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The Geometry of Rewriting Systems:
A Proof of the Anick—Groves—Squier Theorem

KENNETH S. BROWN

Abstract. Let G be a group or monoid which is presented by means of a
complete rewriting system. Then one can use the resulting normal forms
to collapse the classifying space of G down to a quotient complex (typically
“small”) of the same homotopy type. If the rewriting system is finite, then
the quotient complex has only finitely many cells in each dimension. The
proof yields an explicit free resolution of Z over ZG, similar to resolutions
obtained by Anick, Groves, and Squier.

Introduction

Several years ago Ross Geoghegan and I [6] were interested in the ho-
mological finiteness properties of a certain group G. We succeeded in con-
structing a small K(G,1)-complex, with only two n-cells for each n > 1,
by an indirect method: We first built a big K(G, 1), with infinitely many
n-cells for each n, and we then “collapsed away” all but two cells in each
dimension. This notion of “collapse” will be explained in §1; for now, one
can think of it as analogous to collapsing a maximal tree in a connected
complex in order to get rid of all the vertices but one.

The method seemed ad hoc at the time, but it turns out to have much
wider applicability than I would have guessed. In particular, it applies to
groups and other algebraic objects which come equipped with a complete
rewriting system [definition in §2 below]. One simply uses the classical bar
construction as the starting point, i.e., as the “big” complex on which to
perform the collapse, and one uses the normal forms that come from the
rewriting system in order to figure out which cells to collapse.

The result of this process, in the case of a group G, is an explicit K(G,1)-
complex, typically much smaller than the classical one. One also obtains
an explicit free resolution of Z over ZG, similar to resolutions obtained by
Anick [1], Groves [11], and (through dimension 3) Squier [19]. In particular,
we recover the Anick—Groves—Squier result that G is of type FP, if the
rewriting system is finite.

We begin by explaining in §1 the collapsing method of [6] that we will be
using. In §2 we review rewriting systems. The application of the collapsing
method to monoids with a rewriting system is then given in §3. We translate
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the result into algebraic language in §4 and show how it leads to a free
resolution. It is easy to describe the basis elements of this resolution, but
it is not so clear how to compute the boundary operator. This question is
treated in §§5 and 6. Finally, §7 contains some examples.

I am grateful to D. E. Cohen and the referee for helpful suggestions that
improved my exposition.

1. Collapsing BM: An Overview

Recall that a monoid M gives rise to a semi-simplicial complex BM,
whose n-simplices are n-tuples o = (mq,..., m,) of elements of M. The
face operators are given by

(ma,...,my) i=0
dio = (ml,...,m,-_l,m,;mz-+1,mi+2,...,mn) O0<i<n
(ml,...,mn_l) ) ’i=’n,

and the degeneracy operators are given by
SiU:(m17'"amialami-i-l,---’mn) (OSZSH)

The geometric realization X = |BM| is called the classifying space of M.
It is a CW—Complex with one n-cell for every non-degenerate n-simplex
of BM, i.e., for every n-tuple (m,...,my,) with m; # 1 for all i. We
will use the same symbol (m;, ..., m,) for both a simplex of BM and the
corresponding cell of X.

A glance at the 2-skeleton of X shows that 71 (X) is the group completion
of M, i.e., it is the target of a monoid homomorphism M — (X)) which is
universal for'homomorphisms from M to a group. In particular, 7 (X) =
M if M is a group. Moreover, X is an Eilenberg-MacLane complex of type
K(M,1) in this case; in fact, it is the “original” K(M,1) constructed by
Eilenberg and MacLane [9] and, independently, by Eckmann [8]. If M is
not a group, then X may or may not be an Eilenberg-MacLane complex
(cf. [16], [10]).

Our method for analyzing the homotopy type of X is based on the follow-
ing trivial observation. Suppose we are building X by attaching cells, one
at a time, and we are ready to attach a 1-cell 7 = (m). Suppose m admits
a non-trivial factorization m = m’m” such that the 1-cells (m’) and (m”)
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have already been adjoined. Then we can adjoin 7 without changing the
homotopy type, provided we simultaneously adjoin the 2-cell o = (m/, m").
For we have 7 = dio, and the other two faces of o are already present;
so the adjunction is an elementary expansion, and the resulting inclusion
is a homotopy equivalence. It has a canonical homotopy inverse, which
“collapses” o onto the union of the two faces other than the “free face” 7.

In this situation we will say that 7 is redundant, since we were able
to adjoin it without changing the homotopy type. The chosen o will be
called the collapsible cell associated to 7 and will be denoted ¢(7). The
construction has to start somewhere, of course, so we cannot expect all
1-cells to be redundant. Those that we start with will be called essential.
In practice, they will be the cells (s), where s ranges over some set of
generators of M. [Note: We use monoid generators, even if M happens to
be a group.]

Turning now to the 2-skeleton, we have already adjoined some of the
2-cells, namely, the collapsible ones. We can expect some of the non-
collapsible cells to be “essential”, and we must simply adjoin them. In
practice, these will correspond to some set of defining relations for M. The
remaining 2-cells 7 will be declared “redundant”, and we will try to find for
each such 7 a “collapsible” 3-cell ¢ = ¢(7), so that the adjunction of ¢ and
7 can be done as an elementary expansion. Thus 7 should be a face of o,
and all other faces should be present already when o and 7 are adjoined.

Continuing this process, we hope to classify the cells of X in all dimen-
sions as “essential”, “collapsible”, or “redundant”. We want to then build
X in such a way that the redundant and collapsible cells can be adjoined
without changing the homotopy type, so that X will be homotopy equiva-
lent to a complex Y with one cell for each essential cell of X. Let’s spell
out explicitly what we need in order for this program to work. We will do
this in the context of an arbitrary semi-simplicial complex.

Let K be a semi-simplicial complex and let X be its geometric realiza-
tion. As above, we will identify the set of cells of X with the set of non-
degenerate simplices of K. Assume that the cells have been partitioned
into three classes, whose elements are called essential, collapsible, and re-
dundant, respectively. The collapsible cells are required to have dimension
> 1. Assume further that to each redundant n-cell 7 we have associated a
collapsible (n + 1)-cell o = ¢(7) and an integer ¢ = i(7) such that 7 = d;o.
We will often refer to 7 as the free face of o. If 7’ is a redundant n-cell such
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that 7" = d;o for some j # 4, then we call 7/ an immediate predecessor of
7 and write 7/ < 7. The point of this is that when we adjoin 7 and o, we
want any immediate predecessor of 7 to be present already.

The given cell partition and functions ¢ and ¢ will be said to constitute
a collapsing scheme for K if the following two conditions are satisfied:

(C1) The function c defines, for each n > 0, a bijection from the set of
redundant n-cells to the set of collapsible (n + 1)-cells.

