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Introduction

This is an expanded version of a series of four lectures designed to show alge-
braists how ring theoretical methods can be used to analyze an interesting family of
finite Markov chains. The chains happen to be random walks on semigroups, and
the analysis is based on a study of the associated semigroup algebras. The paper
is divided into four sections, which correspond roughly to the four lectures:

1. Examples.
2. Semigroup interpretation.
3. Algebraic analysis.
4. Connections with Solomon’s descent algebra.

Two appendices give a self-contained treatment of bands (also called idempotent
semigroups) and their linear representations.

The work described here grew out of my joint work with Persi Diaconis [5]. It
is a pleasure to thank him for many stimulating conversations.

1 Examples

A reference for all results stated in this section is Brown–Diaconis [5] and
further references cited there. We begin with two concrete examples that will be
used throughout the paper.

1.1 The Tsetlin library. Imagine a deck of n cards, labeled 1, 2, . . . , n. Re-
peatedly shuffle the deck by picking a card at random and moving it to the top.
“Random” here refers to an underlying probability distribution on the set of la-
bels; thus one picks the card labeled i with some probability wi, where wi > 0 and∑

i wi = 1. This process, called the Tsetlin library or random-to-top shuffle, is a
Markov chain with n! states, corresponding to the possible orderings of the deck.
One can identify the states with the elements of the symmetric group Sn, where a
permutation σ ∈ Sn corresponds to the ordering σ(1), σ(2), . . . , σ(n) of the cards.
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Warning Although this process is a Markov chain whose state space is a group,
it is not a random walk on the group except in the special case where the weights wi

are uniform. [In a random walk on a group, one repeatedly multiplies by random
group elements, chosen from some fixed probability measure on the group. See
Saloff-Coste [14] for a recent survey of random walks on groups.] We will see later,
however, that it can be interpreted as a random walk on a semigroup.

The random-to-top shuffle may seem foolish as a method of shuffling, but there
are other interpretations that are more reasonable:

• Think of a pile of n file folders, where file i is used with frequency wi. Each
time a file is used, it is replaced on top of the pile. With this interpretation,
the Markov chain describes a familiar procedure for keeping the most com-
monly used files near the top. It is a self-organizing scheme; one does not
need to know the frequencies wi in advance.

• Instead of files, one can visualize a row of books on a long shelf; each time
a book is used, it is replaced at the left. (This interpretation explains the
word “library” in the name “Tsetlin library”.)

• Finally, one can think of data stored in a computer as a linked list. Each
time an item is accessed, it is moved to the front of the list. The most
commonly accessed items will then tend to be near the front of the list,
thus reducing access time. This “move-to-front” list-management scheme
has been extensively studied by computer scientists.

1.2 The inverse riffle shuffle. In the ordinary riffle shuffle, one divides a
deck of cards roughly in half and then interleaves the top half with the bottom.
There is a precise model for this, the “Gilbert–Shannon–Reeds” model, according
to which the number of cards in the top half has a binomial distribution, and all
interleavings are equally likely. The inverse riffle shuffle reverses the process: Pick
a random set of cards and move them to the top, keeping them in the same relative
order. All 2n subsets are equally likely to be chosen. The inverse riffle shuffle has
the same mixing properties as the riffle shuffle, and it happens to fit the framework
of random walks on semigroups that I will be discussing.

There is a natural generalization of the inverse riffle shuffle, in which one assigns
arbitrary weights to the subsets instead of making them equally likely. This includes
the Tsetlin library as the special case where the weights are concentrated on the
1-element subsets.

1.3 Questions. The behavior of a Markov chain over time is governed by the
powers of the transition matrix K. The latter is a matrix whose rows and columns
are indexed by the states of the chain (permutations in our examples), where the
(σ, τ)-entry K(σ, τ) is the chance of moving from σ to τ in one step. The l-th power
Kl of this matrix gives the l-step transition probabilities. So the basic question is
how Kl behaves as l→∞.

A fundamental theorem of Markov chain theory [9] implies that Kl(σ, τ) tends
to a limit π(τ), independent of the starting state σ:

Kl(σ, τ) → π(τ) as l→∞.

(The theorem requires a mild regularity condition, which is satisfied by all examples
treated in this paper.) Here π is a probability distribution on the set of states,
and π(τ) is the long-term probability of being in the state τ . The distribution π
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is called the stationary distribution; it can be characterized algebraically as the
unique probability distribution satisfying the “equilibrium equation”∑

σ

π(σ)K(σ, τ) = π(τ) (1.1)

for all τ . This says that if we pick a state according to π and take a step in the chain,
then the state is still described by π. If we view π as a row vector, Equation (1.1)
can be written as πK = π, i.e., π is a left eigenvector for K with eigenvalue 1.

The following questions are of interest for any Markov chain:
(a) What is π?
(b) What are the eigenvalues of K?
(c) How fast does Kl → π?

Question (c) is often phrased as, “How many times do you have to shuffle a deck
of cards to mix it up?” The main interest in Question (b) is that one expects it to
be useful in answering (c), though in practice this connection is not always as clear
as one would hope.

1.4 Answers. I will give complete answers for the Tsetlin library, in order
to give the flavor of the results; the answers for the inverse riffle shuffle (and its
generalization where weights are assigned to the subsets) are similar.

(a) The stationary distribution π is the distribution of sampling without re-
placement from the weights wi. In other words, for any ordering σ, the
stationary probability π(σ) is the same as the probability of getting σ by
the following process: Pick a card according to the weights wi and put it
on top; now pick from the remaining cards, with probabilities proportional
to their weights, and put it next; keep going in this way until all the cards
have been picked.

(b) The transition matrix K is diagonalizable, and its eigenvalues are the partial
sums of the weights wi. More precisely, for each subset X ⊆ {1, 2, . . . , n},
there is an eigenvalue

λX =
∑
i∈X

wi

of multiplicity
mX = dn−|X|,

where dk, the kth derangement number, is the number of fixed-point-free
permutations of k elements. We can also describe mX as the number of per-
mutations in Sn with fixed-point set X. This description makes it obvious
that

∑
X mX = n!, so that we have the right number of eigenvalues. Note

that d1 = 0, so λX does not actually occur as an eigenvalue if |X| = n− 1.
Note also that, for particular choices of weights, the eigenvalues λX for dif-
ferent X might coincide; one then has to add the corresponding numbers mX

to get the true multiplicity of the eigenvalue.
(c) Let Kl

σ be the distribution of the chain started at σ, after l steps; it is given
by the σ-row of the lth power of K. Then it satisfies

‖Kl
σ − π‖T.V. ≤

∑
|X|=n−2

λl
X , (1.2)

where the left-hand side is the “total-variation” distance. (This is one of
the standard measures of distance to stationarity; we do not need its precise



4 Kenneth S. Brown

definition here.) With uniform weights wi = 1/n, for example, one can
deduce that the distance to stationarity is small after about l = n log n
steps. This is roughly 200 for an ordinary deck of cards with n = 52. The
vague statement that the distance to stationarity is “small” can be made
quite precise. There is in fact a striking cutoff phenomenon, in which the
distance is close to 1 (the maximum possible value) until l reaches n log n
and then quickly decreases to 0. See Diaconis [6] for a discussion of this.

