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Recall that a group I is said to be of type FP, (resp. FP,,) if the ZI'-module Z
admits a projective resolution which is finitely generated in dimensions <n (resp.
in all dimensions), cf. [4] or [8]. For example, I" is of type FP, if and only if it is
finitely generated, and I is of type FP, if it is finitely presented. (The converse of
the last assertion is not known.) In this paper we give a necessary and sufficient con-
dition for I' to be of type FP,. The condition involves the homological properties
of a suitable topological space X on which I acts. It is quite easy to use in practice,
once one has a suitable X. We will illustrate this by giving several non-trivial ex-
amples.

In Section 1 we recall a well-known sufficient condition for the FP, property.
We then. give our necessary and sufficient condition in Section 2 (Theorem 2.2). Sec-
tion 3 contains a similar result about finite presentability. The remainder of the
paper deals with examples.

In Section 4 we treat several infinite families of groups, which include some finite-
ly presented simple groups first constructed by R.J. Thompson in 1965 and later
_generalized by Higman. They also include a certain group F, also constructed by
Thompson, which later reappeared in homotopy theory and was eventually shown
to be of type FP, [10]. We will give a unified proof that all the groups I” in these
families are finitely presented and of type FP.,. We will also show that these
groups all satisfy H*(I, ZI')=0. This had previously been proven for some of them
by -Brown and Geoghegan.

In Section 5 we consider a sequence of groups H, (n=1) introduced by
Houghton [18]. Using methods surprisingly similar to those used for the Thompson-
Higman groups, we show that H,, is of type FP,_, but not FP,,.

Finally, in Section 6 we look at a sequence I, of solvable S-arithmetic groups
first studied by Abels [1]. The work of various people (see [2] for references) has
led to the result that I, is of type FP,_, but not FP,. We give a new proof of this
result by applying the criterion of Section 2 to the action of I, on a certain
Bruhat-Tits building.
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1. A sufficient condition

We will only consider the case n< o, since I" is of type FP, if and only if it is of
type FP,, for all n< oo, cf. [8, VIII.4.5]. We will also assume, to avoid trivialities,
that n=1. By a I'-CW-complex we mean a CW-complex X, together with an action
of I on X by homeomorphisms which permute the cells. We will say that X is
n-good for I' if the following two conditions hold:

(a) X is acyclic in dimensions <, i.e., the reduced homology -H;(X)=0 for
i<n.

(b) For 0<p=n, the stabilizer I, of any p-cell ¢ of X is of type FP,_,,.

Such an X always exists. For example, we could take X to be the universal cover
of a K(I', 1)-complex, in which case (a) and (b) both hold for trivial reasons. Or we
could take X to be the n-skeleton of that universal cover.

The following sufficient condition for the FP, property is well-known:

1.1. Proposition. Suppose I’ admits an n-good complex X such that X has a finite
n-skeleton mod I". Then I is of type FP,,.

This is in the same spirit as the results in [23, pp. 93ff], but it is not explicitly
stated there. For the convenience of the reader we will sketch two proofs; the first
is more straightforward, but the second introduces ideas that will be needed later

anyway.
Proof 1. Let C be the cellular chain complex of X. For any p=0 we have
C,=®Z,17.,

where o ranges over a set of representatives for the p-cells of X mod I, Z, is the
orientation module, and the arrow denotes induction from I, -modules to /-
modules, cf. [8, p. 68, Example II1.5.5(b)], or [23, p. 94, Lemme 3]. In view of the
hypotheses, it follows easily that C, is a I'-module of type FP,_, i.e., it admits a
projective resolution (P,,),>, such that P, is finitely generated for g<n—p. (This
is vacuous for p>n, in which case we take an arbitrary projective resolution.) One
can now find a ‘total complex’ T, with Tm=@p +q= m Ppqs> such that T has the
same homology as C [7, Lemma 1.5]. The n-skeleton of T is then a finitely generated
partial projective resolution of Z, so I' is of type FP,. [l

Proof 2. By the Bieri-Eckmann criterion [6], I is of type FP, if and only if the
functor H;(I, —) preserves direct products for i<n. Moreover, it suffices to
consider direct products of copies of ZI, i.e., to show for any index set J that
H;(I,1],2I')=0 for 0<i<n and that Hy(/; I1,2r= [I,Z. Since X is acyclic in
dimensions < n, we have H;(I, —) -——H,-r (X, —) for i< n, the latter being equivariant
homology, cf. [8, Chapter VII]. (More concretely, this is simply the homology of
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(C®z 0O)R®r—, where C is as in Proof 1 above and Q is a projective resolution of
Z over ZI'.) Consider now the equivariant homology spectral sequence [8, VII.7.7],
which for our present purposes is most conveniently written in the form

1 r I
qu = Torq (Cp9 - ) = Hp+q()(: - )

(This is simply one of the spectral sequences of the double complex in the definition
of equivariant homology above.) Now take the coefficient module to be [[Zr,
where the index set J is suppressed to simplify the notation. Since C, is a module
of type FP,_,, we have, for p+g<n,

0 if ¢g>0,
. {H C, if g=0.
Moreover, there is a surjection E,}O—» [1C,; hence E;‘O =[] H,(X) for p<n. In view
of the acyclicity of X in dimensions <n, it follows that E§q=0 for O<p+qg<n
and that E%=[[Z. Thus H,(I,[[ZN=H!(X,[1Z)=0 for 0<i<n, and
Hy,MzN=T2Z. O

E,

2. A necessary and sufficient condition

Let X be an n-good complex for I', 1 =n< . In case X has an infinite n-skeleton
mod I, so that 1.1 is inapplicable, we will get an FP,, criterion in terms of the pro-
perties of a suitable filtration of X.

By a filtration of X we will mean a family {X,},p of I'-invariant subcomplexes
such that D is a directed set, X, C Xy when a<p, and X= UaXa. It is always
possible to filter X by subcomplexes X, which have a finite n-skeleton mod I". For
example, we can simply take D to be the set of all such subcomplexes, ordered by
inclusion. Such a filtration will be said to be of finite n-type. Note that the acyclicity
of X in dimensions < implies, for any filtration, that

lim A;(X,)=0 fori<n.

aeD
We will show that the FP,, property is equivalent to the statement that this limit is
‘uniformly’ O for a filtration of finite n-type.

More precisely, a direct system of groups {A,},cp Will be called essentially
trivial if for each o€ D there is a f=a such that the map A,— A4, is the trivial
map. This is, of course, much stronger than simply requiring the direct limit to be
trivial. In fact, we have:

2.1. Lemma. {A4,} is essentially trivial if and only if any direct product of copies
of the direct system {A,} has trivial direct limit, i.e.,

lim [] 4, =0
aeD J

for any index set J.
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The proof is easy and is left to the reader. We can now state the main result of
this section:

2.2. Theorem. Let X be an n-good I'-complex with a filtration {X,} of finite
n-type. Then I' is of type FP,, if and only if the direct system {ﬁi(Xa)} of reduced
homology groups is essentially trivial for each i<n.

Proof. We use the Bieri-Eckmann criterion, as in Proof 2 of 1.1. Note first that,
for each a € D and each i<n, the functor H,-r (X, —) preserves direct products of
copies of 7T, i.e., H (X, I1,ZI'y=11,H;(X,). One can prove this by imitating
Proof 2 of 1.1. (Alternatively, show as in Proof 1 of 1.1 that C(X,) is weakly
equivalent to a complex 7 of projectives with 7; finitely generated for i<n, and
deduce the assertion from this.) We now have, for i<n,

Hy(L [ zn)=H{ (X, [ zI)
J J

=lim H/ (X, [ zI")
g J

aeD

= 11_1’)1’1 H Hi (Xa)-
aeD J
In view of Lemma 2.1, then, H;(I;, [];ZI")=0 for 0<i<n and all J if and only if
{H;(X,)} is essentially trivial for 0<i<n. To deal with the ‘=0’ part of the
Bieri-Eckmann criterion, note that we have an exact sequence 0— H,y(X,)—
Hy(X,)—Z—0, and hence an exact sequence

0—lim [] Hy(X,)—lim I HyXx,)—~I[Zz~o0.
- - J

Thus Hy(7; HJZF)S [1,Z for all Jif and only if li_r)n HJHO(Xa)zo for all J, i.e.,
if and only if {Hy(X,)} is essentially trivial. [

Remarks. (1) If R is an arbitrary ring, then the results of this section and the last
remain valid if ‘““FP,’”’ is replaced by ‘‘FP, over R’’ and all homology groups are
understood to have coefficients in R.

(2) Theorem 2.2 could be formulated as a result about direct systems of I-
complexes, with no mention of the direct limit X. More precisely, suppose we start
with a direct system {X,},.p of I'-complexes. We require the bonding maps
X,— Xp for a< f to be I'-equivariant and continuous, but they need not respect
the cell structure or be inclusions. Assume that each X, has a finite n-skeleton
mod I” and satisfies condition (b) in the definition of ‘n-good’, and assume further
that li£1 H:(X,)=0 for i<n. Then I” is of type FP, if and only if the system
{H;(X,)} is essentially trivial for i <n. The proof is similar to that of 2.2 and is left
to the reader. [A technicality that arises is that equivariant homology, as we have



Finiteness properties of groups 49

defined it in terms of the cellular chain complex, is not obviously functorial with
respect to arbitrary continuous /-maps. One way to deal with this is to use an alter-
nate definition of equivariant homology; see, for instance, [8, §VII.7.4, Exercise

31.]
We close this section by explicitly stating what 2.2 says for n<2.