(C2) There is no infinite descending chain T = 7' > 7" = - - - of redundant
n-cells.

Note, as a special case of (C2), that one cannot have 7 = 7. In other
words, there is a unique integer 7 such that 7 = d;c(7). Another conse-
quence of (C2) is that, for any redundant cell 7, there cannot exist ar-
bitrarily long descending chains 7 = 79 > 71 --- > 7%. This follows from
Konig’s lemma (cf. [13], §2.3.4.3), which is applicable since every redundant
cell has only finitely many immediate predecessors. The maximal length k
of a descending chain as above will be called the height of 7.

It is now a simple matter to achieve the goal stated above:

PROPOSITION 1. Let K be a semi-simplicial complex with a collapsing
scheme. Then its geometric realization X = |K| admits a canonical quotient
CW-complex Y, whose cells are in 1-1 correspondence with the essential
cells of X. The quotient map q : X — Y is a homotopy equivalence. It maps
each open essential cell of X homeomorphically onto the corresponding open
cell of Y, and it maps each collapsible (n + 1)-cell into the n-skeleton of Y.

PROOF: Write X as the union of an increasing sequence of subcomplexes
XoCXgCX1CXf <o,

where Xy consists of the essential vertices, X, is obtained from X,, by
adjoining the redundant n-cells and the collapsible (n + 1)-cells, and X, 11
is obtained from X' by adjoining the essential (n + 1)-cells. We can factor
the inclusion X,, — X, as a sequence of adjunctions

where we construct Xj*! from XJ by adjoining 7 and c¢(7) for every re-
dundant n-cell 7 of height j. Note that every face of ¢(7) other than 7 is
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either an immediate predecessor of 7 (and hence has height < j) or else
is essential, collapsible, or degenerate. These faces are therefore already
present, and the adjunction of 7 and ¢(7) is an elementary expansion.

[Note: The degenerate faces present no problem here since they are iden-
tified, when the geometric realization X is constructed, with cells of lower
dimension. More precisely, let x : A"t — X be the characteristic map
for 0 = c(7), where A™*! is the standard (n + 1)-simplex. If some face
of o is degenerate, then y maps the corresponding face of A™*! into the
(n — 1)-skeleton of X. So x maps all but the ith face of A™*! into X7,
where ¢ = i(7), whence our assertion that the adjunction is an elementary
expansion. |

The passage from X7 to XJ*! therefore consists of a possibly infinite
number of simultaneous elementary expansions. In particular, we have a
homotopy equivalence X7 — XJ*+1 for each j, whence a homotopy equiv-
alence X,, — X}. Moreover, the collapsing maps associated to the ele-
mentary expansions above yield a canonical homotopy inverse Xt — X,.
The rest of the proof is an exercise in elementary homotopy theory. See [6],
proof of Theorem 5.3, for more details. O

When we apply these ideas to K = BM, we will construct ¢(7) for a
redundant cell 7 = (my,...,m,) by factoring one of the m;, as we indicated
above in the case n = 1. So we will need some reasonable way of factoring
elements of M. This suggests that we need normal forms. It turns out that
the normal forms coming from a complete rewriting system do the trick.
The next section will be devoted to a review of rewriting systems, and the
collapsing scheme will then be constructed in §3.

2. Rewriting Systems and Normal Forms

Let M be a monoid with a fixed set S of generators. Thus M is a quotient
of the free monoid F on S. We will call the elements of S “letters” when
we are thinking of S as a subset of F', and we will call the elements of F’
“words”; a word, then, can be viewed as a finite (possibly empty) string of
letters. A subset Z C F will be called a set of normal forms for M if T
maps bijectively onto M under the quotient map 7 : F — M. Such a set
determines a function r : F — Z such that r(w) is the unique element of 7
with m(r(w)) = 7w(w). We are interested in normal forms with the property
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that r(w) is computable from w by “rewriting”, in a sense which we now
explain.

Let R be a subset of F' x F such that M admits the presentation (S ; R).
In other words, M is obtained from F' by introducing one relation w; = wq
for each (w;,w2) € R. The elements of R will be called rewriting rules. It
is important that they are ordered pairs of words. We will often emphasize
this by writing wy — ws if (w1, w2) € R. More generally, we write w — w’
whenever w = wwiv and w' = wwqv for some (wi,w2) € R and some
u,v € F. We then say that w’ is obtained from w by rewriting, or reduction.
A word w is called reducible if such a reduction is possible, and it is called
irreducible otherwise.

We say that R is a complete rewriting system for M if it satisfies the
following two conditions:

(R1) The set I of irreducible words is a set of normal forms for M.
(R2) There is no infinite chain w — w' — w"” — - - of reductions.

It follows from these axioms that we can compute r(w) for w € F by
starting with w and applying an arbitrary sequence of reductions, until
we arrive at an irreducible word. Condition (R2) guarantees that this
will eventually happen, and clearly the irreducible word we have reached
is r(w).

There are various ways of reformulating the axioms; see, for instance, [2],
[14], or [19]. See also [12] for further information about rewriting systems.

Here are two simple examples. Several additional examples will be given
in §7, and many further examples can be found in the references cited above,
especially [14].

ExaMPLEs. 1. Let M be the free commutative monoid generated by a
set S. If we totally order S, then M admits as normal forms the set of
words s - -+ S, with s;7 < ... < s, in the chosen ordering. This is the set
of irreducible words associated to a complete rewriting system with one
rewriting rule ts — st for every pair s,t € § with £ > s.

2. Let G be the one-relator group with two generators a,t and the defin-
ing relation t~lat = a®. Let M be the submonoid of G generated by a
and t. It is not hard to show that M admits the words t’a’ (i,j > 0) as
normal forms. (One can use, for instance, the fact that G is a semi-direct
product Z[1/2]xZ.) This set of normal forms is the set of irreducible words
associated to a complete rewriting system with one rewriting rule at — ta2.
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(Exercise: Verify (R2). Some thought is required here, since application
of the rewriting rule increases the length of a word.)

Assume now that we have a complete rewriting system. It will be conve-
nient to introduce an ordering on words which reflects both the rewriting
process and the subword relation. Recall first that a subword of a word w
is any word w’ such that w = uw’v for some u,v € F. If u and v are not
both empty, then w’ is a proper subword of w. We now denote by “<”
the smallest transitive relation on F such that w’ < w if w’ is a proper
subword of w or if there is a reduction w — w’. Explicitly, then, we have
w’ < w if and only if either (i) w’ is a proper subword of w or (ii) v’ is a
subword (not necessarily proper) of a word w” such that there is a chain of
reductions w = wg — -+ — w = w” for some k > 1.

The following assertion is an easy consequence of (R2):

(R3) There is no infinite chain w > w’ > w” > --- of words.