There are a number of striking features of these results. First, there is no reason
to expect, a priori, that K should be diagonalizable or have real eigenvalues. The
standard hypothesis under which these properties hold is called “reversibility” in
the Markov chain literature, and the Tsetlin library is not reversible. Secondly, one
would not expect such simple formulas for the eigenvalues in terms of the data that
determine the matrix K. Finally, although one does expect the “second-largest”
eigenvalues λX to play a role in determining the convergence rate, there is no general
theory that would predict an estimate as simple as (1.2).

The main point of these lectures is that many of the results stated above for
the Tsetlin library hold for an interesting family of Markov chains, which turn out
to be random walks on semigroups. We will focus primarily on the linear algebra
results as in (b), since this is where the algebraic methods are the most useful.

2 Semigroup interpretation

2.1 Hyperplane face semigroups. The semigroups underlying the exam-
ples above come from an unexpected source: the theory of hyperplane arrange-
ments. Let A be a finite set of hyperplanes in a real vector space V . For simplicity,
we assume the hyperplanes are linear (i.e., they pass through the origin), though
the theory works for affine hyperplanes also. We also assume, without loss of gen-
erality, that

⋂
H∈AH = {0}. (If this fails we can pass to the quotient of V by

the intersection of the hyperplanes.) The dimension of V is called the rank of the
arrangement. Figures 1 and 2 show two simple examples, the first of rank 2 and the
second of rank 3. In the latter we have drawn the intersections of the hyperplanes
with the unit sphere, viewed from the north pole; the dotted circle is the equator,
which is not part of the arrangement. Only the northern hemisphere is visible in
the picture.

Figure 1 Three lines in R2 Figure 2 Six planes in R3
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The hyperplanes in A divide V into regions called chambers. In Figure 1 there
are 6 chambers, which are sectors. In Figure 2 there are 24 chambers, which are
triangular cones that intersect the sphere in spherical triangles. Six of these are
visible in the picture (they are in the northern hemisphere), six are opposite these
and not shown in the picture, and 12 are partially visible.

The chambers are polyhedral sets and hence have faces. We denote by F the
set of all (open) chambers and their (relatively open) faces of all dimensions. The
elements of F will simply be called faces. In particular, we view a chamber as
a face of itself. In Figure 1, for example, there are 13 faces: 6 open sectors, 6
open halflines, and the origin. As illustrated in Figure 2, the faces are in 1–1
correspondence with their intersections with the unit sphere in V ; these form the
cells of a cell decomposition of the sphere. (Here we need to include the empty cell,
which corresponds to the face consisting of the origin.) If we draw the unit circle in
Figure 1, we see that the cell complex is combinatorially equivalent to a hexagon.
In Figure 2, the cell complex is the barycentric subdivision of the boundary of a
tetrahedron.

Remark 2.1 It is often useful to characterize a face A by specifying, for each
hyperplane inA, which side of the hyperplane A lies on. There are three possibilities
for a given hyperplane H: A can be strictly on one side, strictly on the other side,
or contained in H.

All of this geometry is fairly transparent. What is less obvious is that there
is a natural way to multiply faces, so that F becomes a semigroup. This product
was introduced by Bland in the early 1970s in connection with linear programming,
and it eventually led to one approach to the theory of oriented matroids; see [3].
Tits [19] discovered the product independently (in the setting of Coxeter complexes
and buildings), although he phrased his version of the theory in terms of “projection
operators” rather than products. Here are two descriptions of the product:

1. Given two faces A,B ∈ F , start in A and move toward B; one immediately
enters a face, which is defined to be the product AB.

2. For each hyperplane H ∈ A, the product AB lies on the same side of H
as A unless A ⊆ H, in which case AB lies on the same side as B.

See Figure 3 for a simple example, where A and B are halflines and AB turns out
to be a chamber. For a second example, let B′ be the halfline opposite A in the
same figure; then AB′ = A.

One can easily check from the second description that the associative law holds:

A(BC) = (AB)C. (2.1)

In fact, the triple product, with either way of associating, can be characterized by
the property that for each H ∈ A it lies on the same side of H as A unless A ⊆ H,
in which case it lies on the same side of H as B unless B ⊆ H, in which case it lies
on the same side of H as C. So F is indeed a semigroup. It has an identity, given
by the trivial face {0}. We call F the hyperplane face semigroup associated with
the arrangement A.

Remark 2.2 In Tits’s treatment cited above, the product AB is called the
projection of B on A and is denoted projAB. The associative law in the context
of Coxeter complexes appears in Tits’s appendix to Solomon’s paper [17], where it
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B

AB
A

Figure 3 The product of two halflines

takes the form
projA(projB C) = projprojA B C. (2.2)

A comparison of Equations (2.1) and (2.2) shows the usefulness of thinking in terms
of products rather than projection operators.

Remark 2.3 Note that hyperplane face semigroups are idempotent semi-
groups, i.e., A2 = A for all A ∈ F . In particular, they are very far from being
groups.

We are mainly interested in products where the second factor is a chamber.
Given a face A and a chamber C, the product AC is always a chamber. It has A
as a face and can be characterized as the nearest chamber to C having A as a face.
Here “nearest” is defined in terms of the number of hyperplanes in A separating
two chambers.

Remark 2.4 If, on the other hand, the first factor is a chamber, then the
product is very boring. In fact, we have CA = C for all A if C is a chamber.

2.2 Example: The braid arrangement. The braid arrangement in Rn con-
sists of the

(
n
2

)
hyperplanes xi = xj (i 6= j). Their intersection is the 1-dimensional

subspace x1 = x2 = · · · = xn, which is not trivial. So, as explained at the beginning
of Section 2.1, we should view the arrangement as living in an (n− 1)-dimensional
quotient of Rn. It is also known as the reflection arrangement of type An−1. Figures
1 and 2 above show the cases n = 3 and n = 4, respectively.

There are n! chambers, corresponding to the possible orderings of the coordi-
nates. Thus for each permutation σ ∈ Sn there is a chamber given by

xσ(1) > xσ(2) > · · · > xσ(n).

Faces are gotten by changing zero or more inequalities to equalities. They corre-
spond to ordered partitions B = (B1, B2, . . . , Bk) of the set {1, 2, . . . , n}. Here the
blocks Bi form a set partition in the usual sense, and their order matters. The par-
tition B encodes the ordering of the coordinates and which coordinates are equal
to one another. For example, the face

x1 = x3 > x2 > x4 = x6 > x5
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corresponds to the ordered partition ({1, 3}, {2}, {4, 6}, {5}). Notice that the cham-
bers can be identified with the ordered partitions into singletons.