2.2 Corollary. Let X be a connected I'-complex such that the vertex stabilizers are
finitely generated. Let {X,} be a filtration of X such that each X, has a finite
1-skeleton mod I'. Then I' is finitely generated if and only if the direct system of sets
{mo(X,)} is essentially trivial, in the sense that for any a there is a f=a such that
the map mo(X,)— mo(Xp) is constant.

This is the case n=1. The interested reader can easily prove it directly, without
appeal to the machinery used in this section.
For n=2 the content of Theorem 2.2 is:

2.4. Corollary. Let X be a connected I'-complex such that (a) H;(X)=0, (b) the
vertex stabilizers are of type FP,, and (c) the edge stabilizers are finitely generated.
Let {X,} be a filtration of X such that each X, has a finite 2-skeleton mod I. If
I is finitely generated, then I’ is of type FP, if and only if the direct system
{H\{X,)} is essentially trivial. '

3. Finite presentation
We begin by recording the analogue of 1.1:

3.1. Proposition [9, Theorem 4]. Suppose there exists a 1-connected I'-complex X
such that the vertex stabilizers are finitely presented, the edge stabilizers are finitely
generated, and X has a finite 2-skeleton mod I'. Then I is finitely presented.

We will use this to prove an analogue of 2.4. To simplify the statement, we
assume that our filtration {X,},.p has []X,#8, so that we can choose a base-
point v in this intersection. There is no loss of generality in making this assumption;
for we could simply choose an arbitrary ve X and then replace D by the cofinal
subset {¢eD:ve X,}.

3.2. Theorem. Let X be a 1-connected I'-complex such that the vertex stabilizers are
finitely presented and the edge stabilizers are finitely generated. Let {X,} be a
Sfiltration of X such that each X, has a finite 2-skeleton mod I', and let v e () X, be
a basepoint. If I is finitely generated, then I is finitely presented if and only if the
direct system {m;(X,,v)} is essentially trivial.
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Proof. Let D’ be the set of & in D such that the connected component X, of v in

X, is I'-invariant. I" being finitely generated, 2.3 implies that D’ is cofinal in D.

Replacing D by D’ and X, by X, we reduce to the case where each X, is con-

nected. Let X, be the universal cover of X,,, with a chosen basepoint lying over v,

and let I, be the group of homeomorphisms of X, which cover some element of I”

acting on X,. Then I, is finitely presented by 3.1, and we have a canonical short
_exact sequence

1-m,(X,)~>T,~>T~1,

cf. [9, §2]. Moreover, the inclusion X, C X, (¢ < ) induces a commutative diagram

1 —— 1 (Xy) - T, r > 1

1

71(Xp) I r 1

Suppose now that " is finitely presented. Then, for any o, m,(X,) is finitely
generated as a normal subgroup of I,. Since li_gn (X)) =m(X)=1, we may
choose =« so that ker{m;(X,)— m;(Xp)} contains a set of normal generators for
n,;(X,) in I', and hence is all of 7;(X,). Thus {n;(X,)} is essentially trivial. Con-
versely, suppose {7;(X,)} is essentially trivial. Let & be arbitrary, and choose =«
so that the map 7;(X,)—7m(Xp) is trivial. Then the map I;,— I} induces a map
I’ = Ip, which is a section of the map I~ 7. Thus I' is a retract of the finitely
presented group I and hence is finitely presented. []

We close this section by giving, for ease of reference, a special case of the results
of Sections 1-3 that will be needed later.

3.3. Corollary. Let X be a contractible I'-complex such that the stabilizer of every
cell is finitely presented and of type FP,. Let {X;};=1 be a filtration such that each
X is finite mod I.

(a) Suppose that the connectivity of the pair (X;,, X)) tends to o as j tends to
o, Then I is finitely presented and of type FP,.

(b) Fix n=1 and suppose that for all sufficiently large j X;. , is obtained from
X by the adjunction of n-cells, up to homotopy. Then I is of type FP, | but not
FP,. If n=3, then I' is finitely presented.

Proof. The hypothesis of (a) implies that for any /=0 the system {ﬁ,-(XJ-)} even-
tually stabilizes to a sequence of isomorphisms. Since the direct limit is 0, these
isomorphisms must be zero maps, so the system is essentially trivial. Similarly,
{m,(X))} is essentially trivial. (a) now follows from 2.2 and 3.2.
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The positive part of (b) (that I"is of type FP,_, and is finitely presented if n=3)
is proved similarly. For the negative part, note that for large j we have a surjection
H, (X))~ H,_,(X;,,) which, I claim, has a non-trivial kernel. For if the adjunc-
tion of n-cells does not kill any (n — 1)-dimensional homology, then it must in-
troduce some n-dimensional homology. But then the further adjunction of n-cells
can never kill off this n-dimensional homology, contradicting the contractibility of
X. This proves the claim and shows that {ﬁ,,_l(Xj)} is not essentially trivial. Hence
I is not of type FP,. [

Remark. We do not really need 2.2 and 3.2 to prove (a) and the positive part of (b).
In (b), for instance, it follows from the hypotheses that X is (n — 2)-connected for
J sufficiently large; so we could simply apply 1.1 and 3.1 to a suitable X.

4. Example 1: The Thompson-Higman groups

4A. Definitions

Fix an integer n=2 and consider the algebraic system consisting of a set V
‘together with a bijection « from V to its n-th Cartesian power V". For lack of a
better name, we will call (V,«) an algebra of type n. Algebras of type 2 were in-
troduced by Jonsson and Tarski [19, Theorem 5] to provide examples of certain
phenomena in universal algebra. Higman [17] later considered the general case, for
reasons that we will explain in the historical remarks at the end of this section.

Let ay, ..., a,_; be the components of . Thus each ¢; is a unary operator V' — V.
Following Higman, we write xe; for the image of x under ¢;. It is useful to
visualize the action of & by means of trees. For example, suppose we apply ¢ to an
element x and then again to xa,. Taking n=2, for instance, we represent this by
means of the rooted binary tree

Xayoy X004

where the top node (the root) corresponds to x, and the two descendants of a node
represent its images under @, and ¢;. The nodes with no descendants are called
leaves; they have been drawn as open circles. For arbitrary n we use n-ary trees in-
stead of binary trees, where an n-ary tree is one in which every node that is not a
leaf has exactly n descendants.

Let V,, be the free algebra of type n with r generators x;, 0<i<r—1. The ex-
istence of this free algebra follows from general nonsense, but one can also simply
construct it directly [17, §2]. For our purposes it is convenient to describe the con-
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struction as follows: For each x;, construct the complete n-ary tree with x; as the
root, where the complete tree, by definition, is the one with no leaves. (It is, of
course, infinite.) Let & be the disjoint union of these trees, and let ¥, be the set
of nodes of the ‘forest’ #. Note that ¢ is defined on ¥, and is injective but not sur-
jective. One now obtains V,, , by formally enlarging V; to make ¢ surjective. (We
will not need the details of this last step.)

According to [19] and [17], we can construct a new basis from the original basis
X={x;} by replacing any xe€ X by its n descendants xa, ..., xa,,_;. The new basis
(with r+ n— 1 elements) is called a simple expansion of X. Iterating this procedure
d times, we obtain d-fold expansions of X. Expansions of X correspond, in an
obvious way, to finite n-ary forests with r roots; the new basis elements are the
leaves of the forest. For example, the binary tree pictured above shows a 2-fold
expansion of the original 1-element basis {x} of V; ;; the 3 leaves form a 3-element
basis of this algebra.

We will always assume that our forests are drawn with the roots xy, xi, ... in left-
to-right order and with the n descendants yay, ..., ya,_;of a node y in left-to-right
order. In particular, the leaves of the forest (i.e., the elements of the corresponding
expansion Y of X) then have a definite left-to-right order.

By a cyclic-order on a finite set Y we will mean a free transitive action of Z/sZ-
on Y, where s=card(Y). Less formally, this simply means that we think of the
elements of Y as arranged on a circle, with no preferred starting point. If Y is an
expansion of X as above, we will sometimes want to forget the linear order on Y
and just remember the underlying cyclic order.

It is shown in [17] that any two bases of V), , have a common expansion; in par-
ticular, any basis can be obtained from X by doing an expansion followed by a con-
traction, where Z is called a contraction of Y if Y is an expansion of Z.
Equivalently, Z is obtained from Y by doing finitely many simple contractions,
where a simple contraction consists of taking an ordered n-tuple (yy,...,»,) of
distinct elements of Y and replacing them by z=a_1( Yis.+r5 V). If the basis Y is
equipped with a linear ordering and the n-tuple consists of consecutive elements (in
order), then the new basis has an obvious linear ordering (with z in the position
previously occupied by the y’s) and is said to be obtained from Y by an ordered sim-
ple contraction. The notion of cyclically ordered simple contraction for bases with
a cyclic ordering is defined similarly.

By an ordered basis for V, , we will mean a basis Y which admits a linear order-
ing such that, for some common expansion Z of X and Y, the order on Z inherited
from X is the same as that inherited from Y. One defines cyclically ordered basis
similarly. In each case the ordering on Y is unique. It is easy to see that a basis Y
is ordered (resp. cyclically ordered) if and only if it can be obtained from X by doing
an expansion followed by ordered (resp. cyclically ordered) simple contractions.