For the purposes of this paper, it is not important that we have a par-
ticular rewriting system; the important thing for us, rather, is the set Z
of irreducible words. To emphasize this point of view, we will call a set of
normal forms good if it is the set Z of irreducible words associated to some
complete rewriting system R for M.

REMARK. Squier [19] has noted that there is a canonical choice of complete
rewriting system R for a given good set Z of normal forms. Namely, let £
be the set of words w ¢ 7 such that every proper subword of w is in Z; then
the canonical R consists of the rules w — r(w) for w € L.

Finally, we mention one further condition that we will sometimes assume
is satisfied by R (or ).

(R4) Every s € S, viewed as a word of length 1, is irreducible.

This condition is harmless. For if it fails, then we can replace S by
the subset S’ = S NZ. This is still a set of generators of M, since T is
contained in the submonoid F/ C F generated by S’. (To see this, note
that Z is closed under passage to subwords.) Moreover, Z is a good set of
normal forms satisfying (R4) with respect to the generating set S’.
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3. Good Normal Forms Yield a Collapsing Scheme

Assume throughout this section that M is a monoid with a generating
set S and a good set Z of normal forms. As a reminder of what “good”
means, we call the elements of 7 irreducible and the elements of F' — 7
reducible. We are going to use Z to construct a collapsing scheme for BM.
The construction depends only on Z, and not on any particular choice of
rewriting system R. But the verification of the crucial axiom (C2) will
require a choice of R. The reader may prefer to simply assume from the
outset that we are working with a specific R, e.g., the canonical one.

We will identify M, as a set, with Z. We must then be careful to distin-
guish between multiplication in the free monoid F', denoted by (wi,ws) —
wyws, and multiplication in M, denoted by (w1, ws) — w; *we. The latter
is defined for wy,wy € Z, and it is given by

wy * we = r(wiws).

The simplices of our semi-simplicial complex BM are now viewed as n-
tuples (ws,...,wy) of irreducible words, and the definition of the face op-
erator d; for 0 < 7 < n becomes

di(wi, ..., W) = (W1,..., W; ¥ Wit1,...,Wn).

Finally, the cells of X = |BM]| are the n-tuples of non-empty irreducible
words.

We now wish to carry out the procedure described in §1. Let’s look first at
low dimensions, for motivation. The unique vertex of X will be essential.
A l-cell 7 = (w) is going to be called essential if w € S and redundant
otherwise. If it is redundant, then the associated collapsible 2-cell will be
c(1) = (s,w’), where w = sw’ with s € S. Note that (s, w’) is in fact a cell,
because s and w’ are non-empty subwords of w.

At this point we know that the collapsible 2-cells should be those of the
form (s, w) with s € S and sw irreducible. The other 2-cells 7 have the form
(i) (w1, ws) with wy ¢ S, or (ii) (s, w) with sw reducible. In case (i), 7 will
be called redundant, and we will set c(7) = (s,w’,wz) (s € S, sw' = wy).
In case (ii), we would like to take ¢(7) = (s, w’,w"”) for some factorization
w = w'w”. Note, however, that we must choose this factorization so that
sw’ is reducible; for otherwise (s,w’,w”) has already been used as c¢(7'),
where 7’ is the redundant cell (sw’, w”) of type (i). Thus we are only going
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to be able to make (s,w) redundant if sw has a proper initial subword
which is reducible. Those (s,w) for which this fails will be the essential
2-cells. Equivalently, (s,w) will be essential if and only if sw € £, where £
is the set defined in the remark in §2 above.

(This is quite reasonable from the point of view of generators and rela-
tions. If (R4) holds, for instance, then there will be one essential 1-cell for
each element of S and one essential 2-cell for each element of R, where R
is the canonical set of rewriting rules for Z.)

These considerations lead to the following definitions. An n-cell 7 =

(w1,...,wy) of X is called essential if it satisfies the following three con-
ditions:
(1) wy € S.

(2) w;w;y1 is reducible for 1 <1 < n.
(3) Every proper initial subword of w;w;+1 (1 <4 < n) is irreducible.

Note that it suffices, in verifying (3), to check that the subword of w;w;11
obtained by deleting the last letter is irreducible.

If 7 is not essential, let ¢ be the largest integer such that the “(i — 1)-
dimensional front face” (ws,...,w;—1) of 7 is an essential (i — 1)-cell. We
have 1 < i < n, where the case i = 1 occurs if the essential front face is
empty, i.e., if w; has length I(wy) > 1. If ¢ = 1, then we call 7 redundant,
and we set ¢(7) = (s,w’,wa,...,w,), where w; = sw’ with s € S. Then
T = dye(7), and we set i(7) = 1.

Suppose now that ¢ > 1. Then either w;_jw; is irreducible, in which
case we say that 7 is collapsible, or else some proper initial subword of
w;_1w; is reducible, in which case we call 7 redundant. In the second case,
write w; = w'w’”, where w’ is the smallest initial subword of w; such that
w;_1w’ is reducible. The words w’ and w"” are necessarily non-empty and
irreducible, and we set

c(r) = (wy, ..., wimt, W, W’ wig1, ..., wn).

We have 7 = d;c(7), and we set i(7) = 1.

REMARK. To understand what an essential cell 7 = (wy, ..., wy,) looks like,
consider the word w = wiws - - - w, obtained by ignoring the commas. It is
not hard to show that 7 is determined by w; in other words, there is only
one way to re-insert commas into w so as to get an essential cell (cf. [1],
Lemma 1.3). Note also that, by (2) and (3), some final subword of w;w;41 is
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in £ for 1 < i < n. Consequently, the essential n-cells for n > 3 correspond
to certain words w, consisting of n — 1 overlapping elements of £. The
interested reader can check that the words w that arise here are the same
as the “(n — 1)-chains” of Anick [1]. There is also some similarity with the
“critical (n — 1)-stars” of Groves [11].

Suppose, for example, that M is the free commutative monoid, as in Ex-
ample 1 of §2. Then the essential n-cells are the cells (sq, ..., s,) with each
s; € S and s; > -+ > s, in the chosen ordering on S. The corresponding
words w = s; - - - 8, are the words in which every subword of length 2 is in
L. The reader is advised to figure out what the collapsible and redundant
cells look like in this example before returning to the general theory.

We turn now to the verification of the axioms for a collapsing scheme.
First, it is immediate that c(7) is collapsible if 7 is redundant. It is also
quite easy to check that (C1) holds. The crux of the matter, then, is (C2).
To verify this, choose a complete rewriting system R for which 7 is the set
of irreducible words. Recall that this determines a relation “<” on F' and
that (R3) holds. Given an n-cell 7 = (wy,...,wy), let w(7) be the word
Wy -+ W

LEMMA. Let 7 and 7’ be redundant n-cells such that 7’ is an immediate
predecessor of T. Then one of the following holds:
(1) w(r") < w(r).
(2) w(r'") = w(r), and the maximal essential front face of 7’ has higher
dimension than that of T.

