
find the eigenvalues and rates of convergence.

We conclude this section with an example of a family of tilings of a 2n-gon where
all the details can be carried through. This example was suggested by Louis Billera.
The family is built up by repeatedly adding a new layer of tiles as in the following
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pictures.
Z2 Z3 Z4 Z5

[pictures to be pasted in]

n 2 3 4 5
tn 1 3 6 10
vn 4 7 11 16
en 4 9 16 25

At stage n, a new family of n− 1 rhombus tiles is added on the top and left of the
previous Zn−1. This results in a rhombic tiling Zn of a 2n-gon with tn =

(
n
2

)
tiles,

vn =
(
n+1

2

)
+ 1 vertices, and en = n2 edges. These formulae are easily proved by

induction.
These tilings are all projections of a three-dimensional zonotope. Nevertheless,

we will present the associated affine oriented matroid, which is here realized by an
affine hyperplane arrangement, and use it to analyze the walk. The hyperplane
arrangement An associated to the tiling Zn may be represented as n lines in R2 in
general position. Thus the examples above correspond to

n 2 3 4 5

Here the chambers of An correspond to vertices of the tiling Zn; the segments of
lines in An correspond to edges of Zn, with the half infinite line segments corre-
sponding to the 2n bounding edges of Zn; and the vertices of An correspond to the
two-dimensional tiles of Zn.

The correspondence may be seen here directly (without the Bohne–Dress theo-
rem) by drawing the lines on top of the picture of Zn as follows:
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The dotted segments (pseudo-lines) can be straightened out to be the lines shown.
See [38], §7.5, for further details.

We will analyze the walk on the vertices of Zn driven by
(
n
2

)
weights on the

2-dimensional tiles. This corresponds to a walk on the chambers of An driven by
weights on the

(
n
2

)
vertices. Each vertex corresponds to the intersection of two

lines. Labeling the lines L1, . . . , Ln, let wij be the associated weights. Suppose for
simplicity that all wij > 0. Then the weights are separating and so the walk has a
unique stationary distribution described in Theorem 2. Here, it can be shown that
the stationary distribution is supported on chambers of An that meet the convex
hull of the vertices of An.

Theorem 1 shows that the eigenvalues and their multiplicities are

λ m(λ)
1 1

λLi
1 1 ≤ i ≤ n

wij 1 i 6= j

with λLi
=
∑

j 6=i wij . This gives 1 + n+
(
n
2

)
=
(
n+1

2

)
+ 1 eigenvalues.

Theorem 2 shows

‖K`
x − π‖ ≤

n∑

i=1

λ`
Li

.

For example, if wij ≡
1

(n
2)
, then λLi

= 2/n and the bound becomes

‖K`
x − π‖ ≤ n

( 2
n

)`
.

Thus, for large n, two steps suffice for convergence.
As a second example, let wi,i+1 = 1/(n − 1) for 1 ≤ i ≤ n − 1, and wij = 0

otherwise. These weights are separating for n ≥ 4 and the bound in Theorem 2
becomes

‖K`
x − π‖ ≤ 2

( 1

n− 1

)`
+ (n− 2)

( 2

n− 1

)`
.

Here again, the walk converges after ` = 2 steps.

3F. Further examples. There are many further examples of hyperplane arrange-
ments where the chambers can be indexed by a natural class of combinatorial ob-
jects, cf. Orlik–Terao [27], Stanley [33], and Ziegler [38]. We briefly mention two:
(a) The set of all regular cubical tilings of a fixed zonotope and (b) the Shi arrange-
ment.
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A walk on tilings. Let Z = [−v1, v1]+ · · ·+[−vn, vn] be a d-dimensional zonotope
in Rd with n zones. A zonotopal tiling of Z is called cubical if every face of the
tiling is a translate of a parallelepiped of the form

∑
i∈s[−vi, vi], where s is a subset

of [n] = {1, . . . , n} such that { vi}i∈s is linearly independent. A zonotopal tiling is
regular if it arises as an appropriate projection of a (d+ 1)-dimensional zonotope.
(See [38] or [9] for the precise definition.) For example, the left tiling in Figure 9
is regular, but the right one is not. Billera and Sturmfels [7] have proved that the
set of all regular cubical tilings of a fixed zonotope Z is itself the set of vertices of

a second zonotope Ẑ. Thus the walk on the vertices of the zonotope Ẑ becomes a
walk on the set of regular cubical tilings of Z.

To define Ẑ, consider the subsets s ⊆ [n] such that { vi : i ∈ s } is a minimal
linearly dependent set. Each such s gives rise to a linear relation

∑n
i=1 αivi = 0,

unique up to scalar multiplication. Let αs = (α1, . . . , αn). Then Ẑ is the zonotope
in Rn defined by

Ẑ =
∑

s

[−αs, αs].

It has one zone for each minimal dependent subset of {vi}. Note that Ẑ is (n− d)-
dimensional, because the linear span of the αs is the kernel of the linear surjection
Rn → Rd given by ei 7→ vi.

One can give a more explicit formula for Ẑ by noting that each minimal depen-
dent subset of {vi} can be extended to a set of d+1 vectors that span Rd. Writing
these as the columns of a matrix, we can find the essentially unique linear relation
among them by forming the cross product of the rows of the matrix (which form a
set of d independent vectors in Rd+1). This leads to the equivalent definition

Ẑ =
∑

s

[−βs, βs],

where now s ranges over the (d+ 1)-subsets s1 < · · · < sd+1 of [n] and

βs =
d+1∑

i=1

(−1)i det(vs1 , . . . , vsi−1 , vsi+1 , . . . , vsd+1
)esi

.