The product of faces has a simple interpretation in terms of ordered partitions:
Take (nonempty) intersections of the blocks in lexicographic order; more precisely,
if B = (B1, . . . , Bl) and C = (C1, . . . , Cm), then

BC = (B1 ∩ C1, . . . , B1 ∩ Cm, . . . , Bl ∩ C1, . . . , Bl ∩ Cm) ,̂

where the hat means “delete empty intersections”. More briefly, BC is obtained
by using C to refine B. (To check that this description of the product is correct,
one should use the second definition of the product in Section 2.1.) Observe that
we do indeed have B2 = B for all ordered partitions B, as claimed in Remark 2.3.

In the important special case where the second factor C is a chamber (an
ordering of 1, 2, . . . , n), the product is a new ordering that maintains the ordering
of the blocks B1, B2, . . . , Bk and, within each block, uses the ordering given by C.
We can think of this concretely in terms of card shuffling. Imagine a deck of
cards numbered 1, 2, . . . , n. A chamber corresponds to an ordering of the deck, and
multiplying by B = (B1, B2, . . . , Bk) performs the following “B-shuffle”: Remove
the cards with labels in B1 and place them on top (keeping them in their original
order), remove the cards with labels in B2 and place them next, and so on.

Remark 2.5 Although chambers correspond to permutations, their product
in the hyperplane face semigroup has nothing to do with the usual product of
permutations; see Remark 2.4.

2.3 Hyperplane chamber walks. Since F is a semigroup, we can run a
random walk on it: Start at some element of F and repeatedly left-multiply by
randomly chosen elements of F . Here “randomly chosen” refers to some given
probability distribution {wA}A∈F on F . The fruitful idea of studying random
walks on hyperplane face semigroups is due to Bidigare, Hanlon, and Rockmore [2].
For readers familiar with random walks on groups but not semigroups, we mention
one difference: Semigroups can have proper ideals (nonempty proper subsets closed
under multiplication by arbitrary semigroup elements). If we start the random walk
in an ideal, it stays there, so we get a Markov chain on the ideal. In the present
setting, the natural ideal to use is the ideal C consisting of chambers. Taking A
to be the braid arrangement, for example, we see that any choice of probability
distribution on the faces gives a Markov chain on Sn (identified with the set of
chambers).

We recover the Tsetlin library by concentrating the probabilities on the 2-
block ordered partitions in which the first block is a singleton. And we recover the
inverse riffle shuffle by assigning probability 1/2n to each 2-block ordered partition
and probability 2/2n to the 1-block partition. [Intuitively, the 1-block partition
should be thought of as occurring twice, once from each of the “weak ordered
partitions” ({1, 2, . . . , n}, ∅) and (∅, {1, 2, . . . , n}).] The generalized inverse riffle
shuffle mentioned at the end of Section 1.2 is obtained by putting arbitrary weights
on the 1-block and 2-block partitions.

3 Algebraic analysis

3.1 Random walks and semigroup algebras. Our analysis of random
walks on semigroups will be based on the structure of the associated semigroup
algebras. Let S be a finite semigroup, C a left ideal, and {wx}x∈S a probability
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distribution on S. As above, we then get a (left) random walk on C: If we are at
c ∈ C, we choose x ∈ S with probability wx and move to xc. The transition matrix
is given by

K(c, d) =
∑
xc=d

wx. (3.1)

Note, again, how this differs from the case where the semigroup is a group; in that
case, the sum degenerates to a single term, corresponding to x = dc−1.

Form the semigroup algebra RS consisting of real linear combinations of ele-
ments of S, and encode the probability distribution in the element

w =
∑
x∈S

wxx.

Then the transition matrix K arises algebraically when one considers the operator
“left-multiplication by w” acting on the ideal RC ⊆ RS. Indeed, for any a =

∑
c acc

in RC we have

wa =
∑

x

wxx
∑

c

acc =
∑

d

∑
x,c

xc=d

wxac

 d =
∑

d

(∑
c

acK(c, d)

)
d,

where the last equality follows from (3.1). Thus left multiplication by w acting on
RC corresponds to right multiplication by K acting on row vectors (ac)c∈C .

If we are interested in algebraic properties of K, then, such as eigenvalues or
diagonalizability, we should study multiplication by w acting on RC. Similarly, the
powers of K correspond to the powers of w, so a key object to analyze is R[w], the
algebra generated by w, i.e., the linear span of the powers wl. The semigroups for
which I can give the most complete analysis are called left-regular bands, although
some of the results are valid in greater generality.

3.2 The semigroup algebra of a band. A band, also called an idempotent
semigroup, is a semigroup in which x2 = x for all x. A band is called left-regular if
xyx = xy for all x, y. It is easy to check that hyperplane face semigroups are always
left-regular bands (see the discussion of the triple product following Equation (2.1)
in Section 2.1). The first fact we need is that the representation theory of a finite
band (whether left-regular or not) is particularly simple:

Theorem 3.1 For any field k and any finite band S, every irreducible kS-
module is 1-dimensional. In other words, the quotient of kS by its radical is iso-
morphic to a product of copies of k.

More briefly, the theorem says that kS is an elementary algebra. This result is
well-known to experts, but we give a self-contained proof in Appendix B motivated
by the geometry of hyperplane arrangements. This approach is due to Bidigare [1]
for hyperplane face semigroups and was generalized to left-regular bands in [4]; the
further generalization to arbitrary bands given in Appendix B is not much more
difficult. The remainder of this section consists of a sketch of the proof for the case
of hyperplane face semigroups.

Let A be a hyperplane arrangement and let F be its face semigroup as in
Section 2.1. The intersection lattice associated with A is the poset L consisting of
all intersections

⋂
H∈A′ H, where A′ ⊆ A. We order L by inclusion. It is a lattice,

with greatest lower bound given by intersection. The least upper bound U ∨ V of
two elements U, V ∈ L is the intersection of all hyperplanes in A containing both
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U and V . [Warning: In much of the literature on hyperplane arrangements, L is
ordered by the opposite of the inclusion relation.]

There is a support map supp: F � L, where suppA for A ∈ F is the linear span
of A. The support of A can also be described as the intersection of all hyperplanes
in A containing A. It satisfies

supp(AB) = suppA ∨ suppB (3.2)

and
suppA ⊇ suppB ⇐⇒ A = AB. (3.3)

Note that Equation (3.2) says that the support map is a semigroup homomorphism,
where L is viewed as a (commutative) semigroup under the ∨-operation.

Example 3.2 Let A be the braid arrangement, and identify F with the set
of ordered partitions of {1, 2, . . . , n} as in Section 2.2. Then L can be identified
with the set of unordered set partitions, and the support map simply forgets the
ordering.

In view of Equation (3.2), the support map induces a homomorphism

supp: kF � kL

of semigroup algebras. Theorem 3.1 for F now follows from:

Theorem 3.3 1. The algebra kL is isomorphic to a product of copies of k.
In particular, it is semisimple.