As in [17], we denote by G, , the group of automorphisms of ¥, ,, and we adopt
the convention that it acts on the right; thus g/ denotes g followed by 4. For any
g€ G,,, there is an expansion Y of X such that Y- g is also an expansion of X.
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Moreover, there is a unique minimal such Y, and all others are expansions of it [17,
Lemma 4.1]. Let # (resp. &) be the forest corresponding to Y (resp. Yg) and let
o be the bijection from the leaves of & to the leaves of # induced by g. Then g
is determined by (¥, %, 0); following Higman, who stated the same result in slightly
different language, we call (#,%',0) a symbol for g. (We say ‘a’ symbol here
because we do not insist on using the minimal Y; we leave it to the reader to figure
out how a general symbol can be obtained by ‘expansion’ of the minimal one.)

Conversely, given a pair (%,% ) of finite n-ary forests with r roots and the same
number of leaves, and given a bijection ¢ from the leaves of & to the leaves of ¥,
there is an associated element of G, ,. For example, there is an element ge G, ;
given by the symbol

@.1) —

a b b’ c’

where g is given by a~ a’, etc. (Note that the picture 4.1 only indicates where g sends
the leaves; to figure out what g does to other elements, such as the root, we have
to use the fact that g commutes with «.)

We will also be interested in two subgroups of G, ,, defined in terms of order-
preservation properties. Given ge G, ,, choose a symbol (¥#,%", ) representing it;
we call g order-preserving (resp. cyclic-order-preserving) if o preserves the order
(resp. cyclic order) of the leaves. This is independent of the choice of symbol. For
example, the element of G, pictured in 4.1 is order-preserving. If instead of the
given o we had used a~ b’, b~ c’, c—a’, then the resulting element would be cyclic-
order-preserving but not order-preserving. And if we had used a~ &', b—a’, c—~c’,
then the resulting element would be neither order-preserving nor cyclic-order-
preserving. '

If g is order-preserving, then the image Yg of any ordered basis Y is again
ordered, and the induced bijection g:Y — Yg is order-preserving as a map of
ordered sets. Conversely, if there exists an ordered basis Y such that Yg is ordered
and g induces an order-preserving bijection Y — Yg, then g is order-preserving.
Similar remarks apply to cyclic-order-preserving automorphisms.

The order-preserving (resp. cyclic-order-preserving) elements of G,, form a
subgroup which we denote by F, , (resp. 7, ,). We have

Fn,rc Tn,rCGn,r'

Since X can be replaced by an expansion in the definitions of these groups, the
groups depend only on r modrn—1. In the case of F,,, there is even less
dependence on r:

4.1. Proposition. F, , is independent of r, up to isomorphism.
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Proof. We will introduce a new group F), ., and show that F, ,=F, ., for any r. Let
V, - be a free algebra of type n on an infinite basis X = {xo, x;,...}. We will say
that an automorphism of V, , is of finite type if there is an expansion Y of X such
that Z = Yg is also an expansion of X. [As when we were dealing with finite bases,
we call Y an expansion of X it is obtained from X by doing finitely many simple
expansions. Thus Y corresponds to a forest & with roots x;, such that every tree

& is finite and almost every tree consists of the root alone.] As above, Y and Z
are ordered in a natural way, and we call g order-preserving if the induced bijection
0:Y—Z is order-preserving. Let F, ., be the group of order-preserving auto-
morphisms of V, . of finite type. For any r<oo the algebra V, , contains an
isomorphic copy of V,, ., defined as follows: Consider the infinite n-ary forest
obtained by starting with the set of roots {xp,...,X,_;} and repeating infinitely
often the step of letting the right-most leaf sprout n» descendants. Let W be the set
of leaves of this forest. Then W freely generates a subalgebra of V;, , isomorphic to
V.. - It is easy to check that this subforest is invariant under Fn , and that the
resulting restriction map F, ,—F), » is an isomorphism. [J

Having introduced V,, ,, and F, .,, we go one step further and consider the free
algebra V, on a ‘doubly infinite’ set of generators X={...,x_;, Xy, Xy, ... }, indexed
by the integers. As an algebra, of course, this is isomorphic to V), ; but the order
type of the basis X is different, and this affects the corresponding ‘F-group’. We
denote by F,, the group of order-preserving isomorphisms of V, of finite type, this
being defined exactly as above.

The group F,, is closely related to F, .. On the one hand, F,, is easily seen to be
an ascending HNN extension of F,, ; here F, ., is embedded in F,, as the subgroup
fixing the x; with i<0, and the stable letter for the HNN extension is the shift
automorphism seF,, x;-s=x;,;. On the other hand, we can recover an iso-
morphic copy of F, ., as a subgroup of F,, of finite index:

4.3. Proposition. There is an embedding of F,, ., as a subgroup of F, of index n— 1.

Proof. For any g e F, there are integers m, m’ such that x;- g=x;,,, for i>0 and
X;-g=X;_, for i<0. It is easy to see that m+m’'=0 (modn—1). Set 6(g)=

m(@modn—1)=—m’'(mod n—1). Then 6: F,—Z/(n—1)Z is a surjective homomor-
phism. I claim ker §=F, . Consider the infinite n-ary forest inside V,, ., obtained
by starting with the set of roots {x;, xi, ... } and repeatedly letting the left-most leaf
sprout n descendants. The set of leaves of this forest generates a subalgebra which
can be identified with ¥, and which is invariant under F, ... Restriction to this
subalgebra defines an injective homomorphism F, ,—F,, whose image is

ker8. [

Historical remarks. In 1965 R.J. Thompson constructed a certain group G, which
he thought of as a group of rules for rearranging formal expressions, cf. [20, pp.
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475ff]. As an aid in the study of G, Thompson introduced groups F and 7, with
FCTCG. (G is the group called € in [20] and F#(“2) in [24]; F is denoted PB’ in
[20] and IP in [24]; T seems to appear only in some unpublished handwritten notes.)
Thompson showed that all three groups were finitely presented, and he showed that
T and G were simple. This attracted the attention of group theorists, because there
were no previously known examples of finitely presented infinite simple groups.

Shortly thereafter, F. Galvin and Thompson [unpublished] observed that G was
isomorphic to the automorphism group of the Jonsson-Tarski algebra V, 4, i.e.,
G=G, . This is very easy to explain from our present point of view; for Thomp-
son’s formal expressions can be represented by binary trees, and his rearrangement
rules are precisely those which are given by symbols (¥, %", ¢) as above. The element
of G, | corresponding to the symbol 4.1, for example, corresponds to the ‘rear-
rangement’ (AB)C — A(BC). , '

Higman, upon hearing about Thompson’s G (as the automorphism group of
V,.1), introduced algebras of type n and the generalizations G, , of G. The groups
F, , and T, , that we have defined here were not considered by Higman, but they
are simply the obvious generalizations of Thompson’s F and T; in particular,
F=F, ,and T=T,,.

The group F later appeared independently in homotopy theory, in connection
with the study of homotopy idempotents ([11],[12], {15]). Using this point of view,
Geoghegan and I [10] proved that F was of type FP,. [Nofe: It is not immediately
obvious that the group F of [10] is the same as the group we are calling F here; we
will explain why they are the same in Remark 1 after Proposition 4.8 below.] We
knew about Thompson’s 7 and G (but not about the interpretation of G as G, ),
and we were able to deduce the FP,, property for T from that for F, cf. Remark
2 in Section 4B below. But G remained a mystery.

It turns out, however, that the theory of algebras of type n makes it quite easy
to give a unified proof that all of the groups F,,, T,,, and G, , are finitely
presented and of type FP,. That is what we will do in Section 4E below, after
making a few preliminary observations about the groups.

4B. Interpretation as homeomorphism groups

Thompson found it useful to use representations of his groups F, 7, and G as
homeomorphism groups. In the case of G, this is made explicit in [20] and [24]: G
is a certain group of homeomorphisms of the Cantor set. In the case of F and 7,
the unpublished notes referred to above contain representations of them as groups
of PL homeomorphisms of the unit interval and the circle, respectively. The un-
published paper of Freyd and Heller [15] contains two similar representations of F,
one as homeomorphisms of the half-line [0, o) and the other as homeomorphisms
of the entire line R. In this section we will generalize all these representations.

Let I, be the interval [0,7] CR. The n-ary forests that we used in Section 4A to
represent expansions of X can be read as recipes for subdividing the interval 7,.
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Namely, the r roots correspond to the r intervals [i,i+ 1], 0<i<r—1, and a node
with n descendants corresponds to an interval which is subdivided into n equal parts.
Given a symbol (¥,%",0) representing an element feF, ,, we get a homeomor-
phism f of I, by forming the subdivisions of I, associated to & and %~ and map-
ping each subinterval of the first subdivision linearly to the corresponding sub-
interval of the second. This makes sense because o is order-preserving, and it is
easily seen to be independent of the choice of symbol. We therefore have a well-
defined homomorphism f~ f from F, , to the group of PL homeomorphisms of 7,.

4.4. Proposition. The homomorphism f+~ f is injective. Its image consists of all PL
homeomorphisms h of I. with the following two properties:

(a) All singularities of h are in Z[1/n].