PROOF: Let o = ¢(7), and write 0 = (w1, ..., Wn+1). Thus
T = (wl, ey Wia1, WiWi41, Wig2, . -« ,wn+1),

where ¢ = i(7). [Note that w;w;+1 = w; * w;4+1 here.] By definition, then,
7/ = djo for some j # i. If j = 0 or n+1, then w(7’) is a proper subword of
w(o) = w(7), and (1) holds. If 0 < j < n+1 and w;w;41 is reducible, then
the computation of djo involves reducing w;w;41 to w; * wjy1; so there is
a chain of reductions from w(7) to w(7’), and again (1) holds. Note that
this case must apply if 0 < 7 < i. Suppose, finally, that ¢ < j < n+1
and that wjw,y is irreducible. Then w(7') = w(r), and the i-dimensional
front face of 7’ is essential. But the maximal essential front face of 7 has
dimension ¢ — 1, so (2) holds. O
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It is now easy to check (C2). For suppose that there is a chain
TN > Tg > T3 > "

of redundant n-cells. By (R3) we cannot have w(7;) > w(7j41) for in-
finitely many j. So 7;41 has a higher-dimensional essential front face than
7; for all sufficiently large j. But this is absurd, for the dimension of the
maximal essential front face of a redundant n-cell is always less than n.

Thus we have indeed constructed a collapsing scheme. Proposition 1 of
81 now yields:

THEOREM 1. Let M -be a monoid with a good set of normal forms, and let
X = |BM)| be its classifying space. Then X admits a canonical quotient
CW-complex Y, whose cells are in 1-1 correspondence with the essential
cells of X. The quotient map q : X — Y is a homotopy equivalence. It maps
each open essential cell of X homeomorphically onto the corresponding open
cell of Y, and it maps each collapsible (n + 1)-cell into the n-skeleton of Y.

O

A good set Z of normal forms will be said to have finite type if S is finite
and 7 is the set of irreducible words associated to a complete rewriting
system with only finitely many rewriting rules. It is easy to see that there
are then only finitely many essential cells in each dimension. Consequently:

COROLLARY. If M admits a good set of normal forms of finite type, then
its classifying space has the homotopy type of a complex with only finitely
many cells in each dimension. O

REMARKS. 1. In applying the results of this section to a given example,
it is very likely that we will see ways to do further collapsing and thereby
reduce Y to an even smaller complex. Here is one such situation that comes
up fairly often: Suppose that our rewriting system contains rules s — 1
and §s — 1 for some pair s, § of distinct generators. Assuming that s and
§ are irreducible, we will then have for each n > 1 a pair of essential n-cells
on =(s,8,8,5,...) and 6, = (§,8,8,8,...). The only non-degenerate faces
of o, for n > 2 are dyo, = 6p—1 and d,o, = 0,—1. We now modify our
previous definitions by declaring that &, is redundant for n > 1 and that
on is collapsible for n > 2 (with free face 6,,—1). Thus the only cell from
these two infinite families that remains essential is o;.

2. Recall that a monoid is the same thing as a category with one
object and that the classifying space construction extends to categories
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(cf. [18] or [17]). For simplicity, we have confined ourselves in this section
to monoids, but one can equally well treat more general categories. We will
give an example of this in §7.

4. Algebraic Interpretation

In case the monoid M of §3 is a group, the cellular chain complex of the
universal cover of X is the standard (or “bar”) resolution of Z over ZM.
By taking the universal cover of the complex Y of Theorem 1, we then get
a quotient complex of the bar resolution, which is a free resolution with one
basis element for each essential cell of X.

We would like, more generally, to construct a “small” resolution of this
type for any monoid M with a good set of normal forms, not just for
groups. I do not know any way to formally deduce such a resolution from
the existence of the homotopy equivalence X — Y above. What one can
do, however, is simply work directly with the bar resolution and imitate
the method used in §1. In other words, we do our homotopy theory in the
category of chain complexes of free ZM-modules instead of the category of
CW-complexes. Here are the details.

For any monoid M, let EM be the following semi-simplicial complex:
The n-simplices are (n + 1)-tuples of elements of M, a typical such (n+ 1)-
tuple being written in the form (my,...,my)m. If m = 1, we suppress it
from the notation and simply write (mq,...,m,). The face operators in
EM are given by

(ma,...,mp)m i=0
di(mi,...,mp)m =1L (m1,...,MMit1,...,mMy)m 0<i<n
(m1,...,Mp_1)Mpm i=n,

and the degeneracy operators are given by
si(my,...,mp)m = (my,...,ms, 1, mip1,...,mp)m  (0<i<n).

There is an obvious right action of M on EM by simplicial maps, where
the action of m is given by (mi,...,my)m’ — (my,...,my)m'm. This
action makes the normalized chain complex C = C,(EM) a complex of
free right ZM-modules, and, in fact, it is precisely the normalized bar
resolution of Z over ZM (cf. [7], §X.2). The module C,, of n-chains has a
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Z M-basis consisting of the n-tuples (m;, ..., m,) with each m; # 1. Thus
the basis elements of C correspond to the cells of X = |BM|. But when we
compute the boundary operator d : C,, — C,_; on these basis elements,
we must remember to use the face operators in £ M, as defined above, not
those in BM. This makes a difference only for the face operator d,,.

Returning now to the situation of §3, we have a classification of the
Z M-basis elements of C as essential, collapsible, or redundant. If o is a
collapsible. (n + 1)-cell and 7 is its free face, then the boundary of ¢ in C
can be written in the form

do =+7 — 2, (1)

where z is a ZM-linear combination of collapsible n-cells, essential n-cells,
and redundant n-cells that are immediate predecessors of 7. [Note that o
might have degenerate faces in EM, but these are 0 in C' and hence do not
appear in (1).]

Suppose now that we are trying to build C' by successive adjunctions,
as we did for X in the proof of Theorem 1. If we proceed as in that
proof, then each adjunction of a redundant basis element 7 along with
its associated collapsible o yields a chain homotopy equivalence. It has a
canonical homotopy inverse, which maps o to 0 (and hence 7 to £z, where
z is as in (1) above).