2. The kernel of supp: kF � kL is nilpotent and hence is the radical of kF .

The first assertion is well-known, and its proof is recalled in Section B.1 below.
The second assertion, due to Bidigare [1], is proved by a straightforward calculation
based on (3.2) and (3.3). The calculation is repeated in Brown [4] in the more
general context of left-regular bands. See also Section B.1 below for a further
generalization to arbitrary bands, which takes slightly more work.

Remark 3.4 The proof yields explicit formulas for the nonzero characters of
the semigroup F (see [4] or Theorem B.2 in Section B.2 below.) There is a character
χX : F → k for each X ∈ L, which takes the value 1 on all faces contained in X
and 0 on all other faces. More briefly,

χX(A) = 1A⊆X (3.4)

for A ∈ F .

Remark 3.5 Algebraically-oriented readers might not find the theory of hyper-
plane arrangements to be convincing motivation for the approach to Theorem 3.1
sketched here. Such readers might prefer the motivation provided by the theory of
free bands (Section A.1), where the support map again arises in a very natural way.

3.3 Eigenvalues. Recall that the transition matrix of the Tsetlin library
turns out, surprisingly, to have real eigenvalues, which are simply the partial sums
of the weights. Using Theorem 3.1, we can now give a clear explanation of this and
a generalization of it to random walks on arbitrary finite bands. For simplicity, we
confine ourselves here to the hyperplane chamber walk, where the result was first
proved by Bidigare, Hanlon, and Rockmore [2]. The generalization is treated in
Section B.3 below.
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Let A, F , and L be as above. For each X ∈ L, let

AX = {H ∈ A : H ⊇ X}.

Then AX is a hyperplane arrangement in its own right, and we denote by cX the
number of chambers of AX . Define a family of integers mX (X ∈ L) by the system
of equations

cX =
∑

Y⊇X

mY (3.5)

for each X ∈ L. Zaslavsky [20] gave the explicit formula mX = |µ(X,V )|, where
µ is the Möbius function of L and V is the ambient vector space; but this does
not hold for general bands, so I prefer the implicit definition in Equation (3.5). In
practice one can often find the solution to (3.5) by inspection.

Theorem 3.6 Let {wA} be a probability distribution on F and let K be the
transition matrix of the corresponding chamber walk, i.e., K is the C × C matrix
given by

K(C,D) =
∑

AC=D

wA.

Then K has an eigenvalue
λX =

∑
A⊆X

wA

for each X ∈ L, with multiplicity mX .

Sketch of proof Recall from Section 3.1 that we are interested in the eigen-
values of multiplication by w =

∑
A∈F wAA acting on RC. Choose a composition

series for RC as an RF-module. Theorem 3.1 and Remark 3.4 yield a triangu-
lar matrix representation for multiplication by w, with diagonal entries of the form
χX(w); the latter occurs m′

X times, where m′
X is the number of composition factors

given by χX . Now

χX(w) = χX

(∑
A

wAA

)
=
∑
A

wAχX(A)

=
∑

A⊆X

wA

= λX ,

where the third equality follows from (3.4). To complete the proof, one gives a
counting argument to show that the multiplicities m′

X satisfy the system (3.5), so
m′

X = mX . See [4] or the proof of Theorem B.3 below for details.

3.4 Diagonalizability. Brown and Diaconis [5] showed that the transition
matrix of the hyperplane chamber walk is diagonalizable. The proof used topology.
The result was generalized to left-regular bands by Brown [4], using purely algebraic
methods. Here I just want to give the general principles. These seem to be well-
known in some circles (in connection with perturbation theory or linear recurrence
relations, for instance), but I think they deserve to be more widely known. I begin
with the simplest version.
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Fix an n× n matrix A with complex entries, and form the generating function
of the powers of A:

f(t) =
∑
m≥0

Amtm =
1

I − tA
,

where the right-hand side denotes the inverse of I − tA. The series converges for
small complex t and defines a matrix-valued holomorphic function of t, initially
defined in a neighborhood of the origin. It is convenient to make a change of
variable and introduce

g(z) = (1/z)f(1/z) =
1

zI −A
,

initially defined in a neighborhood of infinity.

Proposition 3.7 The function g(z) is a rational function, with poles precisely
at the eigenvalues of A. The matrix A is diagonalizable if and only if the poles are
all simple. In this case, the partial-fractions decomposition of g is given by

g(z) =
∑

λ

Eλ

z − λ
,

where λ ranges over the eigenvalues and Eλ is the projection onto the λ-eigenspace.

“Projection” here refers to the eigenspace decomposition. The proof of the
proposition is an exercise based on the Jordan decomposition of A; it is written out
in [4, Section 8.1].

Now the fancier version: Let k be a field and let R be a finite-dimensional
k-algebra with identity, generated by a single element a. Form

f(t) =
∑
m≥0

amtm =
1

1− at

and
g(z) = (1/z)f(1/z) =

1
z1R − a

.

We can view these as holomorphic functions if k is a subfield of the complex num-
bers, or we can just work with them as formal power series.

Proposition 3.8 R is split semisimple (isomorphic to a product of copies of k)
if and only if g(z) has the form

g(z) =
∑

i

ei

z − λi
(3.6)

for distinct λi ∈ k, where the ei are nonzero elements of R. In this case the ei are
the primitive idempotents of R, and

a =
∑

i

λiei.

The proof is similar to the proof of the previous proposition and is written out
in [4, Section 8.2].

Using this I was able to prove:

Theorem 3.9 Let S be a finite left-regular band with identity, and let w =∑
x∈S wxx be an element of RS with wx ≥ 0 for all x. Then the subalgebra R[w]

generated by w is split semisimple. In particular, multiplication by w is diagonaliz-
able, so the transition matrix of any random walk on S is diagonalizable.
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The proof is based on a mindless computation of the generating function f(t) =∑
m≥0 w

mtm. This is complicated, but left-regularity makes it possible to reduce
g(z) to something that visibly has the form (3.6). See [4, Sections 8.3 and 8.4]. The
proof yields explicit formulas for the primitive idempotents of R[w]; for generic w,
these lift the primitive idempotents of RS mod its radical and may be of purely
algebraic interest in connection with Solomon’s descent algebra (Section 4 below).

3.5 Stationary distribution and convergence rate. I mentioned in Sec-
tion 1.3 three questions that one can ask about a finite Markov chain, but I have
mostly discussed only one of them (eigenvalues). The other two, involving station-
ary distribution and convergence rate, also have nice answers for random walks
on bands. But the proofs are not algebraic, so they do not fit into these lectures.
Suffice it to say that there are general results in the spirit of those stated in Sec-
tion 1.4 for the Tsetlin library. A proof for hyperplane face semigroups is given in
Brown–Diaconis [5], and virtually the same proof goes through for arbitrary finite
bands. There is an explicit statement in [4] for the left-regular case.

One hope I have is that the explicit diagonalization mentioned in Section 3.4
will lead to more precise results about convergence rate. So far, however, I have not
been able to get past the complexity of the formulas for the primitive idempotents.