Note that some of the βs may be 0 and some of the nonzero ones may be scalar

multiples of others. So the number of zones of Ẑ may be less than
(

n
d+1

)
.

As an example, there are 8 regular cubical tilings of an octagon (Figure 10). The

zonotope Ẑ is then itself an octagon, as shown. More generally, consider all regular
cubical tilings of a regular 2n-gon. The bounding zonotope Z is generated by n

vectors in R2. The zonotope Ẑ is (n− 2)-dimensional, generated by
(
n
3

)
vectors αs

in Rn. To go further, one would have to understand the geometry of Ẑ, identifying
natural families of faces and thus walks on the regular tilings.

The papers [37] and [21] study all cubical tilings of a 2n-gon and connect these
to the higher Bruhat orders of Manin and Schechtmann. For n ≤ 5 all such tilings
are regular, so that Fig. 3 of [37] gives a picture of the regular cubical tilings of a
10-gon.

Shi arrangement. The Shi arrangement in Rn consists of the 2 ·
(
n
2

)
hyperplanes

given by xi − xj = 0 and xi − xj = 1, i < j. This is one of several “deformations”
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Figure 10. An octagon of tilings of an octagon.

of the braid arrangement discussed in [33]. It is known that there are (n + 1)n−1

chambers, which may be put into bijective correspondence with the set of labeled
trees on n + 1 vertices as well as with the set of “parking functions” (see [33] and
further references cited there). There are many such bijections. Unfortunately,
despite extensive effort, we have not found one such that the natural walk on the
chambers seems natural when viewed as a walk on labeled trees.

4. Stationary distribution and bounds

In this section we prove Theorem 2 and some extensions. The argument handles
input from a stationary process on F , not just i.i.d. input. We begin with some
general observations that use no special properties of the hyperplane situation.

4A. Iteration of random mappings. Let F be an arbitrary finite semigroup
and let C be a finite set on which F operates. Thus we have a function F ×C → C,
denoted (f, c) 7→ fc, such that f(gc) = (fg)c for f, g ∈ F , c ∈ C. Note that this
setup encompasses an arbitrary family of mappings C → C, since we could simply
take F to be the semigroup that they generate under composition.

Let . . . , F−2, F−1, F0, F1, F2, . . . be a stationary F-valued process, e.g., an i.i.d.
sequence. (Recall that “stationary” means that the distribution of the sequence
is shift-invariant.) We can use this to define a process (C`)`≥0 (not necessarily
Markov) on C: Fix a starting point C0 and set

(4.1) C` = F−` · · ·F−2F−1C0

for ` ≥ 1.
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Our description of the limiting distribution for C` will make use of the infinite
product

∞∏

i=1

Fi = lim
`→∞

F1 · · ·F`

where, in this discrete setting, a sequence is said to converge if and only if it is
eventually constant. In order for this to make sense, we assume (Fi) satisfies

(IP) The infinite product
∞∏

i=1

Fi exists almost surely.

Example. If F is the face semigroup of a hyperplane arrangement, then the
sequence of partial products F1 · · ·F` is increasing with respect to the face relation,
so (IP) holds.

Let F∞1 =
∏∞

i=1 Fi and F `
1 =

∏`
i=1 Fi. Our proof of Theorem 2 will be based on

the following simple observation:

Theorem 3. Assume the stationary sequence (Fi)i∈Z satisfies (IP). Fix C0 ∈ C,
let C` be defined by (4.1) for ` ≥ 1, and let π` be the distribution of C`, i.e.,
π`(c) = P{C` = c}. Let π be the distribution of F∞1 C0. Then π` → π as ` → ∞.
More precisely,

(4.2) ‖π` − π‖TV ≤ P{F `
1 6= F∞1 }.

Proof. By stationarity, C` has the same distribution as F `
1C0. Since F `

1C0 → F∞1 C0

a.s., it follows that π` → π. To prove (4.2), recall that, by definition of total
variation distance,

‖π` − π‖ = max
D⊆C

|π`(D)− π(D)|.

We have π`(D) = P{F `
1C0 ∈ D} and π(D) = P{F∞1 C0 ∈ D}. Break up both events

according to whether or not F `
1 = F∞1 :

π`(D) = P{F `
1 = F∞1 , F `

1C0 ∈ D}+ P{F `
1 6= F∞1 , F `

1C0 ∈ D}

π(D) = P{F `
1 = F∞1 , F∞1 C0 ∈ D}+ P{F `

1 6= F∞1 , F∞1 C0 ∈ D}.

The two first terms are equal and the two second terms are at most P{F `
1 6= F∞1 }.

¤

Remark. The infinite product F∞1 acts on C as an infinite composite f1 ◦ f2 ◦ · · ·
of random maps. The idea of using such infinite composites to construct limiting
distributions has occurred in a variety of contexts. See, for instance, Letac [25] and
Chamayou–Letac [12]. In the setting of the hyperplane chamber walk, one can even
verify that the Propp–Wilson [34] monotonicity condition holds with respect to the
weak Bruhat order [9] on C. This means that monotone coupling from the past can
be used to draw exact samples from the stationary distribution π.
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4B. Proof of Theorem 2. We now specialize to the case where F is the set of
faces and C the set of chambers of a hyperplane arrangement. We still allow, for
the moment, the process on chambers to be driven by a stationary process on F as
above. If we assume that F∞1 is a.s. a chamber, then F `

1 = F∞1 as soon as F `
1 is a

chamber. The bound (4.2) therefore yields

(4.3) ‖π` − π‖ ≤ P{F1 · · ·F` /∈ C}.