(b) The derivative of h at any non-singular point is n* for some keZ.

Proof. The only non-trivial assertion is that any 4 satisfying (a) and (b) is in the im-
age. The following proof is due to M. Brin; it is much shorter than my original
proof. By an admissible subdivision of I, we will mean a subdivision corresponding
to a forest as above. Choose an admissible subdivision & such that 4 is linear on
each subinterval; for example, we could take & to be a uniform subdivision into
subintervals of length n~* for k sufficiently large. The image subdivision &#’'=
h(Z) has its subdivision points in Z[1/n], so it can be refined to a uniform admissi-
ble subdivision 2’. Let 2 be the refinement 2~ (2’) of #. Since A is linear with
slope a power of n on each subinterval J in &, this refinement uniformly subdivides
J into subintervals of length n™ for some j. It follows that 2 is admissible and
hence 4 =f, where fe F, ,is defined by the forests corresponding to £ and 2’. [

In a similar way, F), ., can be represented as a group of PL homeomorphisms of
the half-line [0, ), F, can be represented as a group of homeomorphisms of the
whole line R, and T, , can be represented as a group of homeomorphisms of the
circle obtained by identifying the endpoints 0 and r of [0, r].

Remarks. (1) When n=2, we have F, 1 =F, =F,, cf. 4.2 and 4.3. So there is real-
ly one abstract group F represented as homeomorphisms of [0, 1], [0, o), and
(— o0, — ). These are the Thompson and Freyd-Heller representations mentioned
at the beginning of this section.

(2) It is now easy to explain how Geoghegan and I deduced finiteness properties
of T=T,, from those of F=F, . View F (resp. T) as a group of homeomor-
phisms of the unit interval I (resp. the circle S=1/{0,1}). Let S, be the image in S
of INZ[4], and let K be the simplicial complex whose simplices are the finite subsets
of Sy. Then K is contractible, T acts simplically on K, and the action is transitive
on the simplices in any given dimension. Moreover, the stabilizer of a simplex is the
direct product of a finite number of copies of F. So once F is known to be finitely
presented and of type FP,,, the same follows for 7 (cf. 1.1 and 3.1).
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Finally, to represent G, , as a group of homeomorphisms, let C, be the Cantor
set of infinite sequences a=(g;);», Where a;€{0,...,n—1}. (C, is topologized as
the product of copies of a discrete n-point space.) Note that there is an obvious
way to ‘‘subdivide C, into n equal parts’’, these parts being the clopen subsets
{aeC,:a;,=k}, 0=k=n—1, each canonically homeomorphic to C, itself. Now let
C,, . be the disjoint union of r copies of C,. We can then imitate what we did for
F, ,and T, , to get a faithful representation of G, , as a group of homeomorphisms
of C, ,. The essential point here is that we are now subdividing our space into dis-
Jjoint subsets, so we get a homeomorphism associated to a symbol (¥,%,¢) no
matter how badly ¢ fails to be order-preserving.

4C. Generators and relations

As we have already indicated, we are eventually going to prove that all of the
groups under discussion are finitely presented. But in this section we give a very sim-
ple infinite presentation of F, ., which is useful for some purposes. We also make
a few brief remarks about generators and relations for some of the other groups.

Let X be the basis {xo, x,...} of V, . and let Y; be the simple expansion of X
at x;, i=0. Let g;eF, ,, be the element such that Y;g=X.

4.5. Proposition. F, ., is generated by the elements g;, i=0.

Proof. Call an element p € F, ,, positive if there is an expansion Y of X such that
Yp=X. It is obvious that every element of F), ., has the form pq~!, where p and
q are positive. So the proposition will follow if we show that every positive element
is a product of g;’s.

If Y is a d-fold expansion of x, then we set d(Y')=d. We will prove by induction
on d(Y) that the positive element py which takes Y to X is a product of d(Y) g,’s.
This is trivial if d(Y)=0, so assume d(Y)>0 and choose i =0 such that Y is an ex-
pansion of Y;. Then Y’=Yg; is an expansion of Y;g;=X with d(Y")=d(Y)—1, so
Py is a product of d(Y)—1 g;’s by induction. Thus py=g;py- is a product of d(Y)
g’s, as required. [J

Note that, in view of the choice of i in this proof, there is usually more than one
way to write a given positive element as a product of g;’s. This leads to relations
among the generators g;. For example, suppose Y is obtained from X by expan-
ding both x; and x;, where i<j. Then there are two ways to write py as a product
of g;’s, and one finds

(4.6) 8i8i=8i8+n-1 fori<j,
or, equivalently,

4.7 8 'g8i=8jn_1 fori<j.



58 K.S. Brown

4.8. Proposition. F, ,, admits a presentation with generators g, g,, ... and relations
4.6 (or 4.7).

Proof. We will think of F), ., as a group of PL. homeomorphisms of the half-line
as in Section 4B. Note that g; is then supported in [, ) and has right-hand
derivative n at i. Consequently, if w is any word in the generators g;, and if j is the
smallest integer such that gfl occurs in w, then the homeomorphism corresponding
to w has right-hand derivative n® at j, where e is the exponent sum of g; in w.

Let F be the abstract group with generators g; subject to the relations above. We
have a surjection F— F, «, which we must prove is injective. Suppose not, and
choose a word w of minimal length representing a non-trivial element of the kernel.
Let j be as in the previous paragraph. Then the exponent sum of g; in w must be
0. On the other hand, we may use the defining relations for F to rewrite w (without
changing its length) so that all occurrences of gfl are at the beginning and all oc-
currences of gj_l are at the end. So w is conjugate to a shorter word, contradicting
its minimality. [

Remarks. (1) The group called F in [10] was defined by the presentation above, with
n=2; hence that F is the same as F, . The presentation was significant in the con-
text of [10] because it showed that F supported the universal example of an en-
domorphism which was idempotent up to conjugacy. In the same way, F, o
supports the universal example of an endomorphism ¢ such that ¢” is conjugate to
@. ¢ is simply the shift map, g;— g;,1-

(2) With a little more effort, one can use the method of proof of 4.8 to prove a
normal form theorem for F, ,, analogous to that of F, cf. [10,1.3].

(3) In view of 4.7, F, , is obviously generated by the g; with O0<i<n—1.

We now make a few remarks about generators and relations for some of the other
groups we have been discussing.

4.9. Let X={...,x_;, Xy, X1, ... } be the given basis for V,, let Y; (i € Z) be the sim-
ple expansion of X at x;, and let g; € F,, be the element which takes Y; to X and
fixes the x; for j<i. Let s € F), be the shift automorphism of V,, x;~x;, . Then F,
is generated by s and the g;, subject to the relations 4.6 and

-1
§ 8iS=8&i+1-

(So it is actually generated by s and g,.) If we identify F), ., with the subgroup of
F, fixing the x; for i<O0, then the generator g; of F, ., (:=0) corresponds to the
generator of F, with the same name. On the other hand, we have an embedding of
F, - as a subgroup of F, of index n~ 1 (4.3); this is given by go~s"land g;~ g;
for i>0.

4.10. Let X ={xp,...,x,_} be the given basis for V, ,, let ¥; be the simple expan-
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sion of X at x;, and let y;; for i< be the element of ), , which takes Y; to Y;. We
call an element of this form (with X possibly replaced by a different ordered basis)
a glide. Set y;=y; .1, 0<i=<r-—2. If we identify F, , with the subgroup of F,, ., fix-
ing the basis elements x; of V, o, with i>r—1, then y; =g,-gj_1. On the other hand,
we have an isomorphism F, ., =F, , (cf. proof of 4.2), under which g;eF, ., cor-
responds to y;,_; for i<r—1. In particular, F, , is generated by the y;,_;, hence
also by the y;, provided r=n+ 1. Since X can always be replaced by an expansion
with at least n+ 1 elements, it follows that F, , is generated by glides for any r< .

4.11. Let X={x;} as in 4.10, but view the indices i/ as integers modr. Let y;
(i,j € Z/rZ) be the cyclic-order-preserving automorphism which takes Y; to Y;, with
the first descendant of x; going to x;. This notation is consistent with that above if
O<i<j=<r—2. Again we call elements of this form (relative to some cyclically
ordered basis) glides, and we set y; =y, ;,, i€ Z/rZ. Replace X by an expansion,
if necessary, to assure r =2, and let o€ 7, , be the ‘rotation’ x;-x;,, of order r.
Let o’ be the rotation of order »+#n—1 defined in the same way but with respect
to the basis Y,_ ;. The following relations hold:

@) o \yio=vi. (ieZ/r2),
(i) ' Y 0=0
(iii) Pro1YoP1 Vrea=(@' )" L.

I claim that T, , is generated by F,, , and @, hence by glides and . For it is ob-
vious that T, ,is generated by F), , and the rotations ,0', 0" ... with respect to the
successive right-most expansions of X; we can now use (ii) to eliminate o', and we
can similarly use analogues of (ii) (with X replaced by its expansions) to eliminate
o”, etc. This proves the claim.