4 Connections with Solomon’s descent algebra

The goal of this final section is to apply some of the ideas of this paper to
algebra rather than probability. Specifically, I would like to show the usefulness
of hyperplane face semigroups for understanding Solomon’s descent algebra. The
inspiration for this again comes from the work of Bidigare [1]. I will be brief and
concise, but I hope that the examples will make the discussion comprehensible. Full
details can be found in [4, Section 9].

Solomon [17] introduced, for any finite Coxeter group W , an interesting sub-
algebra of the group algebra kW . Here k is an arbitrary commutative ring. For
W = Sn, the definition of this subalgebra can be phrased in terms of descent sets
of permutations, so Solomon’s subalgebra has come to be known as the “descent
algebra”.

4.1 Notation. Throughout this section W denotes a finite Coxeter group or,
equivalently, a finite (real) reflection group. Thus W is a finite group of orthog-
onal transformations of a real inner-product space V , and W is generated by re-
flections sH with respect to hyperplanes. The set A of hyperplanes H such that
sH ∈W is called the reflection arrangement associated with W . It is a W -invariant
set of hyperplanes. As before, we will assume (without loss of generality) that⋂

H∈AH = {0}. This is equivalent to requiring that the fixed-point set of W in V
be trivial.

Let Σ be the face semigroup. It turns out that all the faces are simplicial cones,
so the decomposition of the sphere induced by A is simplicial. Thus Σ can be iden-
tified with the set of simplices of a simplicial complex that triangulates the sphere
in V . By abuse of language we will often say that Σ “is” a simplicial complex and
we will speak of the vertices of Σ and so on. The chambers of the arrangement are
the top-dimensional simplices of Σ. When we represent a hyperplane arrangement
by a spherical picture as in Figure 2 above, what we are really drawing is a picture
of the simplicial complex Σ.
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Since A is W -invariant, there is an action of W on Σ that is simplicial and
preserves the semigroup structure. The action is simply-transitive on the set C of
chambers, so if we choose a “fundamental chamber” C, we get a bijection between
C and W ; a group element w corresponds to the chamber wC.

4.2 Example. Let W be the symmetric group Sn acting by permuting the
coordinates on V = Rn/{x1 = x2 = · · · = xn}. The corresponding reflection
arrangement of rank n − 1 is the braid arrangement (Section 2.2). There is one
vertex of Σ for each proper nonempty subset of {1, 2, . . . , n}, and the simplices
are the chains E1 < E2 < · · · < El of such subsets. (Combinatorially, Σ is the
barycentric subdivision of the boundary of an (n − 1)-simplex.) See Figure 4. To

12
23

13

123

��
����

���� 2

3
1

Figure 4 W = S4: Vertices are subsets of {1, 2, 3, 4}

relate the present description of Σ to our earlier description of the faces of the
braid arrangement, note that an ordered partition (B1, B2, . . . , Bk) yields a chain
B1 < B1 ∪B2 < · · · < B1 ∪B2 ∪ · · · ∪Bk−1.

Finally, if we take the fundamental chamber to be the chain

{1} < {1, 2} < · · · < {1, 2, . . . , n− 1},
then we get a bijection between chambers and permutations that makes a permu-
tation w correspond to the chamber

{w(1)} < {w(1), w(2)} < · · · < {w(1), w(2), . . . , w(n− 1)}.
This is the same bijection we described in Section 2.2 in different language. It
is illustrated in Figure 5, in which have followed the convention of identifying a
permutation w with the list of numbers w(1)w(2) · · · w(n).

4.3 Types of simplices. A basic fact about reflection arrangements is that
the vertices of Σ can be assigned types. The set I of types has size r = rankA,
and every chamber has exactly one vertex of each type. In the example above, for
instance, a vertex is a nonempty proper subset of {1, 2, . . . , n}, and the type of a
vertex is its cardinality; thus I = {1, 2, . . . , n− 1}. The vertices in Figures 4 and 5
have been drawn in three different “colors” to illustrate the types.



14 Kenneth S. Brown

��
����

����

2413 2431

2341

23142134

2143

1243
1234

1324 3124

3214

3412

3421

3142
13421432

1423

3241

Figure 5 W = S4: Chambers correspond to permutations

Since vertices have types, so do arbitrary simplices; the type of a simplex is the
subset of I consisting of the types of its vertices. For example, every chamber has
type I, while every panel (codimension 1 simplex) has type I − {i} for some i.

4.4 Adjacency and galleries. Two chambers are adjacent if they have a
common panel. More precisely, two chambers are i-adjacent (i ∈ I) if they have
the same panel of type I −{i}. See Figure 6. We include the degenerate case: Any
chamber is i-adjacent to itself. A gallery is a sequence of chambers C0, C1, . . . , Cl

such that any two consecutive chambers are adjacent. It is a geodesic gallery if

si C s
�

�
�

�
��

@
@

@
@

@@�
�

�
�

��
@

@
@

@
@@

C ′ i

Figure 6 C and C′ are i-adjacent chambers

there is no shorter gallery joining C0 and Cl. The length l is then the distance
between C0 and Cl; it is equal to the number of hyperplanes in A that separate C0

from Cl.
Since chambers correspond to elements of W (once a fundamental chamber has

been chosen), we can apply this terminology to elements of W . For W = Sn, let us
identify a permutation w with a list of numbers as above. Then w is adjacent to w′

if and only if w′ is obtained from w by swapping two consecutive elements of the list.
The type of the adjacency, which is an element of I = {1, 2, . . . , n−1}, indicates the
position of the swap. For example, 31425 is 2-adjacent to 34125 and is 4-adjacent
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to 31452. The distance from a permutation w to the identity is the number of
inversions of w. To construct a geodesic gallery from w to the identity, we can start
with any i ∈ {1, 2, . . . , n− 1} at which w has a descent (i.e., w(i) > w(i+ 1)) and
swap w(i) and w(i+1). Repeating the process leads to the identity in the required
number of steps. The reader should try a few examples in Figure 5.

4.5 Descent sets. Returning to the general case, the discussion above moti-
vates the following definition. Given chambers C,C ′, we define the descent set of
C ′ with respect to C, denoted des(C,C ′), to be the set of types i ∈ I such that
there is a geodesic gallery from C ′ to C starting with an i-adjacency. Equivalently,

i ∈ des(C,C ′) ⇐⇒ C and C ′ lie on opposite sides of suppA,

where A is the panel of C ′ of type I − {i}. See Figure 7. If C is the fundamental
chamber and C ′ is the chamber wC corresponding to w, we will also write des(w)
for des(C,C ′), and we will call this the descent set of w. In view of the discussion
at the end of the previous subsection, this agrees with the usual descent set of a
permutation if W = Sn.
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Figure 7 The type i is in des(C, C′)

4.6 Semigroup interpretation. Recall that Σ is a semigroup. We can use
the product to characterize descent sets. For motivation, note that in Figure 7
AC 6= C ′ and the type of A does not contain des(C,C ′). With a little careful
checking, one can turn this observation into a proof of the following:

Proposition 4.1 Given chambers C,C ′, there is a smallest face A of C ′ such
that AC = C ′. The descent set des(C,C ′) is the type of that face A.