Assume from now on that (Fi)i∈Z consists of i.i.d. picks from a measure w on F ,
so that (4.1) is the hyperplane chamber walk. If w is separating, then F∞1 is a.s.
a chamber and (4.3) holds. Now F1 · · ·F` /∈ C if and only if there is a hyperplane
H ∈ A such that Fi ⊆ H for 1 ≤ i ≤ `. And P{Fi ⊆ H} = λH . Hence

(4.4) P{F1 · · ·F` /∈ C} ≤
∑

H∈A

P{Fi ⊆ H for 1 ≤ i ≤ `} =
∑

H∈A

λ`
H .

Combining this with (4.3), we get part (c) of Theorem 2.

Remark. BHR [6] give a more careful analysis of P{F1 · · ·F` /∈ C}. They break
up the event {F1 · · ·F` /∈ C} according to the support W of F1 · · ·F` and then use
Möbius inversion to get

(4.5) P{F1 · · ·F` /∈ C} = −
∑

W∈S
W 6=V

µS(W,V )λ`
W .

Combining (4.3), (4.4), and (4.5), we obtain

(4.6) ‖K`
C − π‖ ≤ −

∑

W 6=V

µ(W,V )λ`
W ≤

∑

H∈A

λ`
H

so that (4.5) gives, in principle, a sharper bound than that of Theorem 2, using all
the eigenvalues. On the other hand, the right side of (4.5) seems quite difficult to
estimate (without using the second inequality in (4.6)), and we have not found any
examples where we could use it to get a better bound than that of Theorem 2.

Returning to the proof of Theorem 2, still assuming w is separating, Theorem 3
gives the following description of the limiting distribution of the chain started at
C0: Sample with replacement from w, stopping as soon as F1 · · ·Fm is a chamber.
Then F1 · · ·Fm is distributed from π. As we explained at the beginning of §3, this is
equivalent to the description of π in part (b) of Theorem 2. Since π is independent
of the starting chamber C0, we have also proven half of (a): There is a unique
stationary distribution if w is separating.

Finally, suppose w is not separating, and let H contain the support of w. Then
Theorem 3 gives the limiting distribution πC0 for the chain started at C0, and we
see that πC0 is concentrated on the chambers on the C0-side of H. Hence there are
at least two stationary distributions, and Theorem 2 is proved.

Remarks. 1. One can give more precise results for general (non-separating) w:
Let A′ be the set of H ∈ A which contain the support of w. Partition the chambers
C according to which A′-chamber contains C. Then this gives the decomposition
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of the hyperplane chamber walk into its components: The walk started in any A′-
chamber stays there and has a unique stationary distribution. In particular, the
set of all stationary distributions is a simplex with one vertex for each A′-chamber.

2. The weighted random-to-top shuffle with Markovian input is a standard item
of study in the recent literature. Refer to Phatarfod–Dyte [29] and Dobrow–Fill
[20] for results in this case. Note that for a stationary Markov chain as input,
the process is driven by the time-reversed chain according to (4.1). Turning things
around, suppose we are interested in the process C0, F1C0, F2F1C0, . . . with (Fi)

∞
i=1

a stationary Markov chain. Let F̃1, F̃2, . . . be the time-reversed process. The bound
then becomes

‖π` − π‖ ≤ P{F̃1 · · · F̃` /∈ C}.

As before, F̃1 · · · F̃` /∈ C if and only if there is a hyperplane H ∈ A containing

F̃1, . . . , F̃`; the probability of this event can be bounded by the “cover time” of the

chain (F̃i). See [1] for a review of the literature on cover times.

5. Diagonalization

In this section we prove Theorem 1. After setting up some notation in 5A, we
prove that K is diagonalizable in 5B, assuming, for simplicity, that A is central.
The proof gives the eigenvalues but not the multiplicities (which were calculated
by BHR [6] in the central case). In 5C we show how the ideas in 5B lead naturally
to a new proof of the BHR formula for the multiplicities. Finally, we treat the
non-central case in 5D.

5A. Notation. For any finite set S, let RS denote the vector space of all real linear
combinations

∑
s∈S α(s)s of elements of S. In particular, we have vector spaces RC

and RF generated by the chambers and faces of a hyperplane arrangement. Note
that RF is an R-algebra (the semigroup algebra of F), and RC is an RF-module
via the action of faces on chambers. Given a probability measure w on F , we have
an element

(5.1) T = Tw =
∑

F∈F

w(F )F

of RF , which therefore acts as an operator on RC. Explicitly, given an element
α =

∑
C∈C α(C)C ∈ RC, we have

T (α) =
∑

F∈F
C∈C

w(F )α(C)FC =
∑

C′∈C

β(C ′)C ′,

where

β(C ′) =
∑

F,C:FC=C′

w(F )α(C) =
∑

C∈C

α(C)K(C,C ′).

Here K is the transition matrix defined at (1.3). Thus if elements of RC are viewed
as row vectors indexed by C, then T acts as right multiplication by the matrix K.
In particular, the eigenvectors of T on RC are the left eigenvectors of K.
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5B. Diagonalizability. We already have an eigenvector Σπ(C)C with eigenvalue
1 (= λV ), where π is any stationary distribution for the chamber walk defined by
K.5 Note that this eigenvector maps to 1 ∈ R under the linear map

∂0 : RC → R

given by ∂0(C) = 1 for all C ∈ C. Now ∂0 is a homomorphism of RF-modules,
where each F ∈ F acts as the identity on R, so ker ∂0 is an RF-module. In
particular, ker ∂0 is T -invariant, so T (and hence K) will be diagonalizable provided
its restriction to ker ∂0 is diagonalizable.