Note, finally, that 0"~ ! is a product of glides. In fact, if we use (ii) to eliminate
o’ from (iii) and then use (i) to lump together the resulting n — 1 occurrences of o,
we obtain

(iv) Qn_lzyr—nyr—n+l"'Yr—-lyo"'yr—Z’

where there are r+n—1 factors on the right.
4D. Normal subgroups

Recall that group theorists became interested in Thompson’s G and T because of
the combination of finiteness properties and simplicity. Although the present paper
is about finiteness properties, we would like to state, with sketches of the proofs,
the simplicity properties of all of the groups we have been discussing. To put these
results in perspective, the reader should recall that homeomorphism groups are
often simple, or, at least, have a simple commutator subgroup, cf. Epstein [13]. So
the simplicity properties stated in this section are not at all surprising. What is
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perhaps surprising is that a homeomorphism group ‘big’ enough to fit into Epstein’s
framework also has good finiteness properties; indeed, the examples that usually
come to mind are not even countable.

We begin with F,, ,. It is convenient to introduce some terminology motivated by
the homeomorphism representation of F, ,. Suppose V' is a subalgebra of V=1V, ,
generated by a set Y’ of consecutive elements in some ordered basis Y of V. We will
say that an element ge F, , has support in V' if g fixes all the basis elements of
Y —Y’. One can check by considering symbols that this notion depends only on V~’
and not on the choice of ¥ and Y’. Moreover, V'’ is necessarily invariant under g.

Two subalgebras V" and V" as above will be called disjoint if they are generated
by disjoint consecutive subsets of a single ordered basis for V. In particular, it
makes sense now to say that two elements of F, , have disjoint supports.

Finally, we say that g has interior support if it has support in a V'’ as above such
that Y’ contains neither the first nor the last element of Y. This is equivalent to say-
ing that the homeomorphism of [0, 7] corresponding to g has compact support in
©,r).

Examples. The glide y; defined in 4.10 is supported in the algebra generated by
X;s ..., X;. It has interior support if and only if ;>0 and j<r—1. The two glides y;
and y; of 4.10 have disjoint supports if and only if / and j differ by at least 2.

Let F2. be the subgroup of F, , consisting of elements with interior support. By
applying 4.10 to the group of order-preserving automorphisms of subalgebras V" as
above, we see that F.. is generated by glides.

We are going to show by the methods of [13] that the commutator subgroup of
F? is simple. Before stating the precise result, we determine the abelianizations of
F? and F,,.

Let A be the abelian group with generators e_, e, and ¢; (i € Z) subject to the
relations e;=e¢; if i=j (mod n—1). Thus A is free abelian of rank n+1. We will
construct a homomorphism a: F), ,— A which records the positions at which expan-
sions occur in the construction of a symbol for an element of F, ,.

If Y is an ordered basis of V,, ,, write the elements of Y as

Y- <Y< <Y<Yy,

where card(Y)=s+2. In case card(Y) =1, we agree that the unique element of ¥
is y_; this arbitrary choice will have no effect on our definition of the map a. By
the position of an element y € Y we will mean the index i such that y=y;; thusieZ
or i is one of the symbols —, +.

If a new basis is formed from Y by doing a simple expansion at y, then the posi-
tion of y in Y will be called the position of the expansion. Similarly, if a new
(ordered) basis is formed by contracting n elements starting at y, then the position
of y will be called the position of the contraction.

4.12. Lemma. One can associate to any two ordered bases Y,Z an element
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NZ,Y)e A, in such a way that the following hold:
(i) For any three ordered bases Y,Z, W, we have

W, Y)=0(W,Z)+d(Z,Y).

(ii) Suppose Z is obtained from Y by doing a sequence of simple expansions and
contractions, at positions i, j,.... Then

J(Z, Y)=i6ji‘3ji"',

where we take the plus sign in case of an expansion and the minus sign in case of
a contraction.

Proof. Suppose first that Z is an expansion of Y, and let & be the corresponding
forest, with Y as the set of roots. For each node v of & which is not a leaf, choose
an n-ary subforest &, of & containing all the roots and having v as a leaf. The
leaves of &, are the elements of an expansion Z, of Y, and we denote by i(v) the
position of v in Z,. Set d(Z, Y)= Y ey, where v ranges over all the nodes which
are not leaves; this is independent of the choice of the #,. Note that we can also
describe 6(Z, Y) as e; +e;+---, where i, .j, ... are the positions of the expansions in
any sequence of simple expansions leading from Y to Z. It follows that (i) holds if
W is an expansion of Z. '

Now suppose Y and Z are arbitrary ordered bases and let W be a common expan-
sion. Using the special case of (i) just verified, one checks easily that
oW, Y)—o(W,Z) is independent of the choice of W. We may therefore set
HZ,Y)=0(W,Y)—o(W, Z). It is now easy to verify (i) for any three ordered bases.
Finally, (ii) is clear in the case of a single simple expansion or contraction, and the
general case follows from (i). O

We now define a: F, ,—~ A by
a(g)=09(Y, Yeg),

where Y is any ordered basis. This is independent of the choice of Y, and the
resulting map a is a homomorphism. If, for example, we take Y so that Y and Yg
are both expansions of X (as in the definition of ‘symbol’), then

a(g) =9o(Y, X) - (Yg, X).

By computing a(y) for a glide p, one sees that ima={}, 1;e;€ A: ¥ A;=0}. In par-
ticular, im a=2Z". Similarly, a(F,g J)=7""% Let F, ,=ker a=ker(a ] F,g ;). [The ‘s
here stands for ‘simple’.] I claim that F,; , is the commutator subgroup of both F,, ,
and F,ff - It suffices to prove this for F,g re

For this purpose it is convenient to use the embedding Fn,,ﬁFn,mC;F,, (4.2 and
4.3), under which F,S, is carried to the subgroup F, of F, consisting of elements
with support in a finitely generated subalgebra. (Equivalently, F, consists of those
g € F, such that the corresponding homeomorphism of R has compact support.) It
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is easy to see that F,; is generated by the glides y;; = g,-gj“l, where the g; are as in 4.9;
this follows, for instance, from what we already know about generators for the
subgroups F), , of F,. Setting y;=y;;,, it follows that F, is generated by the y,,
ieZ. Under the map a, transported to F,, we have y,— e;—e;, ; € A. The claim will
now follow if we prove:

(a) y;=7;+n—1 in the abelianization (Fy ),,. In particular, (Fy),, is generated by
the images of any n—1 consecutive p’s.

(b) ¥+ Y,—; is in the commutator subgroup of F;.

For (a) note first that any g; with j <0 conjugates y; to y;, ,_; by 4.7. Now take
k>0. Then g, has support disjoint from that of y;,,,_,, so yjkzgjg,;1 also con-
jugates y; to y;,.,_;. This proves (a). Similarly,

P Yno1=818n =818 &1 g0 =181,80"]
=128 "2 '1=7" "]
=7 ", g " &l

for k>0, since g, has disjoint support from p,. This proves (b) and hence the
claim.

4.13. Theorem. Any non-trivial subgroup of F, , normalized by the commutator
subgroup F, , contains it. In particular, F, , is simple, and every non-trivial normal
subgroup of F, , contains it. ‘

Sketch of proof. As above, it is convenient to work in F,. We will use, in this
sketch of the proof, informal language motivated by the homeomorphism group in-
terpretation of F,.

The first step is to observe that we can freely move parts of bases around by
means of elements of H=[Fy, F,;]: Suppose Y is a finite set of consecutive
elements in some expansion of our basis X={..., x_{, Xy, X, ... } for V,. Choose
geF, which is a product of the g;’s and which takes Y to a set of consecutive
elements of X. Note that we have a lot of freedom as to where in X the set Yg starts.
Now replace g by its product with enough elements g, 1 (k>0) to make geF;
without changing Yg. Repeating this argument, we can find 4 € F,, which moves the
support of g far away from Y. Then the commutator (g~} )h - g (where the exponent
denotes conjugation) is in A and agrees with g on Y.

Now let N be a non-trivial subgroup of F, normalized by H, and choose
1#geN. Then we can find a subalgebra V' of V, (generated by one element, for
instance) such that V’g is disjoint from V. If & is a commutator of automorphisms
supported in V”’, the commutator (W e-h=g'. g"isin N and agrees with 2 on
V’. So we now have lots of non-trivial elements of N, enough to freely move things
around in V’. Repeating this argument, but with these new elements of N instead
of the original g, we can show (cf. [13, 1.4.6]) that there is a subalgebra V” of V’
such that N contains all commutators of automorphisms supported in V”. By the
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previous paragraph, we can move V' by an element of H to a subalgebra containing
an arbitrarily big chunk X’ of X. Hence N contains the commutator of any two
elements supported in the algebra generated by X', so N2 H. [

Remark. The group H is not the commutator subgroup of F,. In fact, it is easy to
see that F, is the commutator subgroup of F,. So it is the second commutator of
F, that is simple.

To complete our discussion of normal subgroups of F, ,, we wish to define one
more subgroup. Let A be the quotient of 4 obtained by introducing the additional
relations e_=e, and e, =e,_;. It is free abelian of rank n—1, with basis (e;)
({eZ/(n-1)Z). Let a: F, ,— A be the composite

F,,—>A—>A.
In other words, @ is defined in the same way as @, but with no special treatment for
first and last basis elements. Let F, ,=ker g; its abelianization is given by a map
F;,~Z®Z which records the ‘endpoint’ behavior of an automorphism.