4.7 Connection with the h-vector. The h-vector is a standard and impor-
tant object in algebraic combinatorics. We show here that the h-vector of Σ encodes
the number of chambers (or elements of W ) with a given descent set.
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For J ⊆ I, let fJ be the number of simplices of Σ of type J . Define a family of
integers hJ by the system of equations

fJ =
∑
K⊆J

hK . (4.1)

Proposition 4.2 Fix a fundamental chamber C. For any J ⊆ I, hJ is the
number of chambers C ′ such that des(C,C ′) = J . Equivalently, hJ is the number
of w ∈W such that des(w) = J .

Sketch of proof Let ΣJ be the set of simplices of type J . There is a 1–1
correspondence between ΣJ and the set of chambers C ′ such that des(C,C ′) ⊆ J ;
it is given by A 7→ AC for A ∈ ΣJ . Counting such chambers C ′ according to their
descent sets, we obtain

fJ =
∑
K⊆J

h′K ,

where h′K is the number of C ′ with des(C,C ′) = K. Comparing this system of
equations with (4.1), we conclude that h′J = hJ for all J .

4.8 Invariants in the semigroup algebra. Fix a commutative ring k. Then
W acts on the semigroup algebra kΣ, and we can form the ring of invariants R =
(kΣ)W . As a k-module it is free with one basis element

σJ =
∑

A∈ΣJ

A

for each subset J ⊆ I. Motivated by the discussion of the h-vector, we introduce a
new basis (τJ)J⊆I by

σJ =
∑
K⊆J

τK .

Theorem 4.3 There is a 1–1 anti-homomorphism of k-algebras

R = (kΣ)W ↪→ kW

such that τJ 7→
∑

des(w)=J w.

The image of this map is Solomon’s descent algebra, which is therefore anti-
isomorphic to R. Solomon described it in a different but equivalent way, and he
had to work hard to prove that it is an algebra. The semigroup point of view gives
this immediately.

Corollary 4.4 (Bidigare) Solomon’s descent algebra is anti-isomorphic to
(kΣ)W .

Sketch of proof of Theorem 4.3 Let C be the set of chambers. Then kC
is a kΣ-module, hence an R-module, and the R-action on kC commutes with the
W -action on kC. This yields

R→ EndkW (kC) ∼= EndkW (kW ) ∼= (kW )op.

One checks that σJ 7→
∑

des(w)⊆J w, which implies that τJ 7→
∑

des(w)=J w.
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4.9 Connection with random walks. We close by coming back to the ran-
dom walks that we started with. Recall that a probability distribution {pA}A∈Σ

gives rise to a Markov chain (left random walk) on the ideal C in the semigroup Σ.
Having chosen a fundamental chamber, we can identify C with W , so we have a
Markov chain on W . As I remarked in Section 1.1 in connection with the Tsetlin
library, this is not generally a random walk on the group W . It is a random walk
on W , however, if the system of weights pA is W -invariant. In fact, one can use
the ideas of the previous subsection to prove:

Theorem 4.5 Suppose {pA} is W -invariant and let

µ =
∑

w∈W

µww

be the element of Solomon’s descent algebra corresponding to

p =
∑
A∈Σ

pAA

under the anti-isomorphism of Corollary 4.4. Then {µw} is a probability distribu-
tion on W , and the left random walk on C driven by {pA} is the same as the right
random walk on W driven by {µw}.

The significance of the theorem is that, in view of Section 3, we now have an
interesting family of random walks on Coxeter groups that we know how to analyze.

Appendix A Bands and their support semilattices

A band is a semigroup in which x2 = x for all x. Bands are also called idem-
potent semigroups. The results of this appendix are not new, but the point of view
is; it is motivated by the theory of hyperplane arrangements. For other treatments
of some of this material, see [7, 10, 13, 15].

For motivation, we begin with an example that is easy to understand, indepen-
dent of the theory of hyperplane arrangements.

A.1 The free band. For any set A, the free band S = F (A) on A is the
semigroup generated by A, subject to the relations w2 = w for every word w. It
consists of equivalence classes of nonempty A-words, where the equivalence relation
is generated by the rewriting rules w2 → w and w → w2. [These rules may be
applied to any subword w of a given word.] This description implies:

1. If B ⊆ A, then F (B) can be identified with a subsemigroup of F (A).
2. Every element x ∈ F (A) has a well-defined support, denoted suppx, consist-

ing of the letters that occur in some (every) word representing x.
3. Every x ∈ F (A) has a well-defined first letter and last letter.

Example A.1 (One generator) If A consists of a single generator a, then
F (A) is the one-element semigroup {a}.

Example A.2 (Two generators) If A has two elements a, b, then F (A) has
order 6; its elements are

a, b, ab, ba, aba, bab.

Indeed, it is clear that any element can be represented by an alternating word, which
can be taken to have length ≤ 3 since an alternating word of length ≥ 4 contains
abab or baba. And the alternating words of length ≤ 3 listed above represent distinct
elements, since any two can be distinguished by support, first letter, or last letter.
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For example, aba is the unique element whose support is {a, b} and whose first and
last letters are both a.

Example A.3 (Three generators) Let A = {a, b, c}. Elements whose sup-
port is a proper subset of A can be listed as in the previous example. There are
three of length 1, six of length 2, and six of length 3. It is much less obvious that
there are only finitely many elements whose support is the whole set A. But we
will see in Example A.9 below that there are exactly 144 of these, all of length ≤ 8.
Thus F (a, b, c) is finite and of order 3 + 6 + 6 + 144 = 159.

Let S = F (A) be a free band.

Lemma A.4 Given x, y ∈ S, if suppx ⊇ supp y then x ∈ xyS.

Proof We work with fixed words ξ and η representing x and y. The hypothesis
implies that the last letter a of η occurs in ξ. So the word ξη has the form σaτa
for some words σ, τ (which might be empty). Right-multiplying by τ gives σaτaτ ,
which is equivalent to σaτ , i.e., to ξη with the last letter deleted. Repeating this
argument, we can delete the letters of η in ξη one by one by right-multiplication,
until we are left with ξ. Thus there is a word w, possibly empty, such that ξηw
is equivalent to ξ. If w is nonempty, this shows x ∈ xyS. Otherwise, x = xy =
(xy)2 ∈ xyS.

We can now prove that S has two surprising properties, which we call “swal-
lowing” and “deletion”.

Proposition A.5 (Swallowing) If suppx ⊇ supp y, then xyx = x.

More generally:

Proposition A.6 (Deletion) If suppx = supp z ⊇ supp y, then xyz = xz.

We say that x swallows y in the situation of Proposition A.5.