Note that ker ∂0 is spanned by the differences C − C ′ (C,C ′ ∈ C). In fact, by
connectivity of the chamber graph, ker ∂0 is spanned by differences C − C ′ such
that C and C ′ are adjacent. Let F1 ⊂ F be the set of codimension 1 faces, i.e.,
the set of faces whose support is a hyperplane. Our first task is to define a linear
surjection ∂1 : RF1 → ker ∂0, which sends A ∈ F1 to ∂1(A) = ±(C − C ′), where C
and C ′ are the two chambers having A as a face; here we must specify a rule for
determining the ambiguous sign.6 Assume, for simplicity, that A is central, so that
A can be taken to consist of linear hyperplanes. We will return to the general case
in §5D.

Choose arbitrarily an orientation for the ambient vector space V . This means
that we have a rule which associates a sign ε = ±1 to each ordered basis e1, . . . , en
of V , in such a way that two ordered bases have the same (resp., opposite) sign if
the matrix relating them has positive (resp., negative) determinant. Similarly, each
hyperplane H ∈ A is itself a vector space and we choose arbitrarily an orientation
for it. Given a chamber C and a codimension 1 face A of C, we use the chosen
orientations on V and on H = suppA to define a sign [A : C] = ±1, as follows:
Choose a positively-oriented ordered basis e1, . . . , en−1 for H, choose v ∈ C, and
set

[A : C] = ε(e1, . . . , en−1, v).

This is easily seen to be independent of the choice of e1, . . . , en−1 for fixed v, and
it is independent of v because C is connected. In fact, [A : C] = ε(e1, . . . , en−1, v)
for any vector v on the same side of H as C.

Note that if A ∈ F1 and C, C ′ are the two chambers having A as a face, then
[A : C ′] = −[A : C] because C and C ′ are on opposite sides of H = suppA. The
desired surjection

∂1 : RF1 → ker ∂0,

is now defined by ∂1(A) = [A : C]C + [A : C ′]C ′ for A ∈ F1, where C, C ′ are the
chambers having A as a face.

Next, we define an action of F on RF1. Given F ∈ F and A ∈ F1, we wish
to define F ∗ A ∈ RF1. Consider the product FA in the semigroup F . If F ⊆
H = suppA, then FA is again in F1 (and has the same support H), and we set
F ∗A = FA. If F 6⊆ H, then FA is a chamber and we set F ∗A = 0. This product
makes RF1 an RF-module.

5Alternatively, we could get π from the Perron–Frobenius theorem instead of probability theory.
6For our present purposes, we could set ∂1(A) = C−C′, where C is on the (arbitrarily chosen)

positive side of H = suppA. But we will give a more complicated rule that will be needed in §5C.



RANDOM WALK AND HYPERPLANE ARRANGEMENTS 29

Lemma 1. The map ∂1 : RF1 ³ ker ∂0 is a homomorphism of RF-modules. In
particular, it commutes with the action of T = Σw(F )F .

Proof. Given F ∈ F and A ∈ F1, we must check that ∂1(F ∗ A) = F∂1(A). Let
C and C ′ be the chambers having A as a face. If F 6⊆ H, then FA = FC = FC ′,
and we have F∂1(A) = ±F (C − C ′) = 0. Since F ∗ A = 0, the desired equation
holds. If F ⊆ H, then FC and FC ′ are the two chambers having FA as a face, so
∂1(F ∗A) = ±(FC−FC ′) and F∂1(A) = ±(FC−FC ′). The two ambiguous signs
agree because FC and C are on the same side of H. ¤

Finally, we lump together the elements of F1 with the same support to obtain

(5.2) RF1 =
⊕

H∈A

RCH ,

where CH is the set of faces having support H. The notation “CH” serves as a
reminder that CH is the set of chambers of the arrangement AH in H obtained by
restriction (see §2A). The decomposition (5.2) is a decomposition of RF-modules,
and the action of T on the summand RCH is the same type of operator, relative
to the arrangement AH , as the original action of T on RC. [The relevant measure
here on the faces of AH , which are simply the F ∈ F such that F ⊆ H, is gotten
by restricting w. This restriction will not generally be a probability measure, but
a trivial argument shows that the results we are trying to prove are true for all
positive measures if and only if they are true for probability measures.]

Arguing by induction on the dimension of the ambient space V , it follows that T
is diagonalizable on RF1, hence also on the homomorphic image ker ∂0, hence also
on RC. The argument also shows that the eigenvalues are contained in {λW }W∈S .

Remark. The proof gives explicit formulas for a set of eigenvectors spanning RC,
provided such formulas are already known inductively for T acting on each RCH .
The details have been worked out by Bidigare, Denham, and Hanlon [private com-
munication] and will appear elsewhere.

5C. Multiplicities. We continue to assume, for simplicity of notation, that A
is central. The argument above did not give us multiplicities for T acting on RC
because we ignored ker ∂1. In order to remedy this, we extend the exact sequence

RF1
∂1−→ RC ∂0−→ R → 0

to a longer exact sequence

(5.3) · · · → RFp
∂p
−→ · · ·

∂2−→ RF1
∂1−→ RC ∂0−→ R → 0

(which is eventually 0 at the left), where Fp is the set of faces of codimension p
in V .

In order to define ∂p : RFp → RFp−1, we need numbers [A : B] = ±1 whenever
A is a codimension 1 face of B. To this end we choose an orientation for each W
in the intersection lattice S. Then if we restrict A to the support of B, the face B
becomes a chamber, A becomes a face of codimension 1, and our chosen orientations
give us a number [A : B] = ±1 by §5B applied to the restricted arrangement. We
now define a linear map ∂p : RFp → RFp−1, by

∂p(A) =
∑

BmA

[A : B]B (A ∈ Fp).