Recall that we have an inclusion F, ,CF,, obtained by regarding F, , as the
group of order-preserving automorphisms of V,, with support in the subalgebra
generated by Xy, ..., X,_;. It follows easily from our computation of the abelianiza-
tion of F, above that F,, =F, N[F,, F,]. This fact will be used in the next
section.

The following diagram summarizes the subgroups of F,, , that have been defined;
the labels indicate the corresponding quotients:

Now consider T, ,. Let d=gcd(r, n—1). We define a homomorphism 6: T,,~
7/dZ as follows. Given ge T, ,, choose a symbol (#,%,0), and let y,,...,y,_,
(resp. Yg, ..., Vs—1) be the leaves of & (resp. #'), in order. By definition of 7, ,, ‘
there exists k € Z/sZ such that y;- o=y, ,, where the subscripts are considered as
integers mod s. We set 6(g) = k (mod d). It is easy to check that 6 is well-defined and
a homomorphism. ) ,

Note that 6(0) =1 if o is a rotation as in 4.11, and 8(y) =0 if y is a glide. It follows
that the kernel Tn‘?, of @ is generated by o? and glides; in fact, one easily deduces
from 4.11 that T,,?, is generated by o? and the y;(ieZ/r7Z) if r is large enough. [Use
relation (i).] On the other hand, relation (iv) of 4.11 implies that Qd is a product of
glides. So T,S, is the subgroup of 7}, , generated by glides. In particular, 7, , itself
is generated by glides if and only if r is relatively prime to n—1.
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We will show by the methods of [13] that the commutator subgroup of Tn?, is
simple. Before stating the precise result, we compute the abelianization of 7",8,.

Let A be a free abelian group of rank d with basis {e;}, ieZ/dZ. There is a
homomorphism a: T,,?,—>A, defined in exactly the same way as the homomorphism
&:Fn,,—nzi above. As before, im a~7Z%"!; in fact, a(y;)=e;—e;, . I claim that the
kernel T, is the commutator subgroup of T,,‘f,. It suffices to show:

(@) yi=7Yiyqin (T?,)ab; in particular, (T,S,)ab is generated by the image of any d
consecutive p’s.

(b) v, -y, is in the commutator subgroup of T,ff,.

(a) follows from relation (i) of 4.11, since 0% € T,f,’,. To prove (b), note first that
Y1+ Yn— is trivial mod commutators. In fact, it is in the kernel of the abelianiza-
tion map F, ,—»Z", so it is already in the commutator subgroup of F, ,C 7;},. Thus
if we denote by ¢ the product of d consecutive y’s mod commutators, we have
{"~14 =1, Now apply relation (iv) of 4.11 to conclude that ="' mod com-
mutators. Since the left side is already known to have order dividing (n —1)/d and
the right side has order dividing /d, it follows that /=1 and hence that r=1, as
required. This proves the claim.

We can summarize the situation by the diagram

T,,—2/dZ
]

(4.14) 70, —— 77!
U
T:,

where the lower arrow is an abelianization map.

Remark. 7, ,S, is not the commutator subgroup of T, ,, nor is 7,;,, unless d=1. In
fact, one can show that the abelianization of 7, ,is Z/dZ®Z/dZ.

4.15. Theorem. Any non-trivial subgroup of T, , normalized by T, , contains it. In
particular, T, , is a simple group and is the second commutator subgroup of T, .,
and every non-trivial normal subgroup of T, , contains it.

If d=1, for instance, as in Thompson’s original situation where n=2, then
T,,=T,,, so the latter is simple.

Sketch of proof of 4.15. We could repeat the arguments of 4.13, but it is easier to
deduce 4.15 from 4.14. If N is a non-trivial subgroup normalized by 7, ,, then
NNF, , is normalized by F,, ,. It is easy to see that this intersection is non-trivial,
so N contains F,, , by 4.13. In particular, N contains the commutator [y;, y;] of any
two of our generating glides for F, ,. We may repeat this argument with X re-
ordered (but with the same underlying cyclic order), so N in fact contains the com-
mutator [y;, y;] of any two of our generating glides for T,ff,. Now any conjugate of
this commutator is a commutator of a similar pair of glides, defined with respect
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toa cyclically ordered basis other than X, so N also contains it. Hence /N contains
a set of generators for 7,;,. [J

For the sake of completeness, we finish the simplicity discussion by recalling the
result of [17] analogous to 4.13 and 4.15. Let d now denote ged(2,n—1). Given a
symbol (¥,%", g) for an element g€ G, ,, let 6'= o7, where 7 is the order-preserving
bijection from the leaves of &’ to those of &#. ¢’ is a permutation of the leaves of
&, and we set 0(g)=0(mod d) (resp. 1 (mod d)) if ¢’ is even (resp. odd). Then 8
is a well-defined surjection G, ,—>Z/dZ, and we set G, ,=ker 6.

4.16. Theorem. G, , is the commutator subgroup of G, ,, and every non-trivial
subgroup normalized by G, , contains it. In particular, G, , is simple if n is even
and contains a simple subgroup of index 2 if n is odd.

It is instructive to read Higman’s proof of this while keeping in mind the homeo-
morphism group interpretation of G, ,. One sees the same ‘small support’ idea as
in the proofs of 4.13 and 4.15, but stated in purely algebraic language.

4E. Finiteness properties

4.17. Theorem. The groups F, ,, Fy.,, T, ,, T,,?,, Ty Gy, and G, , are all finitely
presented and of type FP,,. The groups F,gr and F, , can each be expressed as an
increasing union of finitely presented FP . groups.

We will give the proof in detail for G, , and then indicate the modifications
needed to handle the other groups.

Let # be the set of all bases of V=1V, ,. For Y, Ze B we write Y<Z if Z is an
expansion of Y. This makes #B a poset. For any Ye B let B_y={ZeB:Z<Y},
and define #B_y similarly. We denote by | | the simplicial complex whose
simplices are the finite linearly ordered subsets of &%. As usual, we will use this con-
struction of a simplicial complex associated to a poset to assign topological Concepts
to posets. In particular, we can talk about connectivity, contractibility, dimension,
etc., for B and various subsets of Z%.

The first observation is that & is contractible, being a directed set. (Any two bases
have a common expansion.) Now consider the action of G=G, , on # induced by
its action on V. The stabilizer of a basis Ye & is the symmetric group of permuta-
tions of Y. In particular, it is finite, and it follows that the stabilizer of every simplex
of & is finite. Thus |28 | is m-good for G in the sense of Section 1 for every m.
But | # | has infinite skeleta mod G because bases can have arbitrarily large cardina-
lity. We will therefore filter |% | and apply Sections 2 and 3.

For Ye% let h(Y) be the largest integer A4 such that there is a chain
Y=Y,>--->Y, in #. Equivalently, /(Y)=dim %_y. We call 4(Y) the height of
Y. For any A=0 set
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Bp={YeB: h(Y)<h}.

Then %, is G-invariant and is finite mod G. We wish to understand the homotopy
properties of the inclusion #,C %, ,. We will need the following three lemmas.

4.18. Lemma. Suppose Yi,..., Y, are distinct simple contractions of a basis Y.
Then Yy, ..., Y, have a lower bound in & if and only if the k contracted n-tuples
are pairwise disjoint in Y. In this case the Y; have a greatest lower bound, namely,
the basis Z obtained by contracting all k of the n-tuples.

Proof. If the n-tuples are disjoint, then the Y; obviously admit Z as a lower bound.
Conversely, suppose W is a lower bound for the Y;, i.e., each Y; is an expansion
of W. Recall that bases which are expansions of W are in 1-1 correspondence with
finite n-ary forests with W as the set of roots. Let # be the forest corresponding
to Y and let &, be the subforest corresponding to Y;. Then &, is gotten from ¥ by
removing # siblings, i.e., n leaves which are the # descendants of some node. Clearly
k distinct sets of siblings are disjoint, so the contracted n-tuples are indeed disjoint.
The basis Z corresponds to the forest gotten by removing all k sets of siblings, so
W= Z. Since W was an arbitrary lower bound, this shows that Z is the greatest lower
bound. [

4.19. Lemma. For any Y€ 3B, the complex |B_y| is homotopy equivalent to the
following simplicial complex X=2(Y): The vertices of X are the ordered n-tuples
of distinct elements of Y, and a collection of such n-tuples is a simplex of 2 if and
only if the underlying sets of the n-tuples are pairwise disjoint.

Proof. We will use a standard argument, which essentially goes back to Folkman
[14]. Let K=|%B_y|. For any Y'<Y let Ky be the subcomplex |#B_y | of K. It is
a cone, hence it is contractible. Note that K= UKY/, where Y’ ranges over the
simple contractions of Y. Given a collection {Y;} of simple contractions of Y, the
intersection L = ﬂK y; 18 non-empty if and only if the Y; have a lower bound, and
in this case L is the contractible complex K., Z being the greatest lower bound.
Hence K is homotopy equivalent to the nerve of the cover {Ky}. (See, for
instance, [16, 1.9].) But this nerve is precisely 2 by 4.18. [J

4.20. Lemma. For any integer k=0 there is an integer u(k) such that 2(Y) is k-
connected whenever card(Y)= u(k).

Proof. If card(Y)=3n— 1, then any two vertices of 2(Y) can be connected by an
edge path of length <2. For either they are disjoint, in which case they are con-
nected by an edge, or else they involve at most 2n — 1 elements of Y, in which case
they can both be connected to a third vertex. So we can take u(0)=3n—1. More
precisely, if we also set v(0)=3, we have proven the following assertion for k=0:
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(A;) Whenever card(Y)= u(k), the k-skeleton Z(Y)* is null-homotopic in Z(Y)
by a homotopy under which any k-simplex remains in a subcomplex having at most
v(k) vertices.