The following analogue of Theorem 1 is now immediate:

THEOREM 2. Let M be a monoid with a good set of normal forms, and let
C = C.(EM) be its normalized bar resolution. Then C admits a canonical
quotient complex D, which is a free resolution of Z over ZM with one basis
element for each essential cell. The quotient map q : C — D maps each
essential cell of C to the corresponding basis element of D, and it maps
each collapsible cell to 0. O

COROLLARY (ANICK—GROVES—SQUIER). If M admits a good set of normal
forms of finite type, then M is of type FP, i.e., Z admits a free resolution
D over ZM with D,, finitely generated for each n. O

REMARK. The method used in this section works, with no essential change,
if the ring ZM is replaced by an arbitrary augmented k-algebra A which
comes equipped with a presentation satisfying the conditions of Bergman’s
diamond lemma ([2], Theorem 1.2). Here k can be any commutative ring.
One starts with the normalized bar resolution C of k over A, and one
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obtains a quotient resolution D, with one generator for each “essential”
generator of the bar resolution. In particular, we recover Anick’s theorem
([1], Theorem 1.4). It seems likely that one can similarly study the homo-
logical algebra of other kinds of algebraic rewriting systems (i.e., other than
monoids and associative algebras), but I have not tried to do this.

5. Computational Techniques

The statement of Theorem 2 does not contain an explicit formula for the
boundary operator in D. To obtain such a formula, we need to compute
the boundary do of an arbitrary essential cell 0 € C and then find the
image g(do) € D. The only difficulty here is that do might involve some
redundant cells 7. Now for each such 7, we have an element x € C such
that q(7) = £q(z). So the problem of computing ¢(7) is reduced to the
simpler problem of computing g(x). This is simpler because the redundant
cells that occur in z are immediate predecessors of 7. We are therefore led
to the following “rewriting” procedure for explicitly describing D:

Identify D, as a graded ZM-module, with the submodule of C generated
by the essential cells. For each collapsible cell o, write down the rule

oc—0.
For each redundant cell 7, let 0 = ¢(7), and write down the rule
T — *zx,

where z and the ambiguous sign are taken from (1). We can, of course,
delete from z any terms involving collapsible cells. The remaining terms
involve either essential cells or redundant cells that are immediate prede-
cessors of 7 and hence have height less than that of 7. It follows that we can
use the rewriting rules above to “reduce” an element u € C to an element
@ € D, and this element is precisely the image g(u). In particular, we can
now compute the boundary operator 0 in D; it is given by

Oe = de,

where e is an essential cell and de is its boundary in C.
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Let’s make this rewriting process more explicit. Let 7 = (wy,...,w,) be
redundant, and let ¢ = (7). Then o = ¢(7) is given by

/ "
o= ('lU]_,...,'U)i__l,'lU , W ,wi—}-la"')wn)

for some factorization w'w” of w;. The faces djo for j > i + 1 are either
degenerate or collapsible; they can therefore be ignored. There are always
at least two other faces (aside from the free face d;o = 7), namely, d;—10
and d;+10. Set

(w”, wa,...,wy) ifi=1

A=d;—10 =
ol { (wl, vy Wi, Wi—1 * w’,w”,wi+1, se ,wn) if i > 1.
Roughly speaking, it is obtained from 7 by pushing the left half of w; to

the left. Set

= disro {(wl,...,wn_l,w’)w” ifi=n

(wl, N ,wi_l,w’, w' *x Wig1, Wity ... ,wn) if 1 <m.
It is obtained from 7 by pushing the right half of w; to the right. The
rewriting rule 7 — 4z above now becomes

i—2
T — )\+p+Z(——1)i_j_ldja. (2)
7=0

In specific examples, one often finds that the right side of (2) contains
a large number of redundant cells 7/, many of which are ultimately seen
to satisfy g(7’') = 0 after further rewriting rules are applied. If we could
recognize such cells 7' in advance, then we could simply delete them from
(2) and save a lot of work. With this goal in mind, we prove the following
modest result:

PROPOSITION 2. Let 7 = (wy,...,w,) be an n-cell for some n > 2. If
wywy is irreducible, then ¢(7) = 0.

PROOF: We argue by induction on the length I(w;). If [(w;) = 1, then 7
is collapsible and there is nothing to prove. So assume that w; = sw with
s € S and w # 1. Using the notation above, we have i = 1, A = (w, wa, ... ),
and p = (s,wws,...). Since wwy and swwsy are irreducible, we can apply
the induction hypothesis to conclude that ¢(A) = g(p) = 0. The proposition
now follows from (2). | O
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Even with the aid of Proposition 2, the task of computing ¢ (and hence
0) can be quite tedious if one simply uses (2). A better strategy is to try to
guess a formula for ¢ and then use (2) to prove inductively that the guess is
correct. The induction here is with respect to the “immediate predecessor”
relation, i.e., one proves the desired formula for a redundant cell 7 under
the assumption that the result is already known for all redundant 7/ < 7.
In other words, the result can be assumed known for all redundant cells
that appear on the right side of (2). Condition (C2) justifies this sort of
induction.

Here is a simple example. Let G be a cyclic group of finite order m > 2.
It is presented (as a monoid) by the complete rewriting system with one
generator s and one rule s™ — 1. There is one essential n-cell e, =
(s,s™71,5,5™71 ...) in each dimension n. Moreover, one can check that
the maximal essential front face of every redundant cell 7 has even dimen-
sion. A straightforward induction now yields the following formula for ¢:
Let 7 = (wq,...,w,) be an n-cell. If w;w;;1 is irreducible for some odd
i < m, then ¢(7) = 0. Otherwise ¢(7) = epa, where a € ZG is given by

1 ' if n is even

~{ 1+s+---+81 ifnisodd and w, = s*.

The inductive proof, which is left to the reader, is simplified by the fact
that, in the notation of (2), d;o is degenerate for 0 < j < i — 1.

It now follows at once that de,, = e,_1a, where

_ 1—s if n is odd
"l 14s8+---+sm1 ifnis even.

This is the formula that one would expect (cf. [7], §XIL.7, or [4], §1.6).

We close this section by deriving, for arbitrary M, the expected formula
for @ : Dy — D; in terms of free derivatives (cf. [4], Exercise 3 of §IL.5
or Exercise 3 of §IV.2). To simplify the statement, we assume that (R4)
holds. Let F, as before, be the free monoid generated by S. There is
a unique function § : F — D; such that §(s) = (s) for all s € S and
§(uv) = 8(u)r(v) + 6(v) for all u,v € F. For any 1l-cell 7 = (w), I claim
that g(7) = 6(w) € D;. To prove this, we may assume that w = sw’ with
s € S and w’ # 1, and we may assume inductively that ¢(w’) = §(w’).
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Then
() = q(w') + (s)w’ by (2)
= §(w') + 6(s)w’
= 6(w),
as claimed.

Recall that, since we have assumed (R4), there is one essential 2-cell for
each (w1, ws) € R, where R is the canonical rewriting system for Z.

PROPOSITION 3. Let e be the essential 2-cell corresponding to a rewriting
rule (w1, ws) € R. Then de.= §(w1) — 6(ws).