Here B m A means that B covers A in the poset F , i.e., A is a codimension 1 face
of B. The following lemma implies that ∂p−1∂p = 0.
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Lemma 2. Let A,C ∈ F , with A < C and A of codimension 2 in C. Then there
are exactly two faces B1, B2 in the open interval (A,C), and we have

[A : B1][B1 : C] = −[A : B2][B2 : C].

Proof. Replacing A by its restriction to the support of C, we reduce to the case
where C is a chamber. Let H1, . . . , Hk be the walls of C, i.e., the supports of the
codimension 1 faces. Let Hi = ker fi (fi ∈ V ∗), where fi is chosen so that fi > 0
on C. Then C is defined by fi > 0 for 1 ≤ i ≤ k, and this is a minimal set of
inequalities defining C; moreover, the faces of C are the nonempty sets obtained by
replacing some of these inequalities by equalities, cf. [11], §I.4B and last paragraph
of §I.4A. The given face A of codimension 2 is contained in exactly two of the walls,
say H1, H2, because any three of the fi are linearly independent and hence define a
face of codimension 3. [A linear relation among three of the fi would give one fi as
a positive linear combination of two others. But then the inequality fi > 0 would
be redundant in the description of C, and Hi would not be a wall.] It follows that
the only faces between A and C are the faces B1, B2 of C supported by H1, H2.

To prove [A : B1][B1 : C] = −[A : B2][B2 : C], we may assume that Hi has
been oriented so that [A : Bi] = +1. We may therefore get a positively-oriented
ordered basis for Hi (i = 1, 2) by choosing a positively-oriented ordered basis
e1, . . . , en−2 for H1 ∩ H2 and adjoining a vector vi ∈ Hi. Then v1 + v2 ∈ C,
and [Bi : C] = ε(e1, . . . , en−2, vi, v1 + v2). The lemma now follows from the fact
that e1, . . . , en−2, v1, v1 + v2 and e1, . . . , en−2, v2, v1 + v2 are related by a matrix of
determinant −1. ¤

Next we define an action of F on RFp as in §5B: Given F ∈ F and A ∈ Fp, set

F ∗A =

{
FA if F ⊆ suppA

0 otherwise.

This makes RFp an RF-module, which we may decompose according to supports:

RFp =
⊕

W∈Sp

RCW ,

where Sp = {W ∈ S : codim(W,V ) = p} and CW is the set of faces with support
W . The complex (5.3) now becomes

(5.4) · · · →
⊕

W∈S2

RCW →
⊕

H∈A

RCH → RC → R → 0.

Lemma 3. The complex (5.4) is a chain complex of RF-modules, i.e., each bound-
ary map commutes with the action of F .

Proof. Consider a typical component ∂U,W : RCU → RCW of ∂p, where U ∈ Sp and
W ∈ Sp−1. We must show that the action of each F ∈ F commutes with ∂U,W . If
U 6⊂ W , then ∂U,V = 0 and there is nothing to prove. If F 6⊆ W , then F acts as 0
on both RCU and RCW , so again there is nothing to prove. Finally, if F ⊆ W , we
may replace A by its restriction to W and apply Lemma 1 of §5B. ¤
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Lemma 4. The sequence (5.4) is exact.

Proof. This follows from the homology theory of regular cell-complexes [13]: Recall
that the zonotope Z associated to A (§2E) is a contractible regular cell-complex
whose face poset is the poset Fop opposite to F . The facts we have proved about
the numbers [A : B] say precisely that they form a system of “incidence numbers”
for Z in the sense of [13] and hence that (5.3) is the augmented cellular chain
complex of Z. The exactness of (5.3) and (5.4) therefore follows from the fact that
Z has trivial homology. ¤

We are now in a position to calculate eigenvalues and multiplicities by the same
sort of induction used in §5B. We need the following well-known special case of the
“Euler characteristic principle”:

Lemma 5. Let

0 −→ Vm
∂m−−→ · · · −→ V1

∂1−→ V0 → 0

be an exact sequence of finite-dimensional vector spaces. Let Ti be a linear operator
on Vi such that ∂iTi = Ti−1∂i for 1 ≤ i ≤ m, and let ϕi be the characteristic
polynomial of Ti. Then ϕ0ϕ

−1
1 ϕ2ϕ

−1
3 · · · = 1.

Sketch of proof. For m = 2 this is proved by looking at matrices; the general case
follows by induction on m. ¤

Applying this to the action of T = Σw(F )F on (5.4), we may assume inductively
that we have a decomposition of the characteristic polynomial ϕU of T acting on
RCU for each U 6= V in S, say

ϕU (λ) =
∏

W∈S:W⊆U

(λ− λW )m(W,U)

for some integers m(W,U) ≥ 0. Lemmas 4 and 5 then give the characteristic
polynomial ϕ = ϕV for T acting on RC:

ϕ(λ) = (λ− λV )
∏

W,U :
W⊆U$V

(λ− λW )−(−1)codim(U,V )m(W,U)

=
∏

W∈S

(λ− λW )m(W,V ),

where m(V, V ) = 1 and, for W $ V ,

(5.5) m(W,V ) = −
∑

U :W⊆U$V

(−1)codim(U,V )m(W,U).

This recurrence formula is reminiscent of the recurrence (2.1) for the Möbius func-
tion µ = µS . In fact, if we multiply (5.5) by (−1)codim(W,V ) and compare the result
to (2.1), we conclude, inductively, that

m(W,V ) = (−1)codim(W,V )µ(W,V ) = |µ(W,V )|,

where the second equality is the “alternating sign” property of µS ([31], 3.10.1, or
[27], 2.4.7). Theorem 1 is now completely proved in the central case.