Proof of Proposition A.5 We have x ∈ xyS by Lemma A.4, so x is fixed by
left-multiplication by xy.

Proof of Proposition A.6 The strategy is to introduce a second x into xyz
to swallow the y:

xyz = xy(zxz) because z swallows x

= (xyzx)z
= xz because x swallows yz.

As an example of deletion, we have abacbabcb = abacabcb [delete the middle
letter on the left]. This illustrates the assertion in Example A.3 above that every
element of F (a, b, c) can be represented by a word of length ≤ 8. Note, however,
that there is no rewriting rule of the form w2 → w that can be used to shorten the
word on the left; one has to first make it longer before one can shorten it.

The detailed analysis of free bands is based on the concepts of “prefix” and
“suffix” of an element. Let w be a word with support B. The prefix of w is the
smallest initial subword that uses all the letters in B. For example, the prefix
of abacbabcb is abac. It is easy to check that equivalent words have equivalent
prefixes. So an element x ∈ F (A) has a well-defined prefix u ∈ F (A). Similarly,



Semigroup and Ring Theoretical Methods in Probability 19

we can speak of the suffix of x. For example, abacbabcb has suffix abcb. One can
also define the strict prefix and strict suffix of an element; these are obtained by
deleting the last letter of the prefix and the first letter of the suffix. Again, it is easy
to check that these are well-defined as elements of F (A). For example, abacbabcb
has strict prefix aba and strict suffix bcb.

Theorem A.7 Two elements of F (A) are equal if and only if they have the
same prefix and suffix.

Proof Let x have prefix y and suffix z. We will show that x = yz. Choose a
fixed word representing x. If the prefix and suffix overlap in that word, then we
have x = y′uz′, with y′u = y and uz′ = z, so x = y′uuz′ = yz. Otherwise, x has
the form x = yuz with u possibly empty. Proposition A.6 allows us to delete u.

Corollary A.8 If A is finite, then F (A) is finite. Consequently, every finitely
generated band is finite.

Proof The strict prefix and strict suffix of an element x ∈ F (A) have smaller
support than x. Arguing by induction on the size of A, we conclude that there are
only finitely many possibilities for the prefix and suffix.

Example A.9 There are 12 possible prefixes and 12 possible suffixes using
three letters a, b, c, all of length ≤ 4. This explains the number 144 in Example A.3
above, as well as the assertion that every element can be represented by a word of
length ≤ 8.

Remark A.10 For general A it is not hard to enumerate the possible prefixes
and suffixes inductively. This leads to normal forms and a precise count of the
number of elements in F (A). If A has n elements, then the order of F (A) is

n∑
i=1

(
n

i

) i∏
j=1

(i− j + 1)2
j

.

The normal forms are gotten by multiplying the prefix by the suffix and deleting
the repeated overlap, if any. For example, the normal form for the element with
prefix abac and suffix acbc is abacbc.

Finally, we spell out the formal properties of the support map, in order to
motivate its generalization to arbitrary bands.

Let L be the (upper) semilattice consisting of the nonempty finite subsets of A,
ordered by inclusion. (An upper semilattice is a poset in which any two elements
have a least upper bound.) The support map is then a surjection

supp: S � L

satisfying
supp(xy) = suppx ∨ supp y (A.1)

and
suppx ≥ supp y ⇐⇒ x = xyx. (A.2)

Here ∨ denotes the join (least upper bound) in L, given by union in this case.
Note that L is an abelian semigroup under the join operation, and Equa-

tion (A.1) simply says that supp is a semigroup homomorphism. In fact, this
is the abelianization homomorphism. For suppose φ is a homomorphism from S to
an abelian semigroup; we must show that φ factors through the support map. If
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suppx = supp y, then x = xyx and y = yxy, so φ(x) = φ(x)φ(y)φ(x) = φ(x)φ(y),
and similarly φ(y) = φ(x)φ(y). Thus φ(x) = φ(y), as required.

A.2 The general case. Let S be an arbitrary band. We will construct a
semilattice having the properties (A.1) and (A.2) above. This was already done for
left-regular bands in [4]. Note that, in the left-regular case, the right side of (A.2)
takes the simpler form x = xy, as in Section 3.2, Equation (3.3).

Theorem A.11 For any band S, there is a semilattice L together with a sur-
jection

supp: S � L

satisfying (A.1) and (A.2).

Proof Define x � y ⇐⇒ x = xyx. I claim that this is a weak partial
order (reflexive and transitive). Reflexivity (x � x) is obvious. For transitivity,
suppose x = xyx and y = yzy. We wish to show x = xzx, which says x is fixed by
left-multiplication by xz, i.e., x ∈ xzS. We have

x = xyx = x(yzy)x,

which implies x ∈ Szyx, so x is fixed by right-multiplication by zyx. Thus x =
xzyx ∈ xzS, as required.

We may now pass to the quotient poset L by setting

x ∼ y ⇐⇒ x � y and y � x.

Define
supp: S � L

to be the quotient map. Then (A.2) holds by definition. To prove that L has least
upper bounds and that Equation (A.1) holds, we need to show

z � x, z � y ⇐⇒ z � xy. (A.3)

It is immediate that xy � x and xy � y, so we need only prove the forward
implication. It is also immediate that xy ∼ yx for any x, y; this will be needed in
the proof of (A.3).

We are given that z = zxz and z = zyz, and we wish to show z = zxyz.
Multiply the two given equations to get

z = (zyz)(zxz) = zyzxz.

This implies
z � yzx = (yz)(zx) ∼ (zx)(yz) = zxyz,

hence z = z(zxyz)z = zxyz, as required.

We call L the support semilattice of S. Note that (A.2) completely character-
izes L up to canonical isomorphism. Consequently:

Proposition A.12 For any subsemigroup S′ ⊆ S, the image of S′ in L is the
support semilattice of S′.

Example A.13 For any x ∈ S, the right ideal xS is a subsemigroup of S
whose support semilattice is L≥X , where X = suppx.

Next, as in the proof of Proposition A.6, one can generalize (A.2) to a deletion
property:

Proposition A.14 If suppx = supp z ≥ supp y, then xyz = xz.
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Remark A.15 As in the free case, L is the abelianization of S.

Appendix B Representation theory of finite bands

The representation theory of finite bands can be developed as a special case
of general results in semigroup theory. See, for instance, [11, 12, 13]. Here we
give instead a self-contained treatment based on the support semilattice. This was
already done for left-regular bands in [4], based on the work of Bidigare [1]. It is
not much harder to treat the general case now that we have the support semilattice.

Throughout this appendix S denotes a finite band, L is its associated semilattice
of supports, and k is an arbitrary field.