PRrROOF: We have e = (s, w), with w; = sw and we = 7(sw) = s*xw. Hence
de = gq(de) = g(w) — q(w2) + (s)w. Now g(wz) = §(wz), and g(w) + (s)w =
8(sw) = 6(w1), whence the proposition. O

6. The Case of Conjugation Relations

This section is motivated by [6] and by some unpublished work of Craig
Squier, in which “cubical” resolutions were constructed for a number of
monoids.

We continue to assume that M is a monoid with a good set Z of normal
forms. Suppose that the generating set S comes equipped with a total order
and that the elements of Z are the non-decreasing words s; - - - s,,, as in the
case of the free commutative monoid (Example 1 of §2). The canonical
rewriting system R for Z then has one rule ts — r(ts) for each pair of
generators t,s with ¢t > s. Suppose' further that s occurs as the first letter
in r(ts), so that the rule has the form

ts — su,

where u is an irreducible word whose first letter is greater than or equal
to s. Following the customary notation for conjugates in group theory, we
will write u = t*. In the case of the free commutative monoid, for instance,
we have t°* = t. The reader may wish to concentrate on this case, at least
on first reading.

For simplicity, we will assume that I(t°) = 1, i.e., that t* € S. Some
of what we do is valid more generally, but the statements become more
complicated. We will also assume that the “conjugation function” satisfies

s<ty <ty => t] <ts.
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It is convenient to extend the conjugation notation‘slightly: Given s € S
and a word w = t; - - - t,, such that t; > s for all 4, set

Note, then, that r(ws) = sw® if w is irreducible. Next, given ¢ € S we wish
to define t* € S for certain words w = s7 - --s,. Proceeding by induction
onn,letu=sy---5,-1. We then set

t’UJ — (tu)sn’

provided t* is defined and t* > s,,.

We now apply the method of §§4 and 5 to M. The essential cells of
X = |BM| are the cells (s1,...,8,) with s; € S and 81 > --- > s,. We
therefore obtain a free resolution D with one generator for each such cell.
 In order to describe the boundary operator 8 in D, we introduce some
operators A; and B; which map D,, to D,,—1. They are to be ZM-linear,
so we need only specify them on the essential n-cells. Given an essential

cell o = (s1,...,8,) and an integer 7 with 1 <7 < n, set
8; 84
Ajo = (s1%, ..., 8, 1, 8i+1,+-+,5n)
u
B,’O’ = (81, e 9 8i—1, 8541y - .,sn)si ;

where u = s;41---sp. (Note that, in view of our assumptions, the right-
hand sides are well-defined and in D,,_;.) In terms of the word s - - - 8p
associated to o, we compute A;0 by moving s; to the left and then deleting
it, and we compute B;o by moving s; to the right and then retaining the
resulting conjugate of s; as an operator.

PROPOSITION 4. The boundary operator 0 : D,, — D,,_; is given by

n

8= (-1)""Y(4i - By).

i=1

To prove this, it is convenient to extend the operators A; and B; to arbi-
trary cells o = (wy,...,wy). The definitions are slightly more complicated,
because it might not be possible to move w; all the way to the left and
right. What we do, roughly speaking, is move them as far as possible. The
precise definitions follow.
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We define A;o for 1 < ¢ < n by induction on i. Consider the face

d,;_10={(w2"”’wn) ifi=1

(wl,...,wi_l*wi,...,wn) ifi > 1.

We set A;oc = d;—10 if any of the following conditions hold: (a) i = 1;
(b) I(w;) > 1; (c) ¢ > 1, l(w;) = 1, and there is a letter ¢ occurring in w;_;
such ¢t < w; in the given ordering on S. If (a)—(c) all fail, then ¢ > 1 and

o= (wl,' <oy Wi—1y 8y Wit 1, - 9wn)
with s € S and t > s for all ¢ occurring in w;_1. Hence

di_la = (wl, e, Wi9, swf_l,wi_;_l, “e ,wn).
We now set A;0 = A;_10’, where
/

S
o' = (w1,...,Wi—2, 8, W;_1, Wit1,...,Wn).

Similarly, B; is defined for 1 < ¢ < n by descending induction on 3.
Consider the face

do { (Wi, .., Wp1)Wp ifi=n
i0 = g o
(Wi, .., W; *Wig1,...,Wy) ifi<n.

We set B;o = d;o if any of the following conditions hold: (a) i = n;
(b) Uwit1) > 15 (¢) i <m, l(wiy1) =1, and t < w;41 for some ¢ occurring
in w;. If (a)—(c) all fail, then ¢ < n and
0= (W1, ., Wi, 8 Wita,...,Wn)
with s € S and ¢ > s for all ¢ occurring in w;. We now have
d;o = ('UJ]_, <oy Wi—1, S’Ll],?,’wi+2, cee awn)y
and we set B;o = B;+10’, where

/ 8
o = (w17"'7wi~1)sawi7wi+27“"wn)-

The proof of the proposition is based on the following lemma:
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LEMMA. Let 7 be a redundant n-cell, let i = i(7), and let o = ¢(7). Then
q(7) = q(Aio + Bi110).

This shows that the rewritiné rule (2) of §5 can be replaced by the much
simpler rule
T — Aq;O' + Bi+10'.

Accepting the lemma for the moment, we can easily prove the proposition.

For suppose e = (s1,...,5n) is essential, and consider dje for 0 < j < n.
We have
dje = (S1,...,85 % Sjq1,.-.,5n)
_ . 8j41
= (31, ey 851, sj+1sjj ySj4+25 - ,Sn),

and the lemma yields g(dje) = Ajy1e + Bje. Since doe = Aje and dpe =
B,,e, we conclude that

n—1
O0e = Aje + (—1)"Bpre + Z(—l)jq(dje)
j=1
n—1 .
— Ale -+ (—l)n n€ + Z(—l)J(Aj+16 -+ Bje)
i=1

= (-1Y"Y(Aje — Bje),

=1

as required.

PROOF OF THE LEMMA: We argue lgy induction with respect to the “imme-
diate predecessor” relation, as in §5. Thus we may assume that the lemma,
is already known for all redundant 7/ that appear on the right side of (2).
Using this induction hypothesis, one can check that, in the notation of (2),
q(p) = q¢(Bi+10), ¢(A) = q(A;0), and ¢(djo) = 0 for j < i — 1, whence the
lemma. Here, for instance, is the proof of the assertion about p = d;+10;
the proofs of the other two assertions are similar and are left to the reader.

Write 7 = (81,...,8i—1,8;W, Wit1,...,Wn), Where s > --- > s; in S and
w is a non-trivial irreducible word whose first letter is greater than or equal
to s;. Then o = (s1,...,8i, W, Wit1,...,Wy). The result to be proved is
trivial in the cases where B, 10 was defined to be d;+10. So we may assume
that 7 < n and that o = (sr¢...,s;,w,s,...), with s € S and ¢t > s for all
t which occur in w. Then p = (s1,...,8;,sw°,...). This is collapsible if
s; < s, in which case g(p) = 0 = q¢(B;10). If s; > s, on the other hand,
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then p is redundant, with ¢(p) =7+ 1. Let
o' =c(p) = (s1,.-.,8, 8w, ...).