Remark. As a byproduct, we recover Zaslavski’s famous formula [35] for the
number of chambers:

(5.6) |C| =
∑

W∈S

m(W,V ) =
∑

W∈S

|µ(W,V )|.
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5D. The non-central case. There are two ways to treat the case where A is not
necessarily central.

Method 1. Go through §§5B and 5C, making changes to accommodate the general
case. This involves minor changes in wording (e.g., one has to consider orientations
of affine subspaces), and, more importantly, one has to replace the zonotope Z by
the cell-complex ∆ of §2F.

Method 2. Deduce the general case from the central case by coning (§2F). Namely,
let A be the central arrangement obtained from A by coning, and let F , C, and S
be the associated face poset, set of chambers, and intersection lattice. Recall that

F may be identified with a subset F
+
⊂ F . We then have RC ⊂ RC, and if we view

w as a measure on F supported in F
+
, we get an operator T on RC extending T

and mapping all of RC into RC.
Diagonalizability of T therefore follows from that of T , and we get the same

eigenvalues and multiplicities for T as for T , except that the multiplicity of 0 has
to be reduced by |C|− |C| = |C|/2. To complete the proof we need to show that this
reduction is accomplished by throwing out the eigenvalues of T corresponding to
the W ∈ S such that W ⊆ H0 = V ×0. [These W are the elements of S that do not
correspond to anything in S.] Note that if W 6⊆ H0 in S and W is the corresponding
element of S (gotten by intersecting with V × 1), then µS (W,V ) = µS(W,V )
because the corresponding open intervals are isomorphic. What we need to complete
the proof is:

Lemma 6.
∑

W∈S:
W⊆H0

(−1)codim(W,V )µS(W,V ) =
∑

U∈S:
U 6⊆H0

(−1)codim(U,V )µS(U, V ).

[Recall that the sum of the left and right sides is |C| by (5.6), so this shows that
the left side equals |C|/2, as desired.]

Proof. Fix W ⊆ H0 in S and note that

µ(W,V ) = −
∑

U∈S:
U 6⊆H0,U∩H0=W

µ(U, V )

by the Crapo complementation formula (see [14], Theorem 3, [8], 6.2, or [27], 2.40).

Multiply by (−1)codim(W,V ) and sum over W to obtain the lemma. ¤

6. Generalization to oriented matroids

We introduced oriented matroids in §3E, as generalizations of central hyperplane
arrangements. There are also affine oriented matroids, which generalize arbitrary
(affine) hyperplane arrangements. In this section we indicate how to extend Theo-
rems 1 and 2 to the oriented matroid setting. We begin by introducing the relevant
terminology in 6A. The extensions of Theorems 1 and 2 are then treated in 6B.

6A. Oriented matroids. Our basic reference here is [9], especially Chapter 4.
See also [38]. Our treatment closely follows these sources, with one exception:
We use the same geometric language (chambers, faces, intersection lattice, . . . ) in
connection with oriented matroids that we used for hyperplane arrangements.
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Recall from §3E that an oriented matroid is a set X of sign sequences (xi)i∈I
satisfying 4 axioms. Here I is a finite index set. As an aid to the intuition, let F
be a set whose elements F (called faces) are in 1–1 correspondence with the sign
sequences in X . We denote the correspondence by F 7→ σ(F ) = (σi(F ))i∈I .

The oriented matroids arising from (central) hyperplane arrangements are said
to be realizable. There are non-realizable oriented matroids, but it can be shown
that all oriented matroids can be realized by “pseudo-hyperplane arrangements”;
these are topological analogues of hyperplane arrangements, in which the “pseudo-
hyperplanes” are not necessarily flat. See [9], Chapter 5.

The set F of faces of an oriented matroid is a poset under the “face relation”
defined in terms of sign sequences as in §2B. And axiom (3) for oriented matroids
gives F the semigroup structure that has played such an important role in the
construction and study of the hyperplane chamber walk.

Each face F has a support, determined by the zero set z(F ) = {i ∈ I : σi(F ) =
0}. The set S of all supports is a lattice in a natural way, which we call the
intersection lattice. For any W ∈ S, we write z(W ) for the zero set of any face F
with support W . We denote by V the largest element of S. This is the support
of any maximal element C ∈ F . These maximal elements are called chambers, and
the set of all of them is denoted C. For any W ∈ S, the set of F ∈ F with support
W is again the set of chambers of an oriented method XW , said to be obtained by
restriction to W . Its face poset is FW = {F ∈ F : suppF ≤W}.

The rank of an oriented matroid is the length of the interval [0, V ] in S. (For a re-
alizable oriented matroid associated to an essential central hyperplane arrangement,
the rank is simply dimV .) The length of the interval [W,V ] is the codimension of
W ; it is equal to rankX − rankXW . It is also the rank of an oriented matroid
XW whose sign sequences are gotten from {σ(F ) : F ∈ F} by considering only the
components σi with i ∈ z(W ). The face poset of XW is isomorphic to F≥F for any
F with support W . (In the realizable case, XW corresponds to the subarrange-
ment AW ⊆ A given by the hyperplanes which contain W . This subarrangement
corresponds to an essential arrangement in the quotient space V/W .)

The face poset F of X can be identified with the poset of cells (including the
empty cell) of a regular cell-complex Σ = ΣX homeomorphic to the sphere Sn−1

(n = rankX ) by Theorem 4.3.3 of [9]. There is also a “dual” cell-complex ∆,
which is topologically an n-ball, whose poset of nonempty cells is isomorphic to
Fop ([9], 4.3.4). This plays the role of the zonotope dual to a central hyperplane
arrangement.