B.1 The radical of the semigroup algebra. Let kS and kL be the semi-
group algebras of S and L. (Recall that L is a semigroup under the join operation.)
Our starting point is the algebra homomorphism

supp: kS � kL (B.1)

induced by the semigroup homomorphism supp: S � L. Recall next that kL is
isomorphic to the algebra kL of functions from L to k, which is a product of copies
of k indexed by L. This was first proved by Solomon [16]; see also [8] and [18,
Section 3.9]. Let’s make the isomorphism explicit:

The algebra kL has a k-basis consisting of the elements X ∈ L, with product
(X,Y ) 7→ X ∨ Y . The algebra kL has the standard k-basis {δX}X∈L, where δX
is the function Y 7→ 1Y =X whose value at Y is 1 if Y = X and 0 otherwise. The
product is given by δ2X = δX and δXδY = 0 if X 6= Y . We get an isomorphism

φ : kL
∼=−→ kL

by sending X to the function Y 7→ 1Y≥X , i.e.,

φ(X) =
∑

Y≥X

δY .

Note that φ preserves products because 1Y≥X1Y≥X′ = 1Y≥X∨X′ . And it is an
isomorphism because of the triangular nature of φ.

We can use Möbius inversion to write down the inverse. Indeed, we have
X =

∑
Y≥X φ−1(δY ), so Möbius inversion gives

φ−1(δX) =
∑

Y≥X

µ(X,Y )Y,

where µ is the Möbius function of the poset L. The elements

eX :=
∑

Y≥X

µ(X,Y )Y

are therefore the primitive idempotents of kL.
We now compose the support map in (B.1) with the isomorphism φ to obtain

an algebra homomorphism
ψ : kS � kL.

Theorem B.1 The kernel of ψ is nilpotent and is therefore the radical of kS.
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Proof The second assertion follows from the first because kL is semisimple.
To prove the first assertion, note that the kernel J of ψ is the kernel of supp: kS �
kL. It consists of linear combinations of elements of S such that if we lump the
terms according to supports, the coefficient sum of each lump is zero. Thus J =∑

X∈L JX , where JX consists of linear combinations
∑

supp x=X axx with
∑

x ax =
0. Let 1̂ denote the largest element of the poset L; it exists because L is finite
and any two elements have an upper bound. For any Y < 1̂ in L, let S≤Y be
the subsemigroup { suppx ≤ Y }. We may assume, inductively, that the kernel of
supp: kS≤Y → kL is nilpotent. Let n be an integer such that the nth power of this
kernel is 0 for all such Y . I claim that J2n+1 = 0.

Consider a product of 2n + 1 elements from various JX . If there are n con-
secutive factors such that the join of the corresponding X’s is less than 1̂, then
the product is 0 by the induction hypothesis. Otherwise, we may group the first
n factors and the last n factors to write our product as uvw with u,w ∈ J1̂ and
v in some JX . Now uvw is a sum of terms of the form xvy with x, y ∈ S and
suppx = supp y = 1̂. Since v has coefficient sum 0, we have xvy = 0 by the
deletion property (Proposition A.14).

B.2 Representations. For any X ∈ L the X-component of the homomor-
phism ψ : kS � kL is the homomorphism χX : kS → k given by

χX(y) = 1supp y≤X

for y ∈ S. These are characters of S, which correspond to 1-dimensional represen-
tations.

Theorem B.2 Let S be a finite band with support semilattice L, and let k be
a field.

1. Every irreducible representation of kS is 1-dimensional.
2. There is one nonzero irreducible representation for each X ∈ L, given by the

character χX .
3. The elements of S are simultaneously triangularizable in every finite dimen-

sional representation.

This is an immediate consequence of Theorem B.1 and standard ring theory.
Direct arguments can be found in [4, Section 7.2] for the convenience of readers not
familiar with the necessary ring theory.

B.3 Eigenvalues. Motivated by the theory of hyperplane arrangements, we
introduce the 2-sided ideal C ⊆ S consisting of the elements whose support is the
largest element 1̂, and we call the elements of C chambers. In the free case, C
consists of the complete elements of S (those using all the letters).

For applications to random walks, we are interested in the eigenvalues of an
arbitrary element

w =
∑
x∈S

wxx

of kS acting by left multiplication on kC. For simplicity, we will assume that S has
at least one left identity e. Then xex = x for all x ∈ S, so supp e is the smallest
element 0̂ of L, which is therefore a lattice. The assumption of a left identity is
harmless, since we can always adjoin a 2-sided identity to S and a smallest element 0̂
to L. [I do not want to assume S has a 2-sided identity in general, however, since I
want to consider subsemigroups xS, in which x is a left identity but not necessarily a
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right identity. The choice of left rather than right here is dictated by the convention
that random walks are left random walks in this paper.]

For any X ∈ L, choose x ∈ S with suppx = X and let cX be the number of
chambers in the band xS. This is independent of the choice of x; for if we also have
supp y = X, then left multiplication by x and y define mutually inverse chamber-
preserving bijections between xS and yS. Define a family of integers mX (X ∈ L)
by the system of equations

cX =
∑

Y≥X

mY (B.2)

for each X ∈ L. The proof of the following theorem will show that mX ≥ 0 for
all X.

Theorem B.3 Let S be a finite band with at least one left identity, let L be its
support lattice, let C be the ideal of chambers, and let k be a field. For any element
w =

∑
x∈S wxx ∈ kS, let Tw be the operator on kC given by left multiplication

by w. Then Tw has an eigenvalue

λX =
∑

supp y≤X

wy

for each X ∈ L, with multiplicity mX .

Note, as a check, that the sum of the multiplicities is indeed the dimension
of kC, i.e., the total number of chambers, by Equation (B.2) with X = 0̂. In view
of the theorem, we can interpret the general case of Equation (B.2) as saying the
same thing with S replaced by xS for any x ∈ S with suppx = X.

Remark B.4 For particular choices of w, some of the λX might coincide,
so one has to add the corresponding numbers mX to get the true multiplicity
(which might be 0, in which case λX does not actually occur as an eigenvalue).
The precise meaning of the theorem is that the characteristic polynomial of Tw is
f(λ) =

∏
X∈L(λ− λX)mX .

Proof of Theorem B.3 Choose a composition series for kC as a left kS-
module. By Theorem B.2, each composition factor is 1-dimensional and is given by
one of the characters χX . (The zero-representation cannot occur here because of
our assumption that S has at least one left identity.) For each X ∈ L, let m′

X be
the number of times χX occurs. Then Tw has a triangular matrix representation
whose diagonal entries are the values χX(w), the latter occurring m′

X times. Now

χX(w) =
∑
y∈S

wyχX(y) =
∑
y∈S

wy1supp y≤X =
∑

supp y≤X

wy = λX ,

so the proof will be complete if we show that
∑

Y≥X m′
Y = cX for all X ∈ L.

Consider an arbitrary x ∈ S. It acts on kC as an idempotent operator, project-
ing kC onto the linear span of the chambers in xS. The rank of this projection is
therefore cX , where X = suppx. On the other hand, the rank is also the multipli-
city of 1 as an eigenvalue, i.e., the number of composition factors whose character
takes the value 1 at x. So

cX =
∑
Y ∈L

χY (x)=1

m′
Y =

∑
Y≥X

m′
Y .
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