We have A; 10’ = (s§,...,s],w®,...), which is collapsible. So the induc-
tion hypothesis yields '

q(p) = q(Ai+10" + Biy20")
= q(Biy20")
= Q(Bi+10)’

as required. O

7. Examples

We have already treated the case of a finite cyclic group in §5. We present
here a few more examples to illustrate how the methods of this paper can
be used to obtain explicit Eilenberg-MacLane complexes, or explicit free
resolutions, for various groups or monoids. When we are interested in a
group G, however, we will often get results about G by studying a suitable
submonoid M C G. (This idea is suggested by the work of Craig Squier.)
And in one example, instead of replacing G by a submonoid, we will replace
G by a category M and apply our methods to the classifying space |BM|.

The examples are only intended to illustrate the method; in all cases
except possibly the last, the results obtained were already known.

Example 1: Free groups. Let F' be the free group generated by a set
S. The usual normal forms for the elements of F' are obtained from a
monoid rewriting system with generators s,5 (s € S) and rules s5 — 1
and 3s — 1. The only essential cells in positive dimensions are those of
the form (s,3,s,8,...) or (§,s,8,s,...), which we discussed in Remark 1
at the end of §3. As we explained there, it is possible to modify the essen-
tial/collapsible/redundant classification in order to “collapse away” most
of these cells. The result, then, is the usual K(F,1)-complex Y, with one
1-cell for each s € S and no higher-dimensional cells.

Example 2: Free abelian groups. Let G be the free abelian group
generated by a set S. The easiest way to proceed here is to work not with G
directly, but rather with the submonoid M generated by S. Note that G =
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MM~ ie., every element of G can be written as m;m; " with m; € M.
It is not hard to show, in this situation, that | BM| is homotopy equivalent
to |BG| (cf. [10], Proposition 4.4). So there is no harm in replacing G
by M. From the point of view of homological algebra, the content of this
statement is that ZG is flat as a left ZM-module (cf. [7], Chapter X, proof
of Proposition 4.1), so if we have a resolution D of Z by free right ZM-
modules, then D ®zas ZG is a resolution of Z by free right ZG-modules.

Choose a total order on S, and use the normal forms of Example 1 of
§2. We have already noted that this fits into the framework of §6, so we
obtain a free resolution D of Z over ZM with one basis element for every
decreasing sequence s; > - -+ > 8, of elements of S. The boundary operator
0: D, — D,_1 is given by

n

8= (~1)"}(4 - By),

=1

where
A,;(Sl, . ,Sn) = (81, v 98i—1y8i41,- - .,Sn)

B,;(Sl, ‘e ,Sn) = (81, e 7312-1,5'&—{«1, ‘e ,Sn)Si.
This resolution is well-known. See, for instance, (7], §X.5.

Example 3: A one-relator group. Let G be the group with two gener-
ators a,t and the single relation a® = a?, where a = t~lat. Let M be the
submonoid generated by a and ¢. As in Example 2, we have G = MM ™1, so
we can obtain a K (G, 1) by working with M instead of G. We have already
given a good set of normal forms for M (Example 2 of §2). One checks
that the only essential cells are (), (a), (t), and (a,t), so Theorem 1 yields
a K(G,1) with one vertex, two 1-cells, and one 2-cell. The corresponding
resolution D ®znr ZG is the famous Lyndon resolution [15].

Example 4: Thompson’s group. Let G be the group with infinitely
Ty
J
t < j. This group was first introduced by R. Thompson, and it was the

many generators o, 1, T2,... and infinitely many relations z7¢ = z;,; for
main object of study in [6], where it was called F. See [6] and [5] for further
references and a discussion of the history of this group. As in Examples 2
and 3, we will apply our methods to the submonoid M C G generated by
the z;. Once again, we have G = MM ™!, so there is no harm in doing this.

The elements of M have normal forms z;, ---z;, with i3 < --- < 4,
(cf. [6], 1.3), and these normal forms arise from the complete rewriting
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system with rules x;z; — z;z;41 for ¢ < j. As in Example 2, then, we
are in the situation of §6. To simplify the notation, let’s write (i1,...,4n)
for the generator of D corresponding to the essential cell (x;,,...,z;,).
The result, then, is that D has a basis consisting of decreasing sequences
i1 > --- > i, of non-negative integers, and 0 : D,, — D,,_ is given by

8= (~1"\(4; - By),
j=1

where
Aj(il,...,in) = (il +1,...,’ij_1 + 1,ij+1,...,in)

Bj(il, oo ,in) - (il, e ,?:j._l,ij+1, e ,in)xij+n_j.

Note that the irreducible words r(w(o)) corresponding to the essen-
tial cells o are precisely the words zg4, --- x4, Wwith gj41 > g; + 2 for
j=1,...,n—1. If we rewrite the A and B operators in terms of the
sequences (q1, - - - ,qn), We see that our resolution D ®zys ZG is isomorphic
to the “big” resolution constructed in [6]. In particular, we have obtained a
new proof of Theorem 4.1 of [6]. Geoghegan and I went on in [6] to collapse
this big resolution to one with only two generators in each positive dimen-
sion. This further collapse was based on the combinatorics of the “cubical
face operators” A; and Bj; I do not know how to explain it in terms of
rewriting systems.

Example 5: Thompson’s group again. Let G be the group of piecewise
linear homeomorphisms ¢ of the unit interval [0, 1] with the following two
properties: (a) the singularities of g occur at dyadic rational numbers, i.e.,
at points in Z[1/2]; and (b) for any non-singular z, one has ¢’'(x) = 2" for
some n € Z. It is known that G is isomorphic to the group of Example 4
(see, for instance, [5], Propositions 4.1, 4.4, and 4.8). Our approach this
time, however, will be to construct, directly from the definition of G as a
homeomorphism group, a category M whose classifying space is a K (G, 1)-
complex. We will then apply the methods of §3 to M (cf. Remark 2 at the
end of §3). Our discussion will be sketchy and will assume familiarity with
the definition and basic properties of the classifying space of a category, as
given in [18] or [17].

Let G be the groupoid whose objects are the intervals I of the form [0, [],
where [ is a positive integer, and whose morphisms I — I’ are the piecewise
linear homeomorphisms satisfying conditions (a) and (b) above. Then G is
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connected (i.e., all objects are isomorphic), and our group G is the group
of maps from [0,1] to itself in G. Hence the classifying space of G is a
K(G,1)-complex.