Finally, we have already remarked that there is a concept of affine oriented ma-
troid. We omit the formal definition, which is discussed in [9], §4.5. Suffice it to
say that the definition is cooked up so that the analgoue of the coning construc-
tion (§2F) remains valid, reducing the affine case to the case of ordinary oriented
matroids. Once again, Fop is isomorphic in the affine case to the poset of cells of
a regular cell-decomposition of a ball ([9], 4.5.8), generalizing the complex ∆ dual
to an affine hyperplane arrangement (§2F).

6B. Extension of Theorems 1 and 2. It is obvious how to formulate analogues
of Theorems 1 and 2 for oriented matroids (including the affine case). The condition
that the measure w in Theorem 2 be separating, for example, becomes: There is no
W < V in S such that w is concentrated on FW . It is also a fairly routine matter
to check that our proofs extend to the matroid setting, except for one technical
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point: Our definition of the incidence numbers [A : B] in §§5B and 5C made use of
orientations of real vector spaces. In order to carry this over to oriented matroids,
we could simply appeal to the topological representation theorem quoted above;
topology provides the appropriate concept of orientation for a “pseudo-subspace”
W . We prefer, however, the following approach, which is longer but does not rely
on the topological representation theorem.

We wish to define the notion of orientation for an element W ∈ S. It suffices to
consider W = V , since this then applies to arbitrary W by the restriction operation
described above. By an orientation for V we will mean a rule that associates to
each maximal chain

0 = A0 < · · · < An

in F a sign ε = ±1, in such a way that adjacent maximal chains get opposite signs.
Here two distinct maximal chains are adjacent if they differ in exactly one position.
We will also say in this situation that one maximal chain is obtained from the other
by an elementary move.

Remark. The maximal chains in F are in 1–1 correspondence with the maximal
simplices in the simplicial complex |F>0| associated to the poset F>0.

7 Now |F>0|
is the barycentric subdivision of the cell-complex Σ discussed above; in particular,
|F>0| is topologically a sphere. And adjacency of maximal chains, as defined above,
agrees with the usual notion of adjacency for triangulated manifolds: Two distinct
maximal simplices are adjacent if and only if they have a common codimension 1
face. It follows that V admits an orientation, unique up to multiplication by −1.

Underlying our definition of [A : C] in §5B was the fact that if a vector space V
and a hyperplane H are both oriented, then there is a canonical choice of “positive
side” of H in V . The following technical lemma, though it does not mention
orientations, will be crucial for generalizing this idea to oriented matroids.

Lemma 1. Let X be an oriented matroid of rank n ≥ 2. Let W ∈ S have codimen-
sion 1 and choose i ∈ z(W ) − z(V ). Let 0 = A0 < · · · < An be a maximal chain
in F with suppAn−1 = W . Let 0 = A′0 < · · · < A′n−1 be a maximal chain in FW

adjacent to A0 < · · · < An−1. Let A′n be a chamber such that A′n > A′n−1. Then
the chain A′0 < · · · < A′n can be obtained from A0 < · · · < An by an odd number of
elementary moves if σi(A

′
n) = σi(An) and by an even number otherwise.

[Note: In the realizable case, W is the hyperplane Hi, and the issue here is whether
or not the chambers An and A′n are on the same side of Hi.]

Proof. If A0 < · · · < An−1 and A′0 < · · · < A′n−1 differ at position i < n − 1, the
lemma is obvious. So assume we are in the situation

0 = A0 A1 · · · An−2

X Y

X ′ Y ′

with suppX = suppX ′ = W . Replacing F by F≥An−2 , which is again the face
poset of an oriented matroid as noted above, we reduce to the case n = 2. Now

7Recall that any finite poset P gives rise to a simplicial complex |P |, whose vertices are the
elements of P and whose simplices are the chains in P .
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every rank 2 oriented matroid is realizable ([9], p. 248). So we may identify F with
the poset of faces (including the empty face) of a 2m-gon Σ for some m ≥ 2. Then
X and X ′ correspond to opposite vertices and Y and Y ′ can be assumed to be
opposite edges [this is the case σi(Y ) 6= σi(Y

′)]. The maximal chains we have been
considering correspond to the edges of the barycentric subdivision of Σ, and the
lemma then states that in a 4m-gon, the gallery distance betwen opposite edges is
even. (In fact, it is 2m.) See Figure 11 below for the case m = 3. ¤

Figure 11

We now proceed to define incidence numbers [A : B] as in §§5B and 5C. Choose
an orientation for each W ∈ S. This means we can attach a sign ε = ±1 to any
chain in F of the form

0 = A0 l A1 l · · · l Ar,

in such a way that the sign changes if an elementary move is performed. Here an
elementary move changes exactly one Ai, keeping the support the same if i = r.
Note that for each i > 0 there is exactly one candidate for an A′i to which Ai can
be changed ([9], 4.1.14(ii)).

Given A l B in F , define the incidence number [A : B] by taking a chain
0 = A0 l · · · l Ar = A and setting [A : B] = ±1 depending on whether the
augmented chain 0 = A0 l · · · l Ar l B has the same sign as the original one
or the opposite sign. This is independent of the choice of the chain from 0 to A
because any two can be related by a sequence of elementary moves,8 which affect
the signs of the augmented chains in the same way they affect the signs of the
original chains.

Note that if A has codimension 1 and C, C ′ are the chambers having A as a
face, then [A : C] = −[A : C ′]. More generally, [A : B] = −[A : B ′] if both are

8Because the simplicial complex |(0, A)| associated to the open interval (0, A) is a sphere.
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defined, B 6= B′, and suppB = suppB′. Note also that the “diamond condition”
for incidence numbers is satisfied as in Lemma 2 of §5C: In the situation

C

B1 B2

A

we have [A : B1][B1 : C] = −[A : B2][B2 : C]. In fact, if we multiply both sides
of this equation by the sign of any chain 0 = A0 l · · · l Ar = A, the resulting
equation follows immediately from the definitions.