Assume inductively that u(k — 1) and v(k— 1) have been defined and that (4;_,)
holds. Suppose card(Y)= u(k—1) and choose a null-homotopy of Z*~! as in
(Ag_1), where 2=2(Y). For any k-simplex o of X, each of its codimension 1 faces
T remains in a subcomplex having at most v(k— 1) vertices, hence do remains in a
subcomplex 2’ having at most m = (k + 1)v(k — 1) vertices. If card(Y)=c=nm+n,
we can find another vertex v such that 2’ is contained in the link of v. We can
therefore extend the null-homotopy to ¢ by coning, with ¢ remaining in the full sub-
complex generated by 2" and v. Hence (A4,) holds with u(k) =max(u(k —1),c) and
vik)=m+1. O

Remark. This proof yields a value of u(k) that is very far from the best possible.
When n=2, for instance, K. Vogtmann has shown [private communication] that
one can take u(k) =3k + 5, whereas the proof above yields a value of u(k) bigger
than k!.

Proof of 4.17 (for G=G, ,). The passage from |%,| to |%,,,| consists of adjoin-
ing, for each Y with A(Y)=h+1, a cone over |B_y|. In view of 4.19 and 4.20, it
follows that the connectivity of (| %), |, | %,|) tends to oo as 4 tends to co. Hence
G is finitely presented and of type FP,, by 3.3(a). [

We now take up the other groups listed in the statement of 4.17.

() F,,and T, ,: Instead of &, use the subposet consisting of ordered bases (or
cyclically ordered bases). The proof goes through with minor changes. For example,
the complex 2(Y) is replaced by the subcomplex consisting of disjoint consecutive
(or cyclically consecutive) n-tuples.

(ii) T,f, and G, ,: These have finite index in T, , and G, ,.

(iii) Fy;, and T, ,: Recall the abelian group A ~7"*! and the function (-, -) of
4.12. Let A be as in the definition of F;, and let & be J followed by the quotient
map A~ A. Then we can prove 4.17 for F,;, by using the poset of ordered bases
Y such that the coefficient of ¢; in 8(Y, X) is non-negative for all ieZ/(n—1)Z. A
similar poset works for 7}, ,.

(iv) F;,and F; ,: We use the isomorphisms F,?,~F,,°, F,f =~ [Fy,Fy] (cf Section
4D). For any set Y of consecutive elements of our basis X for V,, consider the
subgroup of F, consisting of automorphisms supported in the subalgebra
generated by Y. This subgroup is isomorphic to F), , (r=card(Y)), hence is known
to be finitely presented and of type FP,,. Clearly F}, is the increasing union of such
subgroups. Similarly, [F;,F,] is the increasing union of subgroups isomorphic to
F;, by the remarks following the definition of F;,.
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4F. Vanishing cohomology

It is a remarkable fact that almost all of the known examples of groups I” with
good finiteness properties also have H'(I', ZI') = 0 for all i where this is theoretically
possible. Indeed, all examples of non-vanishing H'(I, ZI') that I know of (for I of
type FP_,, say) can be explained by one of the following two facts:

(a) If I' is of type FP,, and I has virtual cohomological dimension m < o, then
H™[I,ZI')#0, cf. [8, VII1.6.7 and III.6.5].

(b) One can construct new examples of non-vanishing H*(I', ZI") from given ones
by forming amalgamated free products or HNN extensions.

We will see here that this vanishing cohomology phenomenon continues for the
groups I" we have been discussing.

4.21. Theorem. All of the FP, groups I' mentioned in the statement of 4.17 satisfy
H¥I,ZIN)=0.

(For F, and T, ; this is due to Brown and Geoghegan, cf. [10] and Remark 2
of Section 4B above.)

Proof of 4.21. We will give the proof for G=G,,, and leave it to the reader to
check that a similar proof works for the other groups.

For any basis Y of V, , let A(Y)) be the number of simple expansions required to
get from Y to the minimal common expansion of X and Y. For any p=0 set

BP={YeRB: A(Y)+h(Y)=p}.
Then we have

B=B>RB'D-.-,

and ﬂpzo PBP=0. Note that B” is closed under expansion, hence it is still a
directed set; in particular, it is contractible. Note also that B — %7 is finite; for if
Y¢ B, then Y is a contraction of an expansion Z of X with A(Z)< p, and there
are only finitely many of these. One should think of the #7” as a decreasing
sequence of neighborhoods of o in %.

We now use the connection between H*(I,ZI") and cohomology with compact
supports, cf. [8, §VIIL.7, Exercise 4]. Since &, is highly connected for large 4, we
have, for any i,

H'(G,ZG)=H\(®8,) for h>0
=lim H'(B, B}),
D
where B[ =%,NABP. To complete the proof it suffices to show that, for fixed i
and large enough 4, #B7 is i-connected for all p. But this is easy. One need only go

back to 4.19 and 4.20, prove analogues for the poset #”, and observe that there
is a single u in 4.20 that works for all p. [
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5. Example 2: Houghton’s groups

The groups to be discussed in this section were introduced by Houghton [18]. See
also [22] and [26].

Fix an integer n= 1, let N be the set of positive integers, and let S=N x {1, ..., n}.
We think of S as the disjoint union of n copies of N, each arranged along a ray
emanating from the origin in the plane. Let H be the group of all permutations g
of S such that on each ray g is eventually a translation. More precisely, we require:

(*) There is an n-tuple (m;, ..., m,) € Z" such that for each ie{l,..., n} one has
(x,i)- g=(x+m; i) for all sufficiently large xe N.

The assignment g+~ (m,,..., m,) defines a homomorphism a:H—Z" whose
image is the subgroup {(m,, ..., m,)€Z": ¥, m;=0}, of rank n— 1. The kernel of a
is the infinite symmetric group, consisting of all permutations of S with finite sup-
port. It is the commutator subgroup of H if n=3. For n=1 and 2, one checks that
the commutator subgroup of H is the infinite alternating group. In all cases the se-
cond commutator subgroup of H is a locally finite infinite simple group.

If n=1, then H is the infinite symmetric group and hence is not finitely generated.
But H is easily seen to be finitely generated if n=2, and it was shown by R.G. Burns
and D. Solitar [unpublished] to be finitely presented if n=3. We complete the pic-
ture by proving: |

5.1. Theorem. The group H is of type FP,_, but not FP,. For n=3 it is finitely
presented.

The proof is an imitation of what we did for the Thompson-Higman groups. The
first and crucial step is to find a poset to play the role of the poset # used in Section
4E. Let M be the monoid of 1-1 maps S— S satisfying (*). [As in Section 4 our
groups and monoids act on the right; thus ¢f denotes a followed by f for o, § € M.]
Let TC M be the commutative submonoid consisting of franslations, i.e., elements
t e M satisfying (x,i)- t=(x+m;, i) for all xe N. Necessarily, then, m;=0. T is a
free commutative monoid generated by elements ¢, ...,¢,, where {; translates by 1
on the i-th ray and is the identity on the others.

Given a, fe M we write a<f if f=ta for some te T. We denote by # the
underlying set of M, equipped with this partial order. It is a directed set, and the
underlying set of the submonoid T is a cofinal subset. [The latter should be thought
of as the analogue of the subset of & consisting of the expansions of the given basis
X of V,,.] The group H is a subgroup of M, hence it acts by right multiplication.
This commutes with the action of 7 by left multiplication and induces an action of
H on the poset .

Note that the stabilizer of a simplex of |4 | is finite. Moreover, if we filter .#
by height, then each |4, | is finite mod H. We are therefore in a position to apply
the results of Sections 2 and 3.
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5.2. Lemma. Given ae€ M, let Y be the finite set S—S-a. Then |M_,| is
homotopy equivalent to the following simplicial complex 2 =2(Y): The set of ver-
tices of X is {1,...,n} XY, and a collection of these vertices forms a simplex if the
first coordinates are all distinct and the second coordinates are all distinct.

(Thus X is a certain subcomplex of the complex of disjoint pairs of elements of
{1,...,n} 1 Y.)

Proof. The maximal elements of .#_ , are those B such that o =¢; for some i. Such
a f3 agrees with o except on the i-th ray, and on the i-th ray it satisfies (x+ 1,i)- =
(x,i)-a for all xeN. Thus f is determined by specifying i and specifying
y=(1,i)- fe Y. It is easy to check that a collection of such £’s has a lower bound
in A if and only if the corresponding collection of pairs (i, y) is a simplex of 2.
Moreover, in this case there is a greatest lower bound. The result now follows as
in the proof of 4.19. []

Let %2, , denote the complex 2(Y) for a set Y of cardinality 4. [Note: If
Y =S-Sa as above, then the cardinality /4 is equal to the height of « in the poset . ]

5.3. Lemma. X, , is (n — 2)-connected for h=2n— 1. More precisely, it is homotopy
equivalent to a bouquet of p,(h) spheres of dimension n— 1, where p,, is the monic
polynomial of degree n defined inductively by p,=1 and

pr)=@—1)p,_1(u=2)+(n~-1p,_(u-1).