By an admissible subdivision of [0,[] we will mean a subdivision obtained
by starting with the standard partition into ! subintervals [i—1,7] (1 < i <)
and then repeating 0 or more times the operation of inserting a midpoint
into a subinterval. One can show that every map g : I — I’ in G can
be described in terms of admissible subdivisions, i.e., there are admissible
‘subdivisions of I and I’ (into the same number of subintervals) such that
g maps the intervals of the first subdivision linearly to the intervals of the
second (cf. [5], proof of Proposition 4.4).

Call g positive if it admits a description of this form in which the sub-
division of I’ is the standard one with !’ subintervals, where I’ = [0,1'].
Note, then, that a general map g: I — I’ in G is a composite p~1q, where
g:I —I"and p: I' — I" are positive maps with the same target; in-
deed, this is just a restatement of the fact that g is describable in terms of
admissible subdivisions of I and I’.

Identity maps are positive, and a composite of positive maps is positive;
so G has a subcategory M whose maps are the positive maps. We can now
express the result of the previous paragraph by writing G = M~ M. This
implies that |[BM| is a K(G,1)-complex.

[Sketch of proof: Let £ be the following category: An object of £ is a map
g:[0,1] — I in G, where I is an arbitrary object of G; given g : [0,1] — I
and ¢’ : [0,1] — I’, a map from g to ¢’ in £ isamap m : I — I’ in M such
that ¢’ = mg. Using the equation G = M1 M, one shows that for any
two objects g, g’ of £ there is a third object ¢” to which they both map.
It follows that £ is a filtering category and hence that | BE| is contractible.
Our assertion that |[BM| is a K(G,1)-complex is now immediate, since G
acts freely on |BE| with [BM]| as quotient. Alternatively, one can deduce
the assertion from Quillen’s Theorem A, applied to the inclusion M — G.|

For any I > 1 and any i with 1 <4 <, let & : [0,1] — [0,1 + 1] be the
map in M which has slope 2 on [i — 1, 7] and slope 1 elsewhere. To simplify
the notation, we will often indicate this map by writing [0, /] SN [0,0 +1].
The maps 6! generate M. In fact, every map [0,I] — [0,] + n] in M is
uniquely expressible as a composite

0,0 25 0,1+ 1] 2 ... I (0,1 4 7]
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with 4y < --- < ¢,. Moreover, these normal forms for the maps in M are
produced by the rewriting rules

s - 8re (1<i<j<l).

Recall now that the classifying space X of M is the geometric realization
of a semi-simplicial complex BM with one n-simplex for every diagram
Iy — --- — I, consisting of n composable maps. (When n = 0, such
a “diagram” is simply an object of M.) Using the methods of §3, one
constructs a collapsing scheme for BM whose essential cells are those of
the form

0,1] 2 -« 22 (0,1 +n]

with 4 > -+ > i,. Thus we can collapse X to a K(G, 1)-complex Y with
one n-cell for every sequence | > iy > --- > 4, of positive integers. The
corresponding resolution D of Z over ZG is a quotient of C = C.(B¢E),
where £ is the category introduced above.

REMARKS. 1. This K (G, 1)-complex Y is essentially the same as one that
was obtained by Melanie Stein [unpublished], using different methods. As
in Example 4, it is easy to collapse Y further, to a complex with one vertex
and exactly two n-cells for each n > 1. The complex Y and analogous
complexes for other homeomorphism groups have proved to be quite useful,
for reasons that will be explained elsewhere.

2. The category £ which arose above is actually a poset viewed as a
category. It is isomorphic to the poset of ordered bases that was used
in [5].

Example 6: A group of Brin and Squier. Our last example is intended
to illustrate the advantage of using the “right” set of generators, or the
“right” submonoid, for a group G. Let G be the group of piecewise linear
homeomorphisms g of the half-line [0, c0) such that g has only finitely many
singularities and satisfies the slope and singularity conditions (a) and (b)
of Example 5. This is the group called G(2) in [3]. It admits a presentation
with infinitely many generators zg, 1,32, ... and infinitely many relations

Tg
J
Example 4 to obtain a “cubical” free resolution D with one generator for

x5t = x5, for © < 7, cf. [3], (2.11). We can now proceed exactly as in
each decreasing sequence i; > - -+ > i, of non-negative integers.

Now it is known that G is of type FP.; in fact, G is an ascending
HNN extension of Thompson’s group (Example 4). So one might expect



162 K.S. Brown

to be able to use the cubical face operators A; and B; to collapse D to
a small resolution, as in [6]. But I have not been able to do this. The
situation changes drastically, however, if we replace the generators x; by
new generators t, Yo, y1,..., where t = o and y; = 4}13:2- = T;T; +12. With
these new generators, the defining relations become

?Jf = Y2:Y2i+2

¥ =yjq1 fori<j.

This presentation reflects the fact that G is an HNN extension of Thomp-
son’s group.

It is not hard to show that the submonoid M of G generated by ¢ and
the y; admits a presentation by a coniplete rewriting system with rules
yit — ty2iY2i42 and y;y; — YY1 for i< j. And, again, we have G =
MM~1. So we obtain a resolution with basis elements (y;,,... , i, ) and
(Yiys---»Yi,_,,t), where the subscripts 4re strictly decreasing. Our rewrit-
ing system does not quite fit the framewdrk of §6, because of the presence of
two y’s on the right side of the first rule. But one can still use the methods
of §6 to obtain a cubical boundary formula 8 = Y7, (—1)""1(4; — B;),
where the A; and B; are defined as before by moving generators to the
right or left. The only difference is that if o is an essential cell of the
form (yi,,...,%i,_,,t), then the result of moving ¢ to the left is 7 =
(y2i1y2i1+2: . 5y2in—1y2in—-1+2)? which is not essential. Thus AnO' has to
be interpreted as ¢(7) rather than 7. Since ¢ does not occur in 7, we can
compute ¢(7) by repeated applications of the lemma in §6. This will yield
a linear combination of essential cells involving y’s only, and not ¢. It is not
necessary, for our present purposes, to know any more about ¢(7).

It is now a simple matter to imitate [6] and collapse the resolution D to
one with only finitely many generators in each dimension. Here are some
hints as to how to do this: As essential cells in dimensions 1 and 2, take
®), (), (¥1), (¥2,%0)s (¥3,91), (Yo%), and (y1,t). To collapse the 1-cell
T = (y;), which is now considered redundant if ¢ > 2, set ¢(7) = (yi—1, ¥i—2);
note that Ayc(7) = 7. Similarly, collapse the 2-cell 7 = (y;,t) with ¢ > 2
by setting c(7) = (yi—1,¥i—2,t). Suppose, finally, that 7 = (y;,y;) with
either (a) j > i+ 3 or (b) j =4+ 2 and 7 > 2. We then take c(7) to be
(Yj-1,Yj—2,¥:) in case (a) and (y;—1,¥i—1, Yi—2) in case (b). Further details
are omitted.
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