Lemma 2. Let W ∈ S have codimension 1, and choose i ∈ z(W ) − z(V ). Then
either [A : C] = σi(C) for all A with support W and all chambers C > A, or else
[A : C] = −σi(C) for all such A, C.

Proof. We may assume [A : C] = σi(C) for one pair A, C. Let A′, C ′ be another.
If A = A′ and C 6= C ′, we know [A : C ′] = −[A : C] = −σi(C) = σi(C). [For the
last equality, recall that F≥A is the face poset of a rank 1 oriented matroid, whose
two nonzero faces are opposite one another.] So we may assume A 6= A′ and hence
rankX ≥ 2. Choose maximal chains

0 = A0 < · · · < An−1 = A

0 = A′0 < · · · < A′n−1 = A′

in FW . If d ≥ 1 elementary moves in FW change (Ai) to (A′i), then Lemma 1
implies that we can get from A0 < · · · < An−1 < C to A′0 < · · · < A′n−1 < C ′ in
d′ moves, where d ≡ d′ mod 2 if and only if σi(C) = σi(C

′). Suppose, for instance,
that σi(C) = σi(C

′). Then we have

ε(A0 < · · · < An−1)[A : C] = (−1)dε(A′0 < · · · < A′n−1)[A
′ : C ′]

ε(A0 < · · · < An−1) = (−1)dε(A′0 < · · · < A′n−1),

hence [A′ : C ′] = [A : C] = σi(C) = σi(C
′), as required. ¤

Armed with Lemma 2, the interested reader can now carry out for oriented
matroids the arguments in §§5B and 5C. Finally, affine oriented matroids can be
treated as in §5D.

Appendix

We construct here the convex polytope Σ̂ mentioned in §2D. Recall the setup: A
is an essential, central hyperplane arrangement in V , whose hyperplanes Hi (i ∈ I)
are defined by homogeneous linear equations fi = 0. SinceA is essential, the fi span
the dual space V ∗. For any sequence τ = (τi)i∈I with τi = ±1, set gτ =

∑
i∈I τifi.

We then define Σ̂ ⊂ V by the 2|I| inequalities gτ ≤ 1, one for each τ .
It will follow from what we do below that these inequalities are redundant in

general, and that Σ̂ is actually defined by the inequalities gσ ≤ 1 in which σ is
the sign sequence of a chamber. Notice that gσ > 0 on C if σ = σ(C), so we can
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Figure 12. The facets of Σ̂ cut across the chambers.

visualize the facets of Σ̂ (given by gσ = 1) as cutting across the chambers and
matching up correctly along faces. See Figure 12.

Note first that Σ̂ is indeed a convex polytope; for the inequalities gτ ≤ 1 imply

that |fi| ≤ 1 on Σ̂ and hence that Σ̂ is bounded (because the fi span V ∗). Note

also that 0 is an interior point of Σ̂. We wish to show that the proper, nonempty

faces of Σ̂ are in 1–1 correspondence with the faces F 6= {0} in the face poset F
of A.

Given F 6= {0} in F , let σ = σ(F ) and let gσ =
∑

i∈I σifi. (Note that some of
these terms are 0 if F is not a chamber.) Then gσ > 0 on F , and F is the cone over

F1
def
= F ∩ {gσ = 1}.

We claim that F1 is a (relatively open) face of Σ̂. In fact, F1 is the face defined by

(A.1)

{
gτ = 1 if τ is consistent with σ

gτ < 1 otherwise.

Here τ is consistent with σ if τi = σi for all i such that σi 6= 0. [Recall that τi = ±1
for all i.]

To verify that (A.1) defines F1, suppose τ is consistent with σ, and write gτ =
gσ+

∑
i∈I0

τifi, where I0 = {i ∈ I : σi = 0}. It is then immediate that the equalities
in (A.1) are equivalent to “fi = 0 for i ∈ I0 and gσ = 1”. And in the presence of
these equalities, the inequalities in (A.1) are equivalent to “σifi > 0 for i /∈ I0”.
Thus we have transformed (A.1) to the set of equalities and inequalities defining
F1, whence the claim.

We now have V − {0} partitioned into the cones over some of the (relatively

open) faces F1 of the boundary Σ of Σ̂. It follows that the F1 are in fact all of the
faces of Σ, and we have established the desired 1–1 correspondence between the
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(nonempty) faces of Σ and the elements of F (other than {0}). It is easy to check
that this correspondence is a poset isomorphism, i.e., it preserves the face relation.

Finally, our assertion that Σ̂ is defined by the inequalities gσ ≤ 1 (one for each
chamber) follows from the fact that a convex polytope with nonempty interior can
always be defined by one inequality for each facet (cf., [38], Theorem 2.15).
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19. J–E. Dies, Châines de Markov sur les permutations, Lecture Notes in Mathematics, 1010,

Springer-Verlag, Berlin-New York, 1983.
20. R. P. Dobrow and J. A. Fill, The move-to-front rule for self-organizing lists with Markov

dependent requests, Discrete probability and algorithms (Minneapolis, MN, 1993), IMA Vol.

Math. Appl., 72, Springer, New York, 1995, pp. 57–80.
21. P. H. Edelman and V. Reiner, Free arrangements and rhombic tilings, Discrete Comput.

Geom. 15 (1996), 307–340, Erratum, 17 (1997), 359.
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