Proof. We argue by induction on #, using a method due to K. Vogtmann [private
communication]. If n=1, then %, , is a bouquet of 2—1 copies of §°, provided
h=1=2-1-1. Now suppose n=2 and assume that 2,_; ; is homotopy equivalent
to a bouquet of p,_;(k) copies of S$"2 for k=2(n~1)—1. We build up 2, pin
several steps. Start with the contractible complex K = st(v) [ =the star of v] for some
vertex v of the form (1, y,). Now let K’ be the full subcomplex generated by K and
the vertices (1, y) for y#y,. Any simplex of K’ that is not in K involves exactly one
of the new vertices, so K’ is obtained from K by adjoining, for each y+#y,, a cone
over lkg(1,y) [=the link of (1, ) in K]. Now lkg(1,¥)=2,_, ,_, (With vertex set
{2,...,0} xX(Y={¥p,¥})), so K’ is homotopy equivalent to a bouquet of s2—1
copies of the suspension of 2, ,_,. In view of the inductive hypothesis, then, K’
is equivalent to a bouquet of (h—1)p,_;(h—2) copies of st

Now adjoin the remaining vertices (i, ¥y), i#1. We have kg (5, yo)) =2\, _1 11,
so X, ; is obtained from K’ by adjoining cones over n—1 copies of 2, _, ;. Using
the inductive hypothesis again, we see that, up to homotopy, we are adjoining
(n—1)p,_(h—1) cells of dimension n—1 to our bouquet of (n— 1)-spheres,
whence the lemma. [
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Proof of 5.1. Arguing as in the proof of 4.17, we deduce from 5.2 and 5.3 that,
for large A, the passage from %, to #, | consists of the adjunction of n-cells, up
to homotopy. The theorem therefore follows from 3.3(b). [

Remark. The proof suggests that, in some sense, # is essentially n-dimensional.
One can make this intuition precise by constructing an n-dimensional cubical com-
plex X on which H acts, with % as the set of vertices. For each o € A4, the vertices
ti' - tia (g;=0,1) span an n-cube of X.

6. Example 3: The groups of Abels

For n=1 and p a prime number, let I,,CGL, , ;(Z[1/p]) be the group of upper
triangular matrices g with g;; =g, ,+1=1. For example,

1 % =
1 =
0 0 1

Notice that I is not finitely generated. But I is easily seen to be finitely generated,
and I'; was shown by Abels [1] to be finitely presented. Further work by various
people eventually led to the following result (see [2] for references):

6.1. Theorem. I, is of type FP, _, but not FP,; for n=3 it is finitely presented.

We will give a new proof of 6.1 by applying the results of Sections 2 and 3 to the
Bruhat-Tits building X associated to the group GL,,,; and the p-adic valuation of
Q. We recall the relevant definitions.

Notation
K =a field with discrete valuation v.
A =the valuation ring.
7 =a generator of the maximal ideal of A.
k =the residue field A/nA.
V=K""!, n=1.

A lattice L in V is a finitely generated A-submodule of V" spanning V as a vector
space over K. Equivalently, L is a free A-submodule of V' with an A-basis which
is also a vector space basis of V. The set & of lattices in V' is a poset under inclusion.
We denote by W the n-dimensional subcomplex of |¥ | consisting of the simplices
{Lo, ..., L;} such that :

Ly<L;<-<L,<n'L,.

Note that W is locally finite if the residue field k is finite.
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Let i : K<V be the inclusion of the first factor, and let pr: ¥— K be the projec-
tion onto the last factor. For any L € & the image pr(L) is a lattice in K, hence

pr(L)=n"*"4

for some integer &(L). The resulting function ¢: £ — Z is an example of an augmen-
tation in the sense of [16]. (The minus sign in the definition is used so that & will
be order-preserving.) Similarly, we define n: ¥ —7Z by

i) =n""P4.

It is also an augmentation.

In case K=@ and v is the p-adic valuation, there is an obvious action of I'=1,,
on £, and both ¢ and # are I-invariant. We will use one of our augmentations, as
in [16], to construct a model X for the Bruhat-Tits building as a subcomplex of W,
and we will use the other one to filter X.

Let R be the abstract ordered simplicial complex which triangulates the real line
R, with Z as vertex set and the usual ordering. For r,se Z with r<s, we denote by
[r, s] the subcomplex of R which triangulates the interval from r to s. The functions
¢ and 7 extend to simplicial maps W —R, still called ¢ and #. We set X =&~ '(0),
X, =XNn"'(r) (re?), and X,,=XNn~'([r,s]) (r,s€Z,r<s). X is isomorphic to
the usual Bruhat-Tits building and hence is contractible [16].

Example. Suppose n=1. Then X is a tree, and a vertex L of X is a lattice in K2
with a basis of the form {(n7',0),(x, 1)} for some xe K, where r=#n(L). The class
of xmodn™"A is uniquely determined by L. Thus the ‘slice’” X, of X is a
0-dimensional complex whose vertex set can be identified with K/z7"A. It is easy
to see that a vertex L of X, as above is connected by an edge to a unique vertex of
X,,.1, namely, the lattice with basis {(z7"~',0),(x,1)}. So X is the mapping
telescope of the sequence

o> K/m*PA>K/TA—>K/A—>K/n7 4> ...

of O-dimensional complexes. It follows, in particular, that X, is homotopy
equivalent to X, and that X ., is obtained from X, by the adjunction of cones
over bouquets of 0-spheres.

For general n we will show that the system of subcomplexes X, has similar
homotopy theoretic properties:

6.2. Lemma. (a) X, is a deformation retract of X,.
(b) Up to homotopy, X, ., is obtained from X,s by the adjunction of n-cells.

Proof. The subcomplex [r, s] of R is an ordered simplicial complex, so we may form
its simplicial product with X,;. There is a simplicial map

X, X [1, 5] X
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given on vertices by (L, #)~ L+ An"'e;, where e, is the first standard basis vector
of V. This map yields a deformation retraction of X,; onto X,, whence (a).
Now consider the inclusion X,;C X, ., ;. A simplex ¢ of X, .., has the form

(%) Ly< - <L,<My<--<M,

(p=-1,q=—1), where n(L;))<s and n(M;)=s+1. We will filter X, ;. according
to the dimension of M, /M, over the residue field k. (By convention, this dimen-
sion is —1 if g=—1, i.e., if there are no M’s.) Thus we have

Xs=F_|CFyC-- CFanr,s+1’

where F; consists of the simplices with dim M,/M,=<d. I claim that for each d=0
the passage from F,;_, to Fy is, up to homotopy, the adjunction of n-cells. This im-
plies (b), so it remains to prove the claim.

For each simplex ¢ of F; not in F,;_,, write g as in (%) and let 7 be the simplex
{My, M} of X, . (ris a 1-simplex if d>0 and a vertex if d=0.) Then ¢ is in st(7)
[=the star of 7 in F,], and ¢ is not in the star of any other simplex {M’, M} of
X1 with dim M/M’=d. It follows that F is obtained from F,_; by the adjunc-
tion, for each such 7={M’, M} with dim M/M’=d, of st(7) relative to st(t)NF,_,.
To prove the claim, then, it suffices to show that this intersection has the homotopy
type of a bouquet of (z —1)-spheres.

We will use the standard notation for ‘intervals’ in the poset £; for instance,
[Ly,L)]={Le¥:L,CLCL,}.Let ¥={Le[nM,M']: n(L)=s and ¢(L) =0}. Then
st(7) is the join |&|=*|[M’, M]|, and st(t)NF,_, is the subjoin

|| (| IM, M)| U |(M', M])).

Now the second factor of this join is the suspension of |(M’, M)|, and (M’, M) is
isomorphic to the poset J(M/M’) of proper non-zero subspaces of the d-
dimensional vector space M/M’ over k. Hence this second factor is homotopy
equivalent to a bouquet of (d— 1)-spheres by the Solomon-Tits theorem (cf. [21]).
[In case d=0, this simply means that the second factor is empty.]

Turning now to the first factor |& |, note that & is isomorphic to a certain sub-
poset &’ of T(M'/nM). Namely, &’ consists of the subspaces of M’/nM which do
not contain the line (M +'A7t“s"1e1)/7zM and which are not contained in the
kernel of the linear map M'/nM—»k induced by pr: V—K. By Vogtmann’s
generalization of the Solomon-Tits theorem (cf. [25, Proposition 1.4]), |&#’| is
homotopy equivalent to a bouquet of (n—1—d)-spheres. The join is therefore
homotopy equivalent to a bouquet of (n— 1)-spheres, as required. [

Proof of 6.1. Let I'=1,,, and consider the contractible I"-complex X we have just
been discussing, where K=Q with the p-adic valuation. Filter X by the sub-
complexes X,)=X_,, (r=0). It is easy to see that each X, is finite mod I" (cf. [2,
proof of Theorem B(c)]) and that the stabilizer of every simplex is finitely presented
and of type FP, (cf. [2, proof of Theorem B(b)]). And Lemma 6.2 implies that,
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up to homotopy, X, ) is obtained from X, by the adjunction of n-cells. The
theorem now follows from 3.3(b). [

Remark. It follows from the proof that X, [=Xg)] is (n —2)-connected. This was
proved in [2] by different methods and was used there to prove the positive part of
6.1